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Abstract

Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost
functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy
for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other
conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in
etiology, disorders such as ALS, Parkinson’s, Alzheimer’s, and Huntington’s diseases, as well as traumatic injury and stroke,
converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage,
calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these
convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of
transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate
astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment
also differ between studies. We take technical differences between methodologies into account to understand the variability
of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte
graft that would be most suitable for clinical applications.
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Main Points their shorter dendrites, there is little evidence supporting the
ability of transplanted neurons (or neuron-differentiated
stem cells) to send long axonal projections to their correct
targets. In line with this, several groups observed that the
functional benefit derived from the neuronal transplantation
therapy cannot be explained by restoration of correct axonal
circuits, but rather may be due to the secretion of protective
Introduction factors and integration in local cellular networks at the site
of implantation where they encourage plasticity within
existing cells®1°,

Astrocytic processes, on the other hand, are well-
positioned to physiologically integrate into the local cellular

Astrocytic pathologies are found in many disorders, thus
transplantation of healthy astrocytes can have therapeutic
benefits. Regional and functional astrocyte heterogeneity has
to be considered when choosing the optimal transplant source.

Cell therapies constitute an emerging class of therapeutic
approaches to promote regeneration of damaged tissues. In
particular, the brain presents a lucrative target since many
neurological disorders result from the death of specific cell
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networks to take place of lost or diseased host astrocytes.
Their ability to interact with and regulate multiple aspects of
functionality of other cell types, such as neurons, makes it
plausible that astrocytic replacement would have an effect on
the astrocytic networks and beyond.

Stem cells have also been widely used for grafting. While
some positive indications were obtained in several early
studies'""!2, results remain variable, and safety concerns per-
sist as the precise mechanisms of action of stem cell grafts
are uncertain'3. The exact differentiation paths of these
grafts within the host tissue are unpredictable, and stem
cells are more likely to give rise to unwanted cellular pheno-
types under the hostile conditions of the diseased CNS than
pre-differentiated cells. This may at least partially account
for the inconsistency of functional outcomes. Moreover,
transplanted stem cells can remain undifferentiated and
migratory'¥, which does not preclude the possibility of
tumor development longer term. Tumorigenicity after stem
cell transplantation has been described in several mod-
els'>1% and the short life span of common model organisms
does not allow for predictions of how such grafts may
behave in, for instance, stroke or PD patients, who are able
to survive for decades after their diagnosis.

A growing body of literature highlights the importance of
astrocytes in the healthy brain. These cells represent a cell
population that forms complex networks capable of cross-
talking to neuronal nets'”"!?. Astrocytic networks appear to
act as nexus points interacting with, and regulating key
aspects of functions of neurons?*?!, oligodendrocytes?>?,
microglia®*, and the neurovascular unit'®?*; and the pres-
ence of human-specific astrocyte types?®?’ points toward
potentially novel roles of these cells to be considered in the
case of patient-specific grafts. Astrocyte-lineage cells also
act as stem cells with neurogenic potential that can replenish
neuronal populations, especially under inflammatory
conditions?*??,

Moreover, astrocytic abnormalities have been described in
association with, and sometimes as a cause of, various devel-
opmental and degenerative disorders ranging from autism*
and Down syndrome®! to multiple sclerosis®*** and psychiat-
ric conditions®****, These findings call for an assessment of
the utility of astrocyte transplantation as a clinical strategy.
Experimental depletion of these cells, either pharmacologic
or genetic, has shown that the lack of functional astrocytes
can lead to depressive symptoms®®*¥’, cognitive®® and
motor*>*° impairment, seizures*!, abnormal behaviours*'*?,
memory disturbance®*, and neuronal death*** in the healthy
animals, indicating that the healthy astrocytes are indispens-
able for the normal brain function. In the context of disease
and inflammation, however, both positive and negative out-
comes of astrocyte depletion have been reported* ", suggest-
ing that the roles of these cells are complex, and it is necessary
to understand the protective pathways in greater depth.

Traditionally, neuronal and neural stem cell (NSC)
replacement have been considered as the main avenue for

the treatment of brain disorders since neuronal death is a
prominent hallmark of many conditions of the brain, and a
good number of detailed reviews on this topic exist**5!, At
the same time, despite growing academic and commercial
(e.g. AstranauTX, Astrocyte Pharmaceuticals Inc, and
Kadimastem) interest in astrocyte-directed therapeutics,
the literature on astrocyte transplantation is more limited
compared to the neuronal counterpart, and opinions on its
effectiveness diverge.

