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Acylindrical hyperbolicity, non-simplicity and
SQ-universality of groups splitting over Z

Jack O. Button
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Abstract. We show, using acylindrical hyperbolicity, that a finitely generated group split-
ting over Z cannot be simple. We also obtain SQ-universality in most cases, for instance
a balanced group (one where if two powers of an infinite order element are conjugate
then they are equal or inverse) which is finitely generated and splits over Z must either be
SQ-universal or it is one of exactly seven virtually abelian exceptions.

1 Introduction

An infinite word hyperbolic group can never be simple. Indeed it was shown in
[13] and independently in [8] that a non-elementary word hyperbolic group G is
SQ-universal, that is every countable group embeds in a quotient of G, and this
implies that G has uncountably many normal subgroups so is very far from being
simple. A generalisation of word hyperbolicity is that of being hyperbolic relative
to a collection of proper subgroups, with non-trivial amalgamated free products
A �C B and HNN extensions H�C over finite groups C being examples. It was
shown in [1] that non-elementary groups which are hyperbolic relative to a collec-
tion of proper subgroups are SQ-universal too, thus in particular this result holds
for HNN extensions H�C with C finite and C < H , which was not previously
known. However, well before this it was established (see [15]) that all non-trivial
free products are SQ-universal (excluding of course C2 � C2), and then in [10] the
SQ-universality of amalgamated free products A �C B , where C is finite and has
index greater than 2 in one factor and at least 2 in the other, was proven. In fact,
the bulk of the work here is in showing that these groups cannot be simple.

In contrast all HNN extensions H�C are easily seen to be non-simple because
such a group will always surject Z. However, it is possible for an amalgamated
free product A �C B to be simple even if finitely generated, as first shown in [5]
from 1953 by R. Camm, where A; B are finitely generated free groups but C is not
finitely generated. More recently, the striking examples of Burger and Mozes in [4]
are simple groups where A; B are as before, yet C is a subgroup of finite index in
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both A and B . Now given that A �C B can never be simple if C is trivial or finite,
but it can be simple for other choices of amalgamated subgroup, this surely begs
the natural question of whether such groups can be simple in the case where C is
infinite cyclic (or virtually infinite cyclic). This seems even more natural in light
of the fact that groups of the form A �Z B and H�Z have been much studied, es-
pecially in the context of JSJ splittings, but we can find no instance in the literature
of this question of simplicity even being raised, let alone any direct partial results.
(Of course some cases can be deduced from other work, for instance if A; B are
word hyperbolic groups and the conditions for the Bestvina–Feighn combination
theorem are satisfied then A �Z B will also be word hyperbolic, so not simple. Or
if A; B are free groups then A �Z B will have a presentation with more genera-
tors than relators so will surject Z.) We can further ask if any group of the form
A �Z B is SQ-universal, outside of a small collection of examples akin to the vir-
tually cyclic case when C is finite. We can also ask about the SQ-universality of
HNN extensions of the form H�Z, again allowing a limited list of exceptions.

A more recent development is that of a group being acylindrically hyperbolic,
which is a further generalisation of being hyperbolic relative to proper subgroups.
It is shown in [7, Theorem 8.1 (a)] that acylindrical hyperbolicity also implies
SQ-universality (here the definition is set up so that there is no such thing as an ele-
mentary acylindrically hyperbolic group) and in [11] a fairly general condition for
a finite graph of groups to be acylindrically hyperbolic is given. However, unlike
when C is finite, we can have groups A �Z B or H�Z which are SQ-universal
but not acylindrically hyperbolic. Indeed, the only criterion we will need here for
showing a group G is not acylindrically hyperbolic is that of an s-normal subgroup
H of G, which means that gHg�1 \H is infinite for all g 2 G. If G is acylin-
drically hyperbolic, then an s-normal subgroup H must be too, so possessing an
infinite cyclic s-normal subgroup is an obstruction to acylindrical hyperbolicity
but need not be for SQ-universality, for instance Fn � Z for n � 2 is SQ-universal
and of the form A �Z B and A�Z but is not acylindrically hyperbolic.

In this paper we apply the sufficient result in [11] on acylindrical hyperbolicity
of the fundamental group of a finite graph of groups with arbitrary vertex and
edge groups to show in Corollary 2.5 that if G is finitely generated and is the
fundamental group of a reduced non-trivial graph of groups with one edge group
being virtually infinite cyclic, then it is not simple; indeed, it always has a non-
trivial normal subgroup of infinite index so cannot be just infinite either.

The method of proof here involves distinguishing between balanced and non-
balanced elements x of infinite order in a group G, where x being balanced means
that if gxmg�1 D xn, then jmj D jnj. We then have a version �G

x of the modular
homomorphism of x in G, with the domain being all elements g 2 G such that
ghxig�1 \ hxi is non-trivial. This is a subgroup of G containing the centraliser
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of x but here it will only be applied when this subgroup is all of G. In this case,
if x is balanced in the finitely generated group G then we obtain an infinite cyclic
normal subgroup of G and if not we have a surjection from G to Z.

As for the question of SQ-universality, it would be good if we could say that
a finitely generated group G of the form A �Z B or H�Z is always SQ-universal
or one in a list of small examples. In Section 3 we first find these small examples,
in that we give all non-trivial amalgamated free products A �Z B and HNN exten-
sions H�Z which do not contain a non-abelian free group. This list turns out to
consist of the soluble Baumslag–Solitar groups and exactly six other examples.
Unfortunately, we cannot quite show that all other finitely generated groups of
this form are SQ-universal as it is unclear how to proceed when mixing balanced
and unbalanced elements. However for a finitely generated group G of the form
A �hci B where c has infinite order and G is not one of these six small examples,
we show in Theorem 3.3 that G is indeed SQ-universal unless hci is s-normal in G

and c is balanced in one of the factors but not balanced in the other. Proposition 3.4
even has some partial results on SQ-universality in this case.

It is a similar story for finitely generated HNN extensions G D H�Z with
stable letter t such that tat�1 D b for a; b infinite order elements of H , where
Theorem 3.5 says that G is SQ-universal (or Z2 or the Klein bottle group) unless
hai is s-normal in G and a is balanced in H but where ar D bs holds in H

with jr j ¤ jsj (so that a is not balanced in G). Again we get partial results on
SQ-universality in this leftover case from Proposition 3.6. We finish with Corol-
lary 3.7 which states that if every infinite order element of a finitely generated
group G is balanced (which is true of most groups occurring in practice) and G

splits over Z, then either G is Z2 or one of these six small exceptions, or G is
acylindrically hyperbolic, or G has an infinite cyclic normal subgroup Z such that
G=Z is acylindrically hyperbolic. In the last two cases G is SQ-universal, so for
balanced finitely generated groups G splitting over Z we have a complete result:
G must be SQ-universal or is isomorphic to one of exactly seven exceptions.

2 Acylindrical hyperbolicity of graphs of groups with infinite cyclic
edge groups

In [11] a subgroup H of a group G is called weakly malnormal in G if there
is g 2 G such that gHg�1 \H is finite, and s-normal in G otherwise. In that
paper this concept was introduced in the context of acylindrical hyperbolicity, with
a group being acylindrically hyperbolic implying that it is SQ-universal and in
particular is not a simple group. The paper gives sufficient conditions under which
the fundamental group of a finite graph of groups is acylindrically hyperbolic,
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which we now review. Note that if a group G is acylindrically hyperbolic, then
any s-normal subgroup of G is itself acylindrically hyperbolic (in particular, it
cannot be a cyclic subgroup) by [14, Corollary 1.5].

Given a graph of groups G.�/ with connected graph � and fundamental
group G, an edge e is called good if both edge inclusions into the vertex groups
at either end of e give rise to proper subgroups, otherwise it is bad. A reducible
edge is a bad edge which is not a self loop. Given a finite graph of groups, we
can contract the reducible edges one by one until none are left, whereupon we say
G.�/ is reduced. This process does not affect the fundamental group G and the
new vertex groups will form a subset of the original vertex groups. It could be that
we are left with a single vertex and no edges, in which case we say that the graph
of groups G.�/ was trivial with G equal to the remaining vertex group. We then
have:

Theorem 2.1 ([11, Theorem 4.17]). Suppose that G.�/ is a finite reduced graph
of groups which is non-trivial and which is not just a single vertex with a single
bad edge. If there are edges e; f of � (not necessarily distinct) with edge groups
Ge; Gf and an element g 2 G such that Gf \ gGeg�1 is finite then G is either
virtually cyclic or acylindrically hyperbolic.

This immediately gives rise to two corollaries, one for amalgamated free prod-
ucts and one for HNN extensions:

Corollary 2.2. (i) ([11, Corollary 2.2]) If G D A �C B is a non-trivial amalga-
mation of any two groups A; B (meaning C ¤ A; B), then G is acylindrically
hyperbolic (or virtually cyclic) if C is not s-normal in G.

In particular, if C is virtually infinite cyclic, then G is acylindrically hyperbolic
exactly when C is not s-normal in G.

(ii) ([11, Corollary 2.3]) If G D H�tAt�1DB is a non-ascending HNN extension
of any group H (meaning H ¤ A; B), then G is acylindrically hyperbolic if A is
not s-normal in G.

In particular, if A (and thus B) is virtually infinite cyclic, then G is acylindri-
cally hyperbolic exactly when A is not s-normal in G.

The following is a definition from [16]:

Definition 2.3. A group G is called balanced if for any element x in G of infinite
order we have that xm conjugate to xn implies that jmj D jnj.

Here we will also define: A balanced element in a group G is an element x in
G of infinite order such that if we have m; n 2 Z with xm conjugate to xn in G

then jmj D jnj.
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Thus a group is balanced if and only if all its elements of infinite order are
balanced. Examples of balanced groups are all word hyperbolic groups (see for in-
stance [3, Chapter III.� , Corollary 3.10]) all 3-manifold groups by [9], groups act-
ing properly and cocompactly on a CAT(0) space ([3, Chapter III.� , Theorem 1.1])
and groups that are subgroup separable by [16, Lemma 4.12]. As for unbalanced
groups, by far the most common examples are groups containing a Baumslag–
Solitar subgroup

BS.m; n/ D ha; b j bamb�1
D an

i;

where jmj ¤ jnj. Thus an unbalanced group such as BS.1; 2/ can certainly be
linear but any subgroup S of GL.n; Z/ is balanced: say we have gxmg�1 D xn

for g; x 2 S and jmj ¤ jnj; then we know hg; xi will be residually finite. This
implies that the kernel of the natural homomorphism from BS.m; n/ onto hg; xi

must contain the finite residual of BS.m; n/ so hg; xi is soluble by [12]. By results
of Malce’ev, a soluble subgroup of GL.n; Z/ is polycyclic and a polycyclic group
is subgroup separable.

Suppose now that we have a cyclic subgroup hxiwhich is s-normal in a group G

(and hence x has infinite order). This means that for any g 2 G, there exist non-
zero integers m; n such that gxmg�1 D xn. Although m and n of course depend
on g and are not even uniquely defined for a particular g, it is easily checked
that the map �G

x from G to the non-zero multiplicative rationals Q� given by
�G

x .g/ D m=n is well defined and is even a homomorphism, which we call the
modular homomorphism of x in G (in line with other cases such as in generalised
Baumslag–Solitar groups). In particular, the element x is balanced in G if and
only if the image �G

x .G/ of the modular homomorphism is contained in ¹˙1º.
This generalises to virtually infinite cyclic subgroups V , because then hxi is also
s-normal in G for any infinite order x 2 V and the corresponding modular homo-
morphism �G

V does not depend on which x is taken.
We can now use the above to show that a finitely generated simple group cannot

split over Z or even a virtually infinite cyclic group. In fact, we actually show
that a finitely generated group splitting over a virtually infinite cyclic group has a
non-trivial normal subgroup of infinite index.

Theorem 2.4. Suppose that G.�/ is a reduced non-trivial graph of groups with
finitely generated fundamental group G and where one edge group is virtually
infinite cyclic. Then one of the following holds:

(i) G is acylindrically hyperbolic,

(ii) G has a homomorphism onto Z,

(iii) G has an infinite cyclic normal subgroup.
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Proof. As G is finitely generated, we can assume that � is a finite graph, and
then we can remove the edge corresponding to the virtually infinite cyclic group V

which will express G either as an amalgamated free product A �V B for V ¤ A; B

(if the edge separates �) or as an HNN extension H�tAt�1DB for A; B Š V (if the
edge is non-separating). But in the latter case of an HNN extension, G surjects to Z
anyway. We now apply Corollary 2.2 in the case of an amalgamated free product
to obtain acylindrical hyperbolicity of G, unless this edge group V is s-normal
in G which we now assume.

First suppose that x is also balanced in G, where x is any infinite order element
of V . Then for all g 2 G we can find integers k > 0 and l ¤ 0, both depending
on g, such that gxkg�1 D xl . But x being balanced in G means that l D ˙k. So
on taking a finite generating set g1; : : : ; gs for G, we have for each 1 � i � s an
integer ki with gix

ki g�1
i D x˙ki . Consequently, we can find a common power p

that works for all of this set and hence for all of G, thus hxpi is normal in G.
If however x is not balanced in G, then the image of the modular homomor-

phism �G
x of x in G will not be contained in ¹˙1º. But then j�G

x j provides
a homomorphism from G to the positive rationals QC which is non-trivial, thus
the image is an infinite torsion free abelian group which is finitely generated, thus
must be Zn.

Corollary 2.5. If G is a finitely generated group splitting non-trivially over a vir-
tually infinite cyclic subgroup V , namely as an amalgamated free product A �V B

with V ¤ A; B or as an HNN extension of the form H�tAt�1DB for A; B Š V ,
then G has infinitely many normal subgroups, at least one of which is infinite and
has infinite index in G. Consequently, G is not simple or just infinite and nor is
any finite index subgroup of G.

Proof. On application of Theorem 2.4, either G is SQ-universal in which case it
has uncountably many normal subgroups (only countably many of which can be
finite or have finite index as G is finitely generated), or it surjects to Z (therefore to
every finite cyclic group) and this kernel is infinite as a virtually cyclic group does
not split non-trivially over Z, or there is p > 0 such that hxpi is an infinite cyclic
normal subgroup of G, hence again this is of infinite index, as are the distinct
proper normal subgroups hxnpi for n 2 N. The same holds for any finite index
subgroup of G as can been in a variety of ways, not least because it also splits over
a virtually infinite cyclic subgroup.

Notes. (1) It is quite possible in the amalgamated free product case that G has no
proper finite index subgroups, for instance if A and B have no proper finite index
subgroups then nor will A � B or A �C B .
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(2) We do not quite have a definitive result in the case of an infinitely generated
group G: here the proof of Theorem 2.4 tells us that either G is acylindrically
hyperbolic, or G has an infinite torsion free abelian quotient, or G has an infinite
cyclic normal subgroup, or G fails to have the maximum condition on centralisers.
Unfortunately, we do not know in the last case if G can also be simple.

3 SQ-universality

We can now ask whether the stronger property of being SQ-universal holds for
finitely generated groups splitting over a virtually infinite cyclic group, given that
this is true for all acylindrically hyperbolic groups. However, this will fail for the
groups mentioned below in Proposition 3.2, because being SQ-universal implies
containing a non-abelian free group. Hence we first consider this case by using the
following well known proposition.

Proposition 3.1. The following statements hold.

(i) If G D A�C B is a non-trivial amalgamated free product so that C ¤ A; B ,
then G contains a non-abelian free group, unless neither of A and B do and
C has index 2 in both A and B , in which case G does not.

(ii) If G D H�tAt�1DB is an HNN extension, then G contains a non-abelian
free group, unless H does not and at least one of A and B is equal to H , in
which case G does not.

Proof. Part (i) is [2, Lemma 1], whereas for (ii) we can take the group ht; xtx�1i,
where t is the stable letter and x 2 H n .A [ B/, which is seen to be a rank 2 free
group by using reduced forms of the HNN extension.

Thus now we would like to see which groups can have such splittings despite
not containing a non-abelian free group. At this point we restrict the edge group to
Z so as to obtain a complete list of exceptions.

Proposition 3.2. If the group G splits as an HNN extension over Z but does not
contain a non-abelian free group, then G is isomorphic to one of the soluble
Baumslag–Solitar groups BS.1; n/ for n 2 Z n ¹0º.

If the group G splits as a non-trivial amalgamated free product over Z but does
not contain a non-abelian free group, then G is isomorphic to one of the following
(mutually non-isomorphic) six groups:

(i) The group ha; b j a2 D b2i which is the Klein bottle group K (and is also
BS.1;�1/, so is the only group here splitting over Z both as an HNN exten-
sion and an amalgamated free product).
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(ii) The group hs; t; c j Œs; t �; c2; csc�1 D t; ctc�1 D siwhich is Z2ÌC2, where
C2 swaps this standard generating set of Z2.

(iii) The group ha; b; c j a2 D b2; c2; cac�1 D b; cbc�1 D ai which is K Ì C2,
where the generators for K in (i) are swapped.

(iv) The group hc; d; z j c2; d2; Œc; z�; Œd; z�i which is .C2 � C2/ � Z.

(v) The group ht; c; d j c2; d2; ctc�1 D t�1; dtd�1 D tiwhich is ZÌ.C2�C2/,
where one C2 factor inverts Z and one fixes Z.

(vi) The group hs; t; c j Œs; t �; c2; csc�1 D s�1; ctc�1 D t�1i which is Z2 Ì C2

where C2 inverts the elements of Z2.

Proof. The HNN extension case follows directly from Proposition 3.1 (ii) on
putting A or B equal to Z. In the amalgamated free product case we have that
A and B contain Z with index 2, meaning that they are isomorphic to (a) Z itself,
(b) Z � C2 or (c) C2 � C2. Now Z and C2 � C2 each have a unique index 2 sub-
group that is isomorphic to Z whereas Z � C2 has two, but these two are equiv-
alent under an automorphism. Therefore we can write out standard presentations
for all three groups and then for the six possible amalgamations, which we have
done above in the order (a)-(a), (a)-(b), (a)-(c), (b)-(b), (b)-(c), (c)-(c). We have
also performed some tidying up of the resulting presentations, and calculated the
abelianisation of these groups and their index 2 subgroups which distinguishes
these six groups, as well as distinguishing the last five from any Baumslag–Solitar
group.

We now consider all other finitely generated free products amalgamated over Z,
where we can prove SQ-universality in most cases.

Theorem 3.3. Suppose that G is finitely generated and is equal to a non-trivial
amalgamated free product A �C B for C D hci Š Z. If hci is not s-normal in G,
or hci is s-normal in G and c is balanced in G but G is not one of the six groups
listed in Proposition 3.2, or if hci is s-normal in G but c is not balanced in A and
not balanced in B , then G is SQ-universal.

Proof. By Corollary 2.2 (i) we know that G is acylindrically hyperbolic and hence
SQ-universal unless hci is s-normal in G, which will be assumed for the rest of
the proof. First suppose that c is balanced in G, so as in the proof of Theorem 2.4
we have p > 0 such that hcpi is normal in G, and hence in A and B . This means
that on quotienting both A and B by this infinite cyclic normal subgroup to obtain
A and B , in each of which the image c has order p, our amalgamated free product
A �C B factors through A �C B , where C D hci is cyclic of order p. Moreover,
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hcpi is contained in C , so that the indices ŒA W C � D ŒA W C � and ŒB W C � D ŒB W C �

are unchanged. But ŒA W C �; ŒB W C � > 1 by assumption and at least one of these
indices is greater than two (or else we are back in the case of Proposition 3.2), so
by [10] we have that A �C B is SQ-universal and hence G is also.

Now we assume that c is not balanced in A, nor in B . This means that the
modular homomorphisms j�A

c j from A to QC and j�B
c j from B to QC are both

maps to infinite torsion free abelian groups with hci in the kernel, thus we can
put them together to obtain a homomorphism from G to the free product of these
infinite abelian groups, thus here G is SQ-universal.

Thus we are left with c being balanced in A but not in B (or vice versa), where-
upon we cannot always say here that A �C B is SQ-universal. However, there are
subcases where we can obtain this conclusion so we look at this in a little more
detail. By D. E. Cohen’s comment ([6, Section 3]) we have that in an amalgamated
free product G D A �C B , if G and C are finitely generated, then so are A and B .

Proposition 3.4. Suppose that G D A �C B is a non-trivial amalgamated free
product with C D hci infinite cyclic and G finitely generated. Suppose also that
hci is s-normal in G (thus in A and in B) and c is balanced in A but not in B , so
that (as Cohen’s comment tells us A is finitely generated) there is p > 0 with hcpi

normal in A. If there exists an integer k > 0 such that

(i) the normal closure hhckiiA of the element ck in A does not contain any of
the elements c; c2; : : : ; ck�1, with the same holding for the normal closure
hhckiiB of ck in B ,

(ii) the quotient of A by the normal closure hhckiiA has order greater than k,

then G is SQ-universal.
In particular, if hhciiA is not equal to A, so that (ii) holds for k D 1 with (i), then

holding automatically, or if there is k which is a multiple of p such that (i) holds
just for hhckiiB , then G is SQ-universal.

Proof. Condition (i) implies that in both quotients A=hhckiiA and B=hhckiiB , the
element c has order exactly k. If so, then B=hhckiiB is infinite because it surjects
B=hhciiB which itself surjects an infinite abelian group using j�B

c j, as c is not
balanced in B . In particular, the image of hci in this quotient B=hhckiiB of B has
infinite index. Hence the amalgamated free product .A=hhckiiA/ �hci .B=hhckiiB/

is a quotient of A �C B and the former is SQ-universal by [10] provided only that
hci has index greater than 1 in A=hhckiiA, which is condition (ii).

As for the particular cases mentioned, taking k D 1 gives us the free prod-
uct .A=hhciiA/ � .B=hhciiB/. If the left-hand factor is non-trivial, then this will
be a non-trivial free product not equal to C2 � C2, and therefore is SQ-universal.
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Meanwhile, if c has order exactly k in B=hhckiiB for p dividing k, then we know
c also has order k in A=hhckiiA because hcpi and then hcki is normal in A, with
ŒA=hcki W C=hcki� D ŒA W C � > 1 so (ii) holds as well.

We now move to HNN extensions.

Theorem 3.5. Suppose that G is a finitely generated group which is an HNN exten-
sion H�tAt�1DB with base H and stable letter t conjugating the infinite cyclic
subgroup A D hai of H to B D hbi via tat�1 D b. Then G is SQ-universal or
Z2 or the Klein bottle group, with the possible exception of when hai is s-normal
in H and there exist integers r; s with ar D bs for jr j ¤ jsj but a (equivalently b)
is balanced in H .

Proof. By Corollary 2.2 we have that G is acylindrically hyperbolic and hence
SQ-universal unless hai is s-normal in G, which we assume for the rest of the
proof. Thus hai is s-normal in H too and also there are non-zero integers r; s

with ar D bs because otherwise A \ B is trivial with A conjugate to B in G,
contradicting A being s-normal in G. Now our HNN extension G factors through
the HNN extension with base H=hha; biiH and trivial edge subgroups, which is the
free product .H=hha; biiH / � Z and thus is SQ-universal provided the first factor
is non-trivial. But if a is not balanced in H , then a, and hence also b because of
the relation ar D bs , will be in the kernel of the modular homomorphism j�H

a j

which here has infinite image in QC, so H=hha; biiH is non-trivial.
Now say a is balanced in H but jr j D jsj. Then as a is s-normal in H too, we

have p > 0 such that hapi, and hence haki for any multiple k of p, is normal in H

as before by using D. E. Cohen’s comment applied to HNN extensions (namely G

and A being finitely generated imply the base H is finitely generated). Hence
hapjrji D hbpjrji is normal in H with a and b both having order exactly pjr j

in this quotient, so G factors through the HNN extension .H=hapjrji/�tAt�1DB ,
where now A and B both map to finite cyclic groups of order pjr j. This HNN
extension is SQ-universal by [1, Corollary 1.3] unless we have A=hapjrji D

B=hbpjrji D H=hapjrji, whereupon we must have had A D B D H Š Z initially.
This means that G was ht; h j tht�1 D h˙1i, so G is Z2 or the Klein bottle
group.

As any HNN extension over Z excluded by Theorem 3.5 will have the edge
generator a (equivalently b) balanced in the base group but not balanced in the
HNN extension because we would have tast�1 D ar for jr j ¤ jsj, we see that
(just as in Theorem 3.3) it is the “mixed” case which is troublesome in proving
SQ-universality. Nevertheless, here we can still obtain partial results similar to
those in Proposition 3.4.
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Proposition 3.6. Suppose that G is a finitely generated group which is an HNN ex-
tension H�tAt�1DB with base H and stable letter t conjugating the infinite cyclic
subgroup A D hai of H to B D hbi via tat�1 D b such that there are integers r; s

with ar D bs for jr j ¤ jsj but a (equivalently b) is balanced in H . If there exists
an integer k > 0 such that

(i) the normal closure hhak; bkiiH D hhakiiH hhbkiiH of the elements ak; bk in
H does not contain any of the elements a; a2; : : : ; ak�1 or b; b2; : : : ; bk�1,

(ii) the quotient of H by hhak; bkiiH has order greater than k,

then G is SQ-universal.
In particular, if hha; biiH is not equal to H , so that (ii) holds for k D 1 with (i),

then holding automatically, then G is SQ-universal.

Proof. On setting N D hhak; bkiiH we see that a and b both have exact order k

in H=N so the HNN extension .H=N /�tat�1Db is well defined, as a and b both
have order k in H=N , and it is a quotient of G. Moreover, neither a nor b generate
H=N from (ii) so G is SQ-universal by [1, Corollary 1.3].

To finish, if G is finitely generated, splits over Z and is a balanced group, then
we have a complete result. Indeed, we have a trichotomy (reading like [11, Theo-
rem 2.8] but there the groups being considered are all subgroups of fundamental
groups of compact 3-manifolds) which says that G is acylindrically hyperbolic,
or is so on quotienting out by an infinite cyclic normal subgroup (and therefore is
SQ-universal because this is preserved by prequotients), or is one of a very few
small exceptions. In fact, we only need the edge group generator to be balanced
for this to hold.

Corollary 3.7. Suppose that G is a finitely generated group which equals the fun-
damental group of a reduced non-trivial graph of groups where one edge group is
infinite cyclic with a generator that is balanced in G. Then one of the following
mutually exclusive cases occurs:

(i) G is acylindrically hyperbolic,

(ii) G has an infinite cyclic normal subgroup Z such that G=Z is relatively
hyperbolic but not virtually cyclic and so is acylindrically hyperbolic,

(iii) G is isomorphic to Z2 or one of the six groups listed in Proposition 3.2.

In particular, G is SQ-universal or virtually abelian.

Proof. On applying Theorem 2.4 we see that if G is not acylindrically hyperbolic,
then either it is an HNN extension over Z or it is an amalgamated free product
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with an infinite cyclic normal subgroup Z whose generator cp is a power of the
edge group generator c, because we are in the case where c is balanced in G. In
the latter case we can apply Theorem 3.3 with hci being s-normal and c balanced
in G to conclude that either G=Z is an amalgamation over a finite subgroup which
is not virtually cyclic but which is hyperbolic relative to the vertex groups, or G is
one of the six groups listed in Proposition 3.2.

If now G is an HNN extension, we are then covered by the proof of Theo-
rem 3.5, unless hai is s-normal in G, whereupon we have ar D bs , but a balanced
in G and tat�1 D b tells us that jr j D jsj. In this case we conclude that the infi-
nite cyclic subgroup C D hapjrji is normal not just in the base H but in G too as
apjrj D b˙pjrj with tapr t�1 D b˙pr . Moreover, the quotient G=Z is again rela-
tively hyperbolic but not virtually cyclic, or G is Z2 or the Klein bottle group with
the latter being the first group listed in Proposition 3.2.
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the paper.
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