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Abstract
Modern computation based on von Neumann architecture is now a mature cutting-edge science.
In the von Neumann architecture, processing and memory units are implemented as separate
blocks interchanging data intensively and continuously. This data transfer is responsible for a large
part of the power consumption. The next generation computer technology is expected to solve
problems at the exascale with 1018 calculations each second. Even though these future computers
will be incredibly powerful, if they are based on von Neumann type architectures, they will
consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in
capabilities to learn or deal with complex data as our brain does. These needs can be addressed by
neuromorphic computing systems which are inspired by the biological concepts of the human
brain. This new generation of computers has the potential to be used for the storage and processing
of large amounts of digital information with much lower power consumption than conventional
processors. Among their potential future applications, an important niche is moving the control
from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present
state of neuromorphic technology and provide an opinion on the challenges and opportunities that
the future holds in the major areas of neuromorphic technology, namely materials, devices,
neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a
collection of perspectives where leading researchers in the neuromorphic community provide their
own view about the current state and the future challenges for each research area. We hope that this
roadmap will be a useful resource by providing a concise yet comprehensive introduction to
readers outside this field, for those who are just entering the field, as well as providing future
perspectives for those who are well established in the neuromorphic computing community.
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Introduction

N Pryds1, Dennis V Christensen1, Bernabe Linares-Barranco2 , Daniele Ielmini3 and Regina Dittmann4

1Technical University of Denmark
2Instituto de Microelectrónica de Sevilla, CSIC and University of Seville
3Politecnico di Milano and IU.NET
4Forschungszentrum Jülich GmbH

Computers have become essential to all aspects of modern life and are omnipresent all over the globe.
Today, data-intensive applications have placed a high demand on hardware performance, in terms of short
access latency, high capacity, large bandwidth, low cost, and ability to execute artificial intelligence (AI) tasks.
However, the ever-growing pressure for big data creates additional challenges: on the one hand, energy con-
sumption has become a remarkable challenge, due to the rapid development of sophisticated algorithms and
architectures. Currently, about 5%–15% of the world’s energy is spent in some form of data manipulation,
such as transmission or processing [1], and this fraction is expected to rapidly increase due to the exponential
increase of data generated by ubiquitous sensors in the era of internet of things. On the other hand, data pro-
cessing is increasingly limited by the memory bandwidth due to the von-Neumann’s architecture with physical
separation between processing and memory units. While the von Neumann computer architecture has made an
incredible contribution to the world of science and technology for decades, its performance is largely inefficient
due to the relatively slow and energy demanding data movement.

Conventional von Neumann computers based on complementary metal oxide semiconductor (CMOS)
technology do not possess the intrinsic capabilities to learn or deal with complex data as the human brain
does. To address the limits of digital computers, there are significant research efforts worldwide in developing
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profoundly different approaches inspired by biological principles. One of these approaches is the development
of neuromorphic systems, namely computing systems mimicking the type of information processing in the
human brain.

The term ‘neuromorphic’ was originally coined in the 1990s by Carver Mead to refer to mixed signal
analog/digital very large scale integration computing systems that take inspiration from the neuro-biological
architectures of the brain [2]. ‘Neuromorphic engineering’ emerged as an interdisciplinary research field that
focused on building electronic neural processing systems to directly ‘emulate’ the bio-physics of real neurons
and synapses [3]. More recently, the definition of the term neuromorphic has been extended in two addi-
tional directions [4]. Firstly, the term neuromorphic was used to describe spike-based processing systems
engineered to explore large-scale computational neuroscience models. Secondly, neuromorphic computing
comprises dedicated electronic neural architectures that implement neuron and synapse circuits. Note that
this concept is distinct from AI machine learning approaches which are based on pure software algorithms
developed to minimize the recognition error in pattern recognition tasks [5]. However, a precise definition of
neuromorphic computing is somewhat debated. It can range from very strict high-fidelity mimicking of neu-
roscience principles where very detailed synaptic chemical dynamics are mandatory, to very vague high-level
loosely brain-inspired principles, such as the simple vector (input) times matrix (synapses) multiplication. In
general, as of today, there is a wide consensus that neuromorphic computing should at least encompass some
time-, event-, or data-driven computation. In this sense, systems like spiking neural networks (SNN), some-
times referred to as the third generation of neural networks [6], are strongly representative. However, there
is an important cross-fertilization between the technologies required to develop efficient SNNs and those for
more traditional non-SNN, referred to as artificial neural networks (ANN), which are typically more time-
step-driven. While the former definition of neuromorphic computing is more plausible, in this roadmap we
aim at broadening the scope to emphasize the cross-fertilization between ANN and SNN.

Nature is a vital inspiration for the advancement to a more sustainable computing scenario, where neuro-
morphic systems display much lower power consumption than conventional processors, due to the integration
of non-volatile memory and analog/digital processing circuits as well as the dynamic learning capabilities in
the context of complex data. Building ANNs that mimic a biological counterpart is one of the remaining chal-
lenges in computing. If the fundamental technical issues are solved in the next few years, the neuromorphic
computing market is projected to rise from $0.2 billion in 2025 to $22 billion in 2035 [7] as neuromorphic
computers with ultra-low power consumption and high speed advance and drive demands for neuromorphic
devices.

In line with these increasingly pressing issues, the general aim of the roadmap on neuromorphic computing
and engineering is to provide an overview of the different fields of research and development that contribute to
the advancement of the field, to assess the potential applications of neuromorphic technology in cutting edge
technologies and to highlight the necessary advances required to reach these. The roadmap addresses:

€ Neuromorphic materials and devices

€ Neuromorphic circuits

€ Neuromorphic algorithms

€ Applications

€ Ethics

Neuromorphic materials and devices: To advance the field of neuromorphic computing and engineering,
the exploration of novel materials and devices will be of key relevance in order to improve the power effi-
ciency and scalability of state-of-the-art CMOS solutions in a disruptive manner [4, 8]. Memristive devices,
which can change their conductance in response to electrical pulses [9–11], are promising candidates to act
as energy- and space-efficient hardware representation for synapses and neurons in neuromorphic circuits.
Memristive devices have originally been proposed as binary non-volatile random-access memory and research
in this field has been mainly driven by the search for higher performance in solid-state drive technologies (e.g.,
flash replacement) or storage class memory [12]. However, thanks to their analog tunability and complex
switching dynamics, memristive devices also enable novel computing functions such as analog computing
or the realisation of brain-inspired learning rules. A large variety of different physical phenomena has been
reported to exhibit memristive behaviour, including electronic effects, ionic effects as well as structural or
ferroic ordering effects. The material classes range from magnetic alloys, metal oxides, chalcogenides to 2D
van de Waals materials or organic materials. Within this roadmap, we cover a broad range of materials and
phenomena with different maturity levels with respect to their use in neuromorphic circuits. We consider
emerging memory devices that are already commercially available as binary non-volatile memory such as
phase-change memory (PCM), magnetic random-access memory, ferroelectric memory as well as redox-based
resistive random-access memory and review their prospects for neuromorphic computing and engineering. We
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complement it with nanowire networks, 2D materials, and organic materials that are less mature but may offer
extended functionalities and new opportunities for flexible electronics or 3D integration.

Neuromorphic circuits: Neuromorphic devices can be integrated with conventional CMOS transistors to
develop fully functional neuromorphic circuits. A key element in neuromorphic circuits is their non-von Neu-
mann architecture, for instance consisting of multiple cores each implementing distributed computing and
memory. Both SSNs, adopting spikes to represent, exchange and compute data in analogy to action potentials
in the brain, as well as circuits that are only loosely inspired by the brain, such as ANNs, are generally included
in the roster of neuromorphic circuits, thus will be covered in this roadmap. Regardless of the specific learning
and processing algorithm, a key processing element in neuromorphic circuits is the neural network, including
several synapses and neurons. Given the central role of the neural network, a significant research effort is cur-
rently aimed at technological solutions to realize dense, fast, and energy-efficient neural networks by inmemory
computing [13]. For instance, a memory array can accelerate the matrix-vector multiplication (MVM) [14].
This is a common feature of many neuromorphic circuits, including spiking and non-spiking networks, and
takes advantage of Ohm’s and Kirchhoff’s laws to implement multiplication and summation in the network.
The MVM crosspoint circuit allows for the straightforward hardware implementation of synaptic layers with
high density, high real-time processing speed, and high energy efficiency, although the accuracy is challenged
by stochastic variations in memristive devices in particular, and analog computing in general. An additional cir-
cuit challenge is the mixed analog-digital computation, which results in the need for large and energyhungry
analog-digital converter circuits at the interface between the analog crosspoint array and the digital system.
Finally, neuromorphic circuits seem to take the most benefit from hybrid integration, combining front-end
CMOS technology with novel memory devices that can implement MVM and neuro-biological functions,
such as spike integration, short-term memory, and synaptic plasticity [15]. Hybrid integration may also need
to extend, in the long term, to alternative nanotechnology concepts, such as bottom-up nanowire networks
[16], and alternative computing concepts, such as photonic [17] and even quantum computing [18], within a
single system or even a single chip with 3D integration. In this scenario, a roadmap for the development and
assessment of each of these individual innovative concepts is essential.

Neuromorphic algorithms: A fundamental challenge in neuromorphic engineering for real application sys-
tems is to train them directly in the spiking domain in order to be more energy-efficient, more precise, and
also be able to continuously learn and update the knowledge on the portable devices themselves without rely-
ing on heavy cloud computing servers. Spiking data tend to be sparse with some stochasticity and embedded
noise, interacting with non-ideal non-linear synapses and neurons. Biology knows how to use all this to its
advantage to efficiently acquire knowledge from the surrounding environment. In this sense, computational
neuroscience can be a key ingredient to inspire neuromorphic engineering, and learn from this discipline how
brains perform computations at a variety of scales, from small neurons ensembles, mesoscale aggregations, up
to full tissues, brain regions and the complete brain interacting with peripheral sensors and motor actuators.
On the other hand, fundamental questions arise on how information is encoded in the brain using nervous
spikes. Obviously, to maximize energy efficiency for both processing and communication, the brain maxi-
mizes information per unit spike [19]. This means unravelling the information encoding and processing by
exploiting spatio-temporal signal processing to maximize information while minimizing energy, speed, and
resources.

Applications: The realm of applications for neuromorphic computing and engineering continues to grow
at a steady rate, although remaining within the boundaries of research and development. While it is becom-
ing clear that many applications are well suited to neuromorphic computing and engineering, it is also
important to identify new potential applications to further understand how neuromorphic materials and
hardware can address them. The roadmap includes some of these emerging applications as examples of
biologically-inspired computing approaches for implementation in robots, autonomous transport capabil-
ity or in perception engineering where the applications are based on integration with sensory modalities of
humans.

Ethics: While the future development and application of neuromorphic systems offer possibilities beyond
the state of the art, the progress should also be addressed from an ethical point of view where, e.g., lack of
transparency in complex neuromorphic systems and autonomous decision making can be a concern. The
roadmap thus ends with a final section addressing some of the key ethical questions that may arise in the wake
of advancements in neuromorphic computation.

We hope that this roadmap represents an overview and updated picture of the current state-of-the-art
as well as being the future projection in these exciting research areas. Each contribution, written by leading
researchers in their topic, provides the current state of the field, the open challenges, and a future perspective.
This should guide the expected transition towards efficient neuromorphic computations and highlight the
opportunities for societal impact in multiple fields.

5



Neuromorph. Comput. Eng. 2 (2022) 022501 Roadmap

Acknowledgements

DVC and NP acknowledge the funding from Novo Nordic Foundation Challenge Program for the BioMag
project (Grant No. NNF21OC0066526), Villum Fonden, for the NEED project (00027993), Danish Coun-
cil for Independent Research Technology and Production Sciences for the DFF Research Project 3 (Grant
No. 00069B), the European Union’s Horizon 2020, Future and Emerging Technologies (FET) programme
(Grant No. 801267) and Danish Council for Independent Research Technology and Production Sciences for
the DFF-Research Project 2 (Grant No. 48293). RD acknowledges funding from the German Science foun-
dation within the SFB 917 ‘Nanoswitches’, by the Helmholtz Association Initiative and Networking Fund
under Project Number SO-092 (Advanced Computing Architectures, ACA), the Federal Ministry of Edu-
cation and Research (project NEUROTEC Grant No. 16ES1133K) and the Marie Sklodowska-Curie H2020
European Training Network, ‘Materials for neuromorphic circuits’ (MANIC), grant Agreement No. 861153.
BLB acknowledges funding from the European Union’s Horizon 2020 (Grants 824164, 871371, 871501, and
899559). DI acknowledges funding from the European Union’s Horizon 2020 (Grants 824164, 899559 and
101007321).

6



Neuromorph. Comput. Eng. 2 (2022) 022501 Roadmap

1. Phase-change memory devices

Abu Sebastian1, Manuel Le Gallo1 and Andrea Redaelli2

1IBM Research - Zurich, Switzerland
2ST Microelectronics, Italy

1.1. Status
PCM exploits the behaviour of certain phase-change materials, typically compounds of Ge, Sb and Te, that
can be switched reversibly between amorphous and crystalline phases of different electrical resistivity [20]. A
PCM device consists of a certain nanometric volume of such phase change material sandwiched between two
electrodes (figure 1).

In recent years, PCM devices are being explored for brain-inspired or neuromorphic computing mostly by
exploiting the physical attributes of these devices to perform certain associated computational primitives in-
place in the memory itself [13, 21]. One of the key properties of PCM that enables such inmemory computing
(IMC) is simply the ability to store two levels of resistance/conductance values in a non-volatile manner and to
reversibly switch from one level to the other (binary storage capability). This property facilitates in-memory
logical operations enabled through the interaction between the voltage and resistance state variables [21].
Applications of in-memory logic include database query [22] and hyper-dimensional computing [23].

Another key property of PCM that enables IMC is its ability to achieve not just two levels but a continuum of
resistance values (analogue storage capability) [20]. This is typically achieved by creating intermediate phase
configurations through the application of partial RESET pulses. The analogue storage capability facilitates
the realization of MVM operations in O(1) time complexity by exploiting Kirchhoff’s circuit laws. The most
prominent application for this is DNN inference [24]. It is possible to map each synaptic layer of a DNN to a
crossbar array of PCM devices. There is a widening industrial interest in this application owing to the promise
of significantly improved latency and energy consumption with respect to existing solutions. This in-memory
MVM operations also enable non-neuromorphic applications such as linear-solvers and compressed sensing
recovery [21].

The third key property that enables IMC is the accumulative property arising from the crystallization kinet-
ics. This property can be utilized to implement DNN training [25, 26]. It is also the central property that is
exploited for realizing local learning rules like spike-timing-dependent plasticity in SNN [27, 28]. In both cases,
the accumulative property is exploited to implement the synaptic weight update in an efficient manner. It has
also been exploited to emulate neuronal dynamics [29].

Note that, PCM is at a very high maturity level of development with products already on the market and a
well-established roadmap for scaling. This fact, together with the ease of embedding PCM on logic platforms
(embedded PCM) [30] make this technology of unique interest for neuromorphic computing and IMC in
general.

1.2. Current and future challenges
PCM devices have several attractive properties such as the ability to operate them at timescales on the order
of tens of nanoseconds. The cycling endurance is orders of magnitude higher for PCM compared to other
non-volatile memory devices such as flash memory. The retention time can also be tuned relatively easily
with the appropriate choice of materials, although the retention time associated with the intermediate phase
configurations could be substantially lower than that of the full amorphous state.

However, there are also several device-level challenges as shown in figure 2. One of the key challenges
associated with the use of PCM for in-memory logic operations is the wide distribution of the SET states.
These distributions could detrimentally impact the evaluation of logical operations. The central challenge
associated with in-memory MVM operations is the limited precision arising from the 1/f noise as well as
conductance drift. Drift is attributed to the structural relaxation of the melt-quenched amorphous phase [31].
Temperature-induced conductance variations could also pose challenges. One additional challenge is related to
the stoichiometric stability during cycling where ion migration effects can occur [32]. Moreover, the accumula-
tive behaviour in PCM is highly nonlinear and stochastic. While one could exploit this intrinsic stochasticity to
realize stochastically firing neurons and for stochastic computing, this behaviour is detrimental for applications
such as DNN training in which the conductance must be precisely modulated.

PCM-based IMC has the potential for ultra-high compute density since PCM devices can be scaled to
nanoscale dimensions. However, it is not straightforward to fabricate such devices in a large array due to
fabrication challenges such as etch damage and deposition of materials in high-aspect ratio pores [33]. The
integration density is also limited by the access device, which could be a selector in the backend-of-the-line
(BEOL) or front-end bipolar junction transistors (BJT) or metal-oxide-semiconductor field effect transistors
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Figure 1. Key physical attributes that enable neuromorphic computing. (a) Non-volatile binary storage facilitates in-memory
logical operations relevant for applications such as hyper-dimensional computing. (b) Analog storage enables efficient
matrix-vector multiply (MVM) operations that are key to applications such as deep neural network (DNN) inference. (c) The
accumulative behaviour facilitates applications such as DNN training and emulation of neuronal and synaptic dynamics in SNN.

Figure 2. Key challenges associated with PCM devices. (a) The SET/RESET conductance values exhibit broad distributions which
is detrimental for applications such as in-memory logic. (b) The drift and noise associated with analogue conductance values
results in imprecise matrixvector multiply operations. (c) The nonlinear and stochastic accumulative behaviour result in
imprecise synaptic weight updates.

(MOSFET). The threshold voltage must be overcome when SET operations are performed, so the access device
must be able to manage voltages at least as high as the threshold voltage. While MOSFET selector size is mainly
determined by the PCM RESET current, the BJT and BEOL selectors can guarantee a minimum cell size of
4F2, leading to very high density [34]. However, BEOL selector-based arrays have some drawbacks in terms of
precise current control, while the management of parasitic drops is more complex for BJT-based arrays [35].

1.3. Advances in science and technology to meet challenges
A promising solution towards addressing the PCM nonidealities such as 1/f noise and drift is that of projected
phase-change memory (projected PCM) [36, 37]. In these devices, there is a non-insulating projection segment
in parallel to the phase-change material segment. By exploiting the highly nonlinear I–V characteristics of
phase-change materials, one could ensure that during the SET/RESET process, the projection segment has
minor impact on the operation of the device. An increase in the reset current is anyway expected and some
work should be done on material engineering side to compensate for that. However, during read, the device
conductance is mostly determined by the projection segment that appears parallel to the amorphous phase-
change segment. Recently, it was shown that it is possible to achieve remarkably high precision in-memory
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scalar multiplication (equivalent to 8 bit fixed point arithmetic) using projected PCM devices [38]. These
projected PCM devices also facilitate array-level temperature compensation schemes. Alternate multi-layered
PCM devices have also been proposed that exhibit substantially lower drift [39].

There is a perennial focus on trying to reduce the RESET current via scaling the switchable volume of the
PCM device. Either by shrinking the overall dimension of the device in a confined geometry or by scaling the
bottom electrode dimensions of a mushroom-type device. The exploration of new material classes such as
single elemental antimony could help with the scaling challenge [40].

The limited endurance and various other non-idealities associated with the accumulative behaviour such as
limited dynamic range, nonlinearity and stochasticity can be partially circumvented with multiPCM synaptic
architectures. Recently, a multi-PCM synaptic architecture was proposed that employs an efficient counter-
based arbitration scheme [41]. However, to improve the accumulation behaviour at the device level, more
research is required on the effect of device geometries as well as the randomness associated with crystal growth.

Besides conventional electrical PCM devices, photonic memory devices based on phase-change materials,
which can be written, erased, and accessed optically, are rapidly bridging a gap towards allphotonic chip-scale
information processing. By integrating phase-change materials onto an integrated photonics chip, the analogue
multiplication of an incoming optical signal by a scalar value encoded in the state of the phase change material
was achieved [42]. It was also shown that by exploiting wavelength division multiplexing, it is possible to
perform convolution operations in a single time step [43]. This creates opportunities to design phase-change
materials that undergo faster phase transitions and have a higher optical contrast between the crystalline and
amorphous phases [44].

1.4. Concluding remarks
The non-volatile binary storage, analogue storage and accumulative behaviour associated with PCM devices
can be exploited to perform in-memory computing (IMC). Compared to other non-volatile memory tech-
nologies, the key advantages of PCM are the well understood device physics, volumetric switching and easy
embeddability in a CMOS platform. However, there are several device and fabrication-level challenges that
need be overcome to enable PCM-based IMC and this is an active area of research.

It will also be rather interesting to see how PCM-based neuromorphic computing will eventually be com-
mercialized. Prior to true IMC, a hybrid architecture where PCM memory chips are used to store synaptic
weights in a non-volatile manner while the computing is performed in a stacked logic chip is likely to be con-
sidered as an option by the industry. Despite the tight interconnect between the stacked chips, data transfer will
remain a bottleneck for this approach. A better solution could be PCM directly embedded with the logic itself
BEOL without any interconnect bottleneck and eventually we could foresee full-fledged non-von Neumann
accelerator chips where the embedded PCM is also used for analogue IMC.
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2. Ferroelectric devices
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2.1. Status
Ferroelectricity was firstly discovered in 1920 by Valasek in Rochelle salt [45] and describes the ability of a
non-centrosymmetric crystalline material to exhibit a permanent and switchable electrical polarization due
to the formation of stable electric dipoles. Historically, the term ferroelectricity stems from the analogous
behavior with the magnetization hysteresis of ferromagnets when plotting the ferroelectric polarization versus
the electrical field. Regions of opposing polarization are called domains. The polarization direction of such
domains can be switched typically by 180� but, based on the crystal structure, other angles are also possible.
Since the discovery of the stable ferroelectric barium titanate in 1943, ferroelectrics have found application
in capacitors in electronics industry. Already, in the 1950s, ferroelectric capacitor (FeCAP) based memories
(FeRAM) have been proposed [46], where the information is stored as polarization state of the ferroelectric
material. Read and write operation are performed by applying an electric field larger than the coercive field EC.
The destructive read operation determines the switching current of the FeCAP upon polarization reversal, thus
requiring a write-back operation after readout. Thanks to the development of mature processing techniques
for ferroelectric lead zirconium tantalate FeRAMs, these have been commercially available since the early 1990s
[47]. However, the need for a sufficiently large capacitor together with the limited thin-film manufacturability
of perovskite materials has so far restricted their use to niche applications [48].

The ferroelectric field effect transistors (FeFET) that was proposed in 1957 [49] features a FeCAP as gate
insulator, modulating the transistor’s threshold voltage that can be sensed non-destructively by measuring the
drain-source current. Perovskite based FeFET memory arrays with up to 64 kBit have been demonstrated [50].
However, due to difficulties in the technological implementation, limited scalability and data retention issues,
no commercial devices became available.

The ferroelectric tunneling junction (FTJ) was proposed by Esaki et al in 1970 s as a ‘polar switch’ [51]
and was firstly demonstrated in 2009 using a BaTiO3 ferroelectric layer [52]. The FTJ features a ferroelectric
layer sandwiched between two electrodes, thus modifying the tunneling electro-resistance. A polarization-
dependent current is measured non-destructively when applying electrical fields smaller than EC.

Since the fortuitous discovery of ferroelectricity in hafnium oxide (HfO2) in 2008 and its first publication
in 2011 [53] the well-established and CMOS-compatible fluorite-structure material has been extensively stud-
ied and has recently gained a lot of interest in the field of nonvolatile memories and beyond von-Neumann
computing [54, 55] (figure 3).

2.2. Current and future challenges
Very encouraging electrical results of fully front-end-of-line integrated FeFET devices featuring switching
speeds < 50 ns at < 5 V pulse voltage have been reported recently based on > 1 Mbit memory arrays [56]. The
ability of fine-grained co-integration of FeFET memory devices together with CMOS logic transistors paves
the way for the realization of braininspired architectures to overcome the limitations of the von-Neumann
bottleneck, which restricts the data transfer due to limited memory and data bus bandwidth [57]. However,
one of the main challenges for the FeFET devices and therefore a topic of intense research is the formation of
ferroelectric HfO2-based thin films featuring a uniform polarization behavior at nano-scale as an important
prerequisite for the realization of small scaled devices with feature sizes < 100 nm.

Another important challenge for many application cases is the limited cycling endurance of silicon-based
FeFETs that is typically in the range of 105 cycles. This value is mainly dictated by the breakdown of the dielectric
SiO2 interfacial layer that forms between the Si channel and the ferroelectric gate insulator.

FeCAPs have been successfully integrated into the back-end-of-line (BEOL) of modern CMOS technologies
and operation of a HfO2-based FeRAM memory array at 2.5 V and 14 ns switching pulses was successfully
demonstrated [58]. At this point the main challenge is the decrease of the ferroelectric layer thickness well
below 10 nm to allow scaling of 3D capacitors towards the 10 nm node. Moreover, phenomenon such as the
so called ‘wake-up effect’ with increasing of Pr for low cycle counts as well as the ‘fatigue effect’ resulting in a
reduction of Pr at high cycle counts due to oxygen vacancy redistribution [59] and defect generation have to be
tackled. That is especially important for fine-grained circuit implementations where the switching properties
of single ferroelectric devices impact the designed operation point of analogue circuits.

One of the most interesting benefits of FTJ devices is the small current density making them very attrac-
tive for applications requiring massive parallel operations such as analogue matrixvector-multiplications in
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