In the current review, we outline the disorders in which
transplantation of astrocytes has been attempted so far. We
describe examples of transplantation strategies employed in
the following disorders, or the models of: amyotrophic lateral
sclerosis (ALS), Parkinson’s, Alzheimer’s, and Huntington’s
diseases, traumatic injury, and ischaemic stroke. We examine
some common themes emerging across these pathologies—
including immune milieu alternations, calcium signaling
abnormalities, and mitochondrial dysfunction, and consider
the mechanisms through which healthy astrocytes can there-
fore ameliorate these disorders.

A number of recent reviews discussed astrocyte-linecage
cells in the context of transplantation as therapeutic and
research modeling options. Transplantation of astrocytes and
their progenitors has been reviewed in the context of ALS,
and the importance of the location of the graft has been
emphasised>>>3. In PD, the dual beneficial versus harmful
nature of astrocytic involvement has been considered, and
some potentially protective genetic modifications of trans-
planted cells have been put forward>*. Replacement of dam-
aged cells, including astrocyte-lineage cells, after spinal cord
injury (SCI), has been discussed, alongside the use of bioma-
terials to aid in cell guidance and integration into the host
tissues™*. Several reviews focused on the regenerative
potential of stem cells and progenitors such as glial-restricted
precursor cells (GRPs) capable of differentiating into astro-
cytes among other cell types as sources of cellular grafts®’ %4,
or the ability of transplanted stem cells to interact with
the host astrocytes and stimulate protective pathways in the
latter®%% in several conditions, including stroke, SCI, and
Alzheimer’s disease (AD). In particular, protection of the
blood-brain barrier (BBB) and the neurovascular unit by
transplanted astrocytes has received attention in studies of
neurodegenerative diseases®. Heterogeneity of astrocytic
phenotypes (“neurotoxic” Al and “neuroprotective” A2) and
its influence on their ability to exert protective functions in
disorders such as stroke have been considered®®. Moreover,
human chimeric mice, in which cell transplantation has
been employed to model neurological diseases, allowed
researchers to study disease mechanisms in highly transla-
tionally relevant models”.

The therapeutic benefits of astrocyte transplantation have
been variable, and the reasons for these discrepancies have
not yet been examined in depth, nor summarized in a single
publication. We hypothesize that the discrepancies could be,
at least in part, attributed to the astrocyte heterogeneity due
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to the technical differences in the astrocyte generation as
well as the brain region (of cell origin and of the transplant
location within the recipient). We take a closer look at the
proposed roles of astrocytes in brain disorders and how these
cells specifically become affected by various pathologies.
Then, we outline the methodologies used to generate astro-
cytes, or precursor cells, for subsequent engraftment, in order
to identify the most promising strategies that could be scaled
up for future clinical applications. Overview of the full
mechanisms of the listed pathologies beyond astrocytes
(including neuronal pathology and an in-depth overview of
the neurogenic potential of astrocytes) is outside of the scope
of the current review, and interested readers are provided
with a brief summary of each disorder supplemented with
some useful references.

Amyotrophic Lateral Sclerosis

ALS is a disorder in which benefits of astrocytic grafting are
most clearly established as demonstrated by the outcomes of
the phase II clinical trial for ALS (10 patients split across two
cohorts) released in December 2020. The treatment involved
intrathecal injection of astrocytes into the spinal cord and
was found to be well-tolerated; it also reduced the disease
progression rate in a significant and clinically meaningful
manner (Table 1).
ALS usually affects adults with an average age of diagnosis
of 55 years and an incidence of about two per 100 000 peo-
ple. Only 5% to 10% of all ALS cases run in families, as
opposed to sporadic onset’>’®. Superoxide dismutase 1
(SOD1) gene mutations are most commonly associated with
ALS accounting for 20% of familial cases’’. This mitochon-
drial enzyme acts by scavenging superoxide radicals to pro-
tect cells from excessive amounts of reactive oxygen species
(ROS). Other genes such as a DNA-binding protein TDP-43/
TARDPB and C9ORF72 have also been implicated in ALS
pathogenesis, suggesting that multiple actiological pathways
have the capacity to lead to the eventual ALS manifesta-
tion—profound loss of upper and lower motor neurons in the
spinal cord and brain leading to eventual paralysis’>7%7,
Interestingly, even though the neuronal pathology is
well-described, profound changes in astrocytes accompany
or even precede the disease. Causal effects of astrocytic
aberrations in the ALS pathology are demonstrated by the
motor dysfunction and motor neuron degeneration initiated
after transplantation of the SOD%3A harboring GRPs* or
ALS patient-iPSC-derived astrocytes®®? into the spinal
cord of the wild-type mice. Following this line of evidence,
healthy astrocyte transplantation showed a beneficial effect
upon engraftment into the spinal cords of SOD1 mutant
mice and rats”""’>74, prolonging survival time and diminish-
ing the disease progression rate in these animals (Table 1).
In accordance with these data, astrocyte-specific decrease in
the mutant SOD1 load attenuated disease progression in
mouse ALS models®#,

In addition to the non-cell autonomous effects on motor
neurons caused by SOD mutations in astrocytes, ALS-
associated mutations induce drastic changes in astrocyte
biology, at least in vivo, including reactive astrocytosis, also
known as astrogliosis, as evidenced by the increased GFAP
expression and process hypertrophy®°, and ultimately
astrocyte degeneration and apoptosis®'. These can result
from either, or a combination of, mutations within astrocytes
themselves, or from altered functions of surrounding neurons
and other cells such as microglia. Curiously, some of the pro-
liferating GFAP-positive cells in ALS may not be true astro-
cytes, but aberrant glial cells with an astrocyte-like phenotype
of microglial origin, which may not be sufficient to substitute
for the loss of the true astrocytic functions while contributing
to the pro-inflammatory milieu generation®>%3.

As suggested by the fact that SOD is an enzyme involved
in mitochondrial protection from excessive levels of ROS,
oxidative stress alongside mitochondrial damage are well-
established hallmarks of ALS**%, which is also true in cases
of ALS caused by other mutations””*°. Since astrocytes are a
major source of the antioxidant glutathione (GSH) in the
brain!%%1%! oxidative damage to astrocytes is likely to make
the brain milieu more vulnerable to ROS. Mitochondrial
abnormalities, elevated levels of inducible nitric oxide syn-
thase (iNOS), and ultimately increased levels of ROS in
astrocytes are associated with motor neuron degenera-
tion'%2-1%, Since mitochondrial functions are closely associ-
ated with calcium signalling!®1%7 it is not surprising that
altered calcium homeostasis has been observed in astrocytes
carrying ALS-linked mutations'® 1%, Abnormally elevated
intracellular calcium levels in response to stimuli such as
ATP!'® could result in caspase activation with subsequent
astrocytosis'!!. Enhanced SNARE-dependent exocytosis of
the vesicles containing microRNA, glutamate, and ATP may
also contribute to the neuronal toxicity of the mutant astro-
cyte-conditioned medium!'0% 112113,

Several secreted factors can also be responsible for such
neurotoxic effects, including upregulated IFNy, IL6, prosta-
glandin D2, tumor necrosis factor o (TNFa), and TGFp that
are released in the extracellular milieu''*''. Moreover, ele-
vated extracellular glutamate levels were also found in ALS
models where oxidative stress and potentially other changes
in SOD1 mutant astrocytes result in downregulation of gluta-
mate transporters'!”-!!8  initiating excitotoxic cascades in the
neighboring motor neurons. Activation of caspase-3, a
marker of apoptosis, in astrocytes can also downregulate glu-
tamate transporter EEAT2 expression!!®, thereby contribut-
ing to the increased extracellular glutamate accumulation
and excitotoxicity to perpetuate the vicious cycle. On the
other hand, healthy astrocytes harboring a “younger” pheno-
type, such as the hESC-derived cells used for grafting in a
murine model of ALS, exhibit a more protective secretory
profile by supplying GDNF, VEGF, osteopontin, and CXCl-
16 chemokine, which stimulate neuronal survival and regen-
eration, as well as matrix metalloproteinase inhibitors
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TIMP-1 and 2, in order to preserve supportive extracellular
matrix (ECM) composition and suppress immune cell
infiltration™.

Considering that the ALS-associated mutations affect all
cells in the brain, selective vulnerability of motor neurons,
but not other neuron types, co-cultured with SOD1 mutant
astrocytes is intriguing. Activation of LT-BR by theTNF
superfamily member LIGHT triggers a motor neuron-selec-
tive death pathway'?’, and so does the activation of FasL'2!:122,
Both of these pathways are potentiated by diseased astro-
cytes through secretion of IFNy'?® or ATP!'?, respectively.
Additionally, NGF, secreted by astrocytes under inflamma-
tory conditions such as those found in ALS!'"!24  promotes
cell survival in cells expressing both TrkA and p75NTR 125 but
if TrkA is absent, cell death results'?®!?’. Although motor
neurons are normally devoid of both, in ALS re-expression
of p75NT™® becomes evident'? 13, which may contribute to
this selective degeneration.

In this context, replacement of healthy astrocytes is a
promising approach for the treatment of ALS. Wild-type
astrocytes can help reduce excitotoxicity by removing
excessive glutamate, provide lactate for surrounding neu-
rons, reduce oxidative stress, and secrete anti-inflamma-
tory factors that are beneficial for both diseased neurons
and astrocytes in the host tissue. Effective healthy astro-
cyte replacement should be able to improve the muscle
function and ultimately prolong the patient’s lifespan, with
Kadimastem’s AstroRx offering a potential candidate for
further scaling up of this approach.

Parkinson’s Disease

PD is a progressive neurodegenerative condition that shares
some pathophysiological similarities with ALS, including
abnormal protein aggregation and mitochondrial dysfunc-
tion'31"133, Moreover, up to a third of all ALS patients experi-
ence symptoms of Parkinsonism'**, and the co-occurrence of
the two pathologies is especially obvious in Lytico-bodig
disease and in the ALS-parkinsonism-dementia complex !>,
PD is the second most common neurodegenerative condition
that typically affects older adults, with 96% of cases diag-
nosed after the age of 50, with an incidence of almost 2,000
per 100 000 people over the age of 8036137,

PD is a clinically heterogenous disorder characterized by
the loss of dopaminergic neurons'*® accompanied by reac-
tive changes in astrocytes and microglia'* in the nigrostria-
tal system. Loss of the nigrostriatal dopaminergic innervation
results in persistent tremor, bradykinesia, rigidity, and pos-
tural instability'**'*!. However, it becomes apparent that
many other systems are affected by PD including autonomic
and cognitive dysfunctions'#2. It has been suggested that the
earliest signs of PD may start within the gastrointestinal sys-
tem where resident neurons'*»'% and astrocyte-lineage-
related cells (enteric glial cells [EGCs])'* become affected.
Accumulation of a-synuclein protein aggregates known as

Lewy bodies is a common neuropathological finding that
tends to spread in a stereotypic pattern known as Braak
stages—hindbrain structures such as the brain stem and
midbrain develop a higher protein aggregate load earlier in
disease while forebrain structures remain relatively unaf-
fected until later disease stages'*®'48, Current treatments
include dopamine replacement and deep brain stimulation
(DBS), which only provide symptomatic relief, while seri-
ous side effects including hallucinations and drug-induced
dyskinesias often limit the therapeutic benefits of these
approaches'®®. Interestingly, the mechanism of action of
DBS may include stimulation of chemical transmitter
release from astrocytes'®.

Human astrocyte transplantation has been trialed in rodent
models of PD with promising results (Table 2).

A unique population of astrocytes matured from GRPs
through the exposure to bone morphogenic protein 4
(GRPsBMP4) rescued motor symptoms, which was accompa-
nied by an increase in striatal dopamine production and neu-
ronal survival'®!. Other methods of human astrocyte lineage
cell generation, such as differentiation from the adult bone
marrow mesenchymal stromal cells, yielded similar behav-
ioral improvements'*°. In another study, modified astrocyte-
lineage cells destined for the striatal graft were engineered to
deliver tyrosine hydroxylase (TH), which is normally
expressed by neurons, enhanced local dopamine synthesis,
and improved motor coordination in a rat model'3. Finally,
co-grafting of astrocytes alongside neural progenitor cells
into the striatum also led to an enhanced behavioral recovery
in a mouse model of PD that surpassed the therapeutic ben-
efit of grafting these progenitors alone'2.

Perhaps the most compelling evidence of astrocyte
involvement in PD was shown by the selective astrocytic
expression of mutant AS3T a-synuclein, associated with a
familial form of the disorder, which led to profound dopami-
nergic and motor neuron degeneration accompanied by
microglial activation within the hindbrain!**. Moreover, co-
culture of healthy neurons with patient-derived astrocytes
differentiated from iPSCs led to neurodegeneration and
a-synuclein accumulation'>, showing that PD-linked muta-
tion in astrocytes alone is sufficient for profound pathology
in astrocytes and neurons to develop. It is therefore evident
that these cells play an important role in PD progression. It
is noteworthy that, under healthy conditions, mesencephalic
regions such as SNpc (which are more vulnerable to
PD-inducing insults) may be less dense in astrocytes
compared to neighboring regions'*®, pointing at the neuro-
protective effects of astrocyte presence. Curiously, two
drugs currently being explored in human PD clinical trials,
zonisamide'’ and rotigotine'>®, have been shown to increase
astrocytic proliferation and stimulate secretion of neuropro-
tective factors from these cells.

Despite a-synuclein being a predominantly neuronal
protein, a-synuclein aggregates in other cell types including
astrocytes have been reported!*8, and specific upregulation
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of a-synuclein was seen in astrocytes derived from patient
iPSCs carrying LRRK2 mutation (kinase involved in
autophagy and associated with an autosomal dominant
form of PD)!%. Astrocytes carrying LRRK2 mutations that
were derived from patient iPSC lines also showed decreased
astrocytic marker expression and complexity, and these
cells produced higher levels of ROS'’. In addition to the
cell-autonomous changes in PD astrocytes, these cells are
capable of taking up the misfolded a-synuclein from neu-
rons through endocytosis!'®®1%3 which can result in patho-
logical activation of the former'®*. a-synuclein aggregates
taken up by astrocytes can be cleared via the lysosomal
pathway!916¢ but excessive protein build-up resulting
from the increased a-synuclein release!®’, or insufficient
clearance!®, can lead to mitochondrial stress'®, autophagy
dysfunction!3>166:19 "ER-Golgi system stress'’’, and even-
tual astrocyte apoptosis'®®~172. Importance of the mitochon-
drial disbalance in PD pathogenesis is further emphasized
by the fact that PINK1, an autophagy-related gene that is
associated with familial PD forms and is predominantly
active within astrocytes as opposed to neurons'”, encodes
a mitochondrial kinase. Mutations in this protein can lead
to defective astrocytic proliferation and ATP levels, height-
ened ROS levels, and a decreased ability to uptake glucose
as well as to lower growth factor receptor expression'’,
DIJ-1 is another mitochondrial-stabilizing gene whose dele-
tion causes a familial PD form, and its deletion negatively
affected astrocytic mitochondrial function and the ability of
these cells to protect astrocyte-neuron co-cultures against
toxic insults!”.

In response to cellular stress caused by o-synuclein!®
and parkinsonism-inducing neurotoxins'’*130 astrocytes
undergo reactive changes'8! resulting in neuroinflammation.
Reactive astrocytosis does not only prevent these cells from
secreting trophic factors like GDNF family of ligands,
BDNF, NT3, and mesencephalic astrocyte-derived neuro-
trophic factor (MANF)!521827185 byt also stimulates release
of pro-inflammatory cytokines such as IL1B!%. Consistently,
it has been noted that differentiated astrocytes used for trans-
plantation express trophic factors that are known to be
neuroprotective, which can at least partially account for the
benefits of the transplantation!®!+152,

Transplanted astrocytes, therefore, can provide multiple
benefits in PD by replenishing the resident astrocytic pool in
place of the apoptotic cells, secreting neuroprotective factors,
restoring potassium buffering, degrading a-synuclein through
lysosomal pathways, and reducing oxidative stress by supply-
ing ROS-scavenging enzymes. Artificial expression of tran-
scription factors (Nurrl and Foxa2) in astrocytes co-grafted
with stem cells promoted a non-reactive phenotype of the
astroglia'®, suggesting that bioengineering approaches can
ensure that the cells maintain the beneficial phenotype even
in the presence of ROS and pro-inflammatory cytokines
among other PD-associated stressors. Effective healthy astro-
cyte replacement in PD could be able to address motor and/or

non-motor symptoms of this disorder. While most studies
focused on the motor manifestations such as tremor and
rigidity, up to 50% of people with PD report the non-motor
symptoms, including memory issues, sleep disturbance, and
depression, to be the major determinants of their quality of
life'®”. Recalling that the experimental loss of astrocyte
function in the cortical areas and the hippocampus result in
memory disturbance** and depressive symptoms*®*’, inclu-
sion of the non-motor symptoms of PD in the efficacy assess-
ment of pre-clinical and clinical PD trials of astrocyte-centered
therapies could prove fruitful and open new avenues compli-
mentary to dopamine replacement approaches.

Alzheimer’s Disease

AD is the most prevalent neurodegenerative disorder that
shares important similarities with the pathogenesis of PD.
These similarities include a progressive, stereotypic pattern
of misfolded protein accumulation. It starts within the ento-
rhinal cortex and medial temporal structures and gradually
spreads to the basal ganglia'3%!%°. Amyloid-B plaques derived
from the amyloid precursor protein (APP), and hyperphos-
phorylated tau-containing neurofibrillary tangles are hall-
marks of AD found extra- and intracellularly, respectively!®.
A number of tauopathies including frontotemporal dementia
(FTD) are also associated with the tau tangles and lead to
certain symptoms similar to those of AD'"1°2, Interestingly,
amyloid-B and a-synuclein pathologies co-exist in up to
50% of AD patients'*>'% suggesting that common cellular
abnormalities, including those found in astrocytes, are likely
to be found both in AD and PD.

Similarly to PD, AD typically manifests later in life,
affecting around 10% of over 65-year-olds with disease
prevalence strongly correlating with age!'*’ ', Memory loss
is an early symptom of AD?®, but as the disease progresses,
other neurological functions become affected and symptoms
such as speech impairment and lack of motor coordination
become prominent. Heritability of this disorder is estimated
to range from 60% to 80%, suggesting an important role for
genetic factors?**2"!, Mutations in the APP gene can predis-
pose the amyloid-f protein to misfold and are often found in
association with the familial form of the disorder. PSEN1
and PSEN2 are also commonly associated with AD and
encode for the proteins in the y-secretase complex, which is
necessary to cleave amyloid- from its precursor APP2%,
The €4 allele of apolipoprotein (APOE4), a major cholesterol
carrier, represents the strongest risk factor for sporadic late-
onset AD?, and it is noteworthy that astrocytes show the
highest degree of apolipoprotein expression among all CNS
cell types®®. Current AD treatment strategies are purely
symptomatic; these include cholinesterase inhibitors, which
aim to increase acetylcholine levels, and NMDA receptor
antagonist memantine, which counteracts excitotoxicity®**.

An interesting approach to transplantation has been
attempted in a rat model of AD generated by the infusion of
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a toxic form of amyloid-p (1-42 peptide), where autologous
EGC:s that are related to astrocytes were harvested for graft-
ing from animals’ own appendices. EGCs were delivered
into cerebral ventricles, from which they were observed to
migrate toward the amyloid plaques within the brains. These
cells were not only able to reduce the plaque load, but
also the cytokine profile in the treated brains was shifted
toward a more anti-inflammatory phenotype with a signifi-
cant decrease in TNFa, PGE2, and IL6, and increase in NGF,
BDNF, and GDNF. Moreover, memory and learning skills
were improved by the treatment®”®. These data are corrobo-
rated by the study conducted in a mouse transgenic model of
FTD harboring human P301S tau, in which transplantation
of NPC-differentiated astrocytes into the cortical gray matter
reversed cortical neuron loss?% (Table 3).

Multiple pathological changes in astrocytes have been
observed in AD and animal models of this disease®”’.
Reactive astrogliosis and disruption of the astrocytic domain
organization occur in an AD mouse model even before the
appearance of the amyloid plaques®*®2%; similar evidence of
astrocyte activation and degeneration was found in the brains
of AD patients®!’. Indeed, predominance of the pro-inflam-
matory (e.g. IL1, TNFa) versus anti-inflammatory cytokines
are well-documented hallmarks of AD?!!. Alterations in the
surface-expressed receptors can take place in AD, such as in
the case of EphB2 receptor upregulation on hippocampal
astrocytes that can downregulate synaptic plasticity®'2. While
reactive astrocytes surrounding amyloid-f§ plaques may be
protective at initial disease stages, astrocytic activation
increases linearly with cognitive decline?'3, likely contribut-
ing to the disease progression. Accordingly, suppression of
astrocyte activation through inhibition of the JAK-STAT3
cascade was found to improve outcomes in a mouse model
of AD?'4,

Interestingly, even though astrocytes surrounding plaques
were found activated and hypertrophic in triple-transgenic
(3xTg-AD) mice (harboring mutations in APP, presenilin,
and tau), astrocytes distant from the plaques, or those ana-
lyzed at stages prior to plaque formation, were found to have
dystrophic branches with reduced complexity?*®2%, More-
over, atrophic astrocytes were also found in the hippocampi
of PDAPP mice exhibiting high levels of human APP expres-
sion?!>, Regional heterogeneity of astrocytic response has
been observed with entorhinal cortex exhibiting less astro-
cytic activation compared to other regions such as hippo-
campus®®, which may underlie selective vulnerability of
certain brain regions to the AD-related degeneration.

APP, unlike tau, is expressed not only by neurons but also
by astrocytes?!%; at the same time, healthy astrocytes do not
express B-secretase (BACEL), a key enzyme necessary to
cleave amyloid-f from APP. However, inflammation, or
chronic stress in the context of AD can induce astrocytic
BACE1 expression in AD, thereby contributing to the
amyloid-B load?!®2!". Release of amyloid-p can have cell-

autonomous effects that compromise astrocytic viability?!8,

and also activate microglia®’®. In addition, formation of
amyloid-f oligomers is able to induce ROS release from
astrocytes and trigger the loss of protective transcriptional
activity of STAT3 in neurons??’. Accordingly, increased
oxidative stress was observed in astrocytes harboring tau
mutations associated with FTD?*!. Considering the close
connection between the ROS production and abnormal mito-
chondrial function, it is not surprising that multiple altera-
tions in mitochondria-related genes were found in astrocytes
from AD patients’ brains compared to the healthy elderly
controls??2,

In AD, astrocytes have been shown to be capable of clear-
ing misfolded amyloid proteins through endocytic mecha-
nisms and promote its elimination through the lysosomal
pathway??® or transcytosis and cerebrospinal fluid (CSF)
clearance?'8. Such process is hampered by mutations in the
APOE4 allele in astrocytes, which is associated with the
excessive endosomal acidification, defective autophagy, and
ultimately lack of sufficient amyloid-f clearance through the
endosome-lysosome pathway??*.

Hence, astrocyte grafting can aid in clearance of senile
plaques, reduce pro-inflammatory cytokine concentration,
supply antioxidants and enhance neurotrophic factor release,
as a neuroprotective mechanism in response to the amyloid-
B42 challenge®?. It can also substitute for the atrophic and
apoptotic cells in the astrocytic syncytium which could
buffer abnormally elevated calcium levels in the astrocytic
network. Effective healthy astrocyte replacement in AD
could improve the cognitive function or reduce the rate of the
functional and cognitive decline.

Huntington’s Disease

Huntington’s disease (HD) is caused by a single gene
mutation—a polyglutamine (CAG repeat) expansion on the
N-terminal region of huntingtin gene (H7T), in which the
size of the expanded region inversely correlates with the age
of disease onset??°. Similar to other neurodegenerative pro-
teinopathies discussed above, the pathological hallmark of
HD is the aggregation of the mutant huntingtin protein
(mtHtt), which can trigger the progressive neurodegenera-
tion, particularly of the striatal GABAergic medium spiny
neurons (MSNGs), although other areas such as cortex also
become affected®”’. No cure exists except palliative treat-
ments that aim to alleviate the involuntary movements, or
chorea, by reducing dopaminergic neurotransmission, and to
suppress psychiatric manifestations?2%2%,

The huntingtin protein is naturally expressed in various
cell types including cells outside of the brain***2%3, Astrocytic
pathology has been implicated in HD as shown by the study
in which specific expression of mtHtt in this cell type in mice
was sufficient to induce profound pathology, including
motor abnormalities, body weight loss, and lower life expec-
tancy®**. In vitro astrocyte-neuron co-cultures demonstrated
that astrocytes harboring mtHtt increased vulnerability of
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Table 4. Astrocyte Transplantation Strategies for the Treatment of HD.

Disease or disease Site of
model and age at

transplantation

Type of astrocyte-
lineage cells or
precursors transplanted

transplantation
within the CNS

Endpoint/
treatment
duration

Outcome summary References

HD—Ré6/2 Astrocyte-biased human
(heterozygous fetal glial precursor
transgenic for cells (GPCs) were
the 5’-end of isolated from the

the human HTT
gene) x ragl-/-
(immunodeficient)
mice, postnatal
day | (PI)

forebrain tissue
(18-22 week-
gestational age)

Striatum bilaterally ~ 8—18 weeks

Integrated human cells did not  Benraiss et al.23®
express mHTT aggregates;
treated mice survived
significantly longer, showed
less striatal volume loss,
exhibited improved motor
performance assessed

by the rotarod and gait
tests, and better cognitive
performance analyzed by
the T-maze test. Striatal
neurons showed improved
electrophysiological
properties, and reduced
striatal potassium levels
were found in the presence
of transplanted glia.

depending
on the test

HD: Huntington’s disease; CNS: central nervous system; HTT: huntingtin; mHTT: mutant huntingtin.

neurons, while wild-type astrocytes protected neighboring
neurons from excitotoxicity?*!. Even more strikingly, while
neurons differentiated from patient-derived iPSCs were phe-
notypically normal and survived in the adult mouse brain,
astrocytes generated from the same cells showed cytoplas-
mic vacuolation under basal cell culture conditions, suggest-
ing that HTT mutations can induce astrocytic aberrations in
a cell-autonomous manner, and that astrocytes are highly
sensitive to mtHtt accumulation®*>. Human glial progenitor
cells (hGPCs) expressing mtHtt fail to differentiate into
mature GFAP-expressing astrocytes in the rodent brain?®.
Accordingly, specific reduction of mtHtt load in astrocytes
slows down disease progression in a mouse model*?’.

It is therefore not entirely surprising that transplantation
of healthy astrocytes can alleviate HD disease phenotype in
transgenic mice. Indeed, hGPCs comprised of astrocyte-
biased precursors, when engrafted neonatally into the stria-
tum of HD mice, successfully differentiated into astrocytes
(or persisted as precursors) and delayed motor and cognitive
deterioration. Importantly, striatal atrophy was also reduced
by the astrocyte transplantation (Table 4). On the other hand,
reverse engraftment of mtHtt-bearing precursors into healthy
rodents resulted in the manifestations of HD with impaired
motor coordination?$.

One documented astrocytic pathology associated with
the HTT mutation and symptom onset in HD models is the
reduction in inwardly rectifying potassium channel Kir4.1
expression, which alters the electrophysiological profile of
astrocytes and makes surrounding neurons more prone to
excitotoxic death.

Concomitant with the Kir4.1 downregulation, astrocytic
and neuronal depolarization alongside elevated extracellular
potassium levels were observed in a mouse HD model.

Artificial AAV-mediated expression of Kir4.1-GFP in astro-
cytes in this model attenuated the characteristic MSN hyper-
excitability associated with HD, as well as improved motor
function of the animals and increased their life span?°. To
further exacerbate excitotoxicity caused by Kir4.1 downreg-
ulation, deficit in glutamate transporters, especially GLT-1,
was observed in mouse models and cultured astrocytes
harboring mtHtt, which can further contribute to MSN
hyperexcitability by increasing glutamate concentrations
within striatum?3!240-24 Nuclear mtHtt inclusions are able to
directly suppress GLT1 expression through interaction with
and inhibition of its promoter?**,

Post-mortem analysis of HD brains revealed morpholog-
ical changes and increased astrocytosis, which correlated
with disease progression?®. Inflammation and astrocyte
activation are likely to play a role in HD pathogenesis as
higher levels of NF«kB were found in astrocytes from HD
patients and mouse models, and systemic inflammatory
stimuli (e.g. LPS) elicited more prominent cytokine release
from such cells. Accordingly, inhibition of the I«B kinase-
NF«B pathway improved neuronal survival and ameliorated
motor and cognitive deficits in the R6/2 mice?*. JAK-STAT
signaling represents another canonical pathway involved in
astrocytic activation and subsequent microglial recruitment
in HD. Surprisingly, blockade of this pathway increased
mtHtt aggregation without affecting neuronal survival, sug-
gesting that some aspects of astrocytic reactivity serve as a
protective compensatory mechanism aimed at elimination
of excessive misfolded protein®*®. Reactive astrocytes are
also able to exert neuroprotective effects by promoting
mtHtt degradation through upregulation of autophagy, lyso-
some, and proteasome-related genes®*’, which may also be a
cell-autonomous, protective mechanism underlying lower
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mtHtt accumulation in this cell type?*2. However, this may

only represent an initial compensatory response that sub-
sides over time, as progressive ubiquitin-proteasome system
decrease was shown in neurons and astrocytes of aging
mice?2233.

As expected, neurons are not the only cells whose excit-
ability is altered in HD. A mouse HD model has demon-
strated altered spontaneous calcium signaling in striatal
astrocytes that had, on average, diminished frequency, ampli-
tude, and duration compared to wild-type animals. At the
same time, astrocytes responded more robustly to the activity
of cortical neurons due to excessive glutamate accumulation
resulting from an insufficient glutamate uptake and defi-
ciency in potassium channels***?*8, To corroborate these
data, specific reduction in calcium signaling in wild-type
mice by transducing striatal astrocytes with a construct
encoding a calcium pump PMCA2, which extrudes calcium
from the cytosol, leads to excessive self-grooming behavior
reminiscent of that observed in R6/2 mice**°. Furthermore,
diminished calcium signaling was found in R6/2 HD mouse
model, which preceded later-stage severe motor dysfunction
associated with the striatal tissue loss*2.

In addition to abnormal cytosolic calcium signaling, mito-
chondrial calcium dynamics are likely to contribute to HD
pathology. It is noteworthy that mitochondria of striatal
astrocytