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International initiatives such as the Cancer Genome Atlas (TCGA) and the International

Cancer Genome Consortium (ICGC) are collecting multiple datasets at different

genome-scales with the aim of identifying novel cancer biomarkers and predicting

survival of patients. To analyze such data, several statistical methods have been

applied, among them Cox regression models. Although these models provide a good

statistical framework to analyze omic data, there is still a lack of studies that illustrate

advantages and drawbacks in integrating biological information and selecting groups

of biomarkers. In fact, classical Cox regression algorithms focus on the selection of

a single biomarker, without taking into account the strong correlation between genes.

Even though network-based Cox regression algorithms overcome such drawbacks, such

network-based approaches are less widely used within the life science community. In

this article, we aim to provide a clear methodological framework on the use of such

approaches in order to turn cancer research results into clinical applications. Therefore,

we first discuss the rationale and the practical usage of three recently proposed

network-based Cox regression algorithms (i.e., Net-Cox, AdaLnet, and fastcox). Then,

we show how to combine existing biological knowledge and available data with such

algorithms to identify networks of cancer biomarkers and to estimate survival of

patients. Finally, we describe in detail a new permutation-based approach to better

validate the significance of the selection in terms of cancer gene signatures and

pathway/networks identification. We illustrate the proposed methodology by means of

both simulations and real case studies. Overall, the aim of our work is two-fold. Firstly,

to show how network-based Cox regression models can be used to integrate biological

knowledge (e.g., multi-omics data) for the analysis of survival data. Secondly, to provide

a clear methodological and computational approach for investigating cancers regulatory

networks.
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FIGURE 12 | Gene-network of not isolated genes selected by Net-Cox in the GSE20685 breast dataset. Each node represents a gene and an edge between

two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of

the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

FIGURE 13 | Gene-network of not isolated genes selected by Adalnet in the GSE20685 breast dataset. Each node represents a gene and an edge between

two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of

the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

reports the gene-network related to the genes selected by Net-
Cox. All the selected genes show a strong relation with the
disease, such as FGFR2 and BCL2, which were selected by
both Net-Cox and fastcox and are involved in KEGG prostate
cancer and in KEGG pathways in cancer. Both the genes are
largely known as independent prognostic marker in breast
cancer (Hunter et al., 2007; Thomadaki et al., 2007; Callagy
et al., 2008). Both Net-Cox and fastcox selected UGT2B15,
which has a breast-cancer-correlation p = 0.049. This gene

has been usually involved in prostate cancer (Gsur et al.,
2002), but recent works highlight its role also in breast cancer
(Wegman et al., 2007).

In the analysis of the breast datasets, there was no overlap
with our previous study (Iuliano et al., 2014). This was mainly
due to the different datasets analyzed here potentially (different
cancer subtype and different types of conditions) and to the more
sophisticated procedures followed in this analysis. Indeed, in our
previous work, we split the dataset in training and test set only
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FIGURE 14 | Gene-network of not isolated genes selected by Net-Cox in the GSE7390 breast dataset. Each node represents a gene and an edge between

two nodes means that the two genes belongs to the same pathway. Different colors are used for different pathways. The color of each node represents the p-value of

the interaction between the gene and breast cancer (Huttenhower et al., 2009). Genes with p > 0.10 are represented in green.

TABLE 6 | List of genes selected by Adalnet in the breast dataset

GSE7390.

Genes p-values

BRCA1 0

GYPB 0.0489

MYBL2 0.0026

ADH6 0.0259

GHRHR 0.0007

GUCY2C 0.0323

PPP2R1B 0.0321

SLC1A2 0.0450

SLC12A3 0.0483

LIPF 0.0449

TRIP13 0.0001

PPM1E 0.0026

CEP152 0.0064

PSPC1 0.0475

The second column reports the breast-cancer correlation p-value of each gene

accordingly (Huttenhower et al., 2009). All the selected genes resulted isolated and no

network was built in this case.

once, while here we used a cross-validation procedure that is
expected more robust results.

DISCUSSION AND CONCLUSIONS

A key issue in cancer survival analysis is uncovering the relation
between gene expression profiles and cancer patients survival in
order to identify biomarkers for disease diagnosis and treatment.
In the last years, there has been a growing interest inmethods that
incorporate network information into classification algorithms
for genes signature discovery. The main aims are to identify
molecular biomarkers that reliably predict patient’s response to
therapy and to avoid ineffective treatment for reducing drug
side-effects and associated costs. For this purpose, prognostic
and diagnostic biomarker signatures need to be derived from
omics data for various disease entities in order to offer useful

methodological and practical strategy in research and clinical
settings.

Here, we presented an extended methodological strategy for
the analysis of gene signatures and survival prediction (see
Figure 1). We integrated a new cross-validation method (Simon
et al., 2011b) with the most recent network penalized Cox
models (Yang and Zou, 2012; Zhang et al., 2013; Sun et al.,
2014) to obtain an effective multi-splitting of the data and
achieve an accurate survival prediction (see Figure 2). The
analysis of the models was based both on simulated and real
datasets in order to provide an accurate analysis in terms
of statistical and biological investigation. Indeed, we showed
that, given a number of variables not extremely high, all the
analyzed methods were able to select the altered genes under
different simulation settings. On the other hand, the analysis
on real cancer datasets showed that through the integration
of network information into Cox regression methods it is
possible to identify cancer gene signatures with an accurate
prognostic performance. Therefore, the contribution of this
study is two-fold. Firstly, to obtain an integrative analysis of
cancer genes networks and survival prediction. Secondly, to
provide a computational and methodological framework for
better investigating cancers regulatory networks and facilitating
the management of patients in terms of prognosis, diagnosis and
treatment.

The findings of this study have a number of important
implications for future practice. Firstly, a practically appealing
study based on a fast screening procedure (Fan and Lv, 2008;
Fan et al., 2010) could be introduced in order to reduce
the size of the feature space to a moderate scale. In fact,
several types of screening procedures could be combined
to integrate biological information into statistical screening
analysis and provide more definitive understanding of the
gene-regulatory networks. Secondly, the integration of clinical
information and data from different omics (e.g., epigenomics or
metabolomics) into the screening procedure could also provide
a more accurate investigation and prevent the drawbacks of
the current methods. Moreover, a more accurate biomarkers
investigation could be performed using a number of high-quality
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binary PPIs available in literature (Rolland et al., 2014) where
a proteome-scale map of the human binary interactome is
compared to alternative network maps in order to give a
deeper insight into genotype-phenotype relationships. Finally,
it will be necessary to develop an user-friendly interface
to turn this methodological framework into a practical
tool.
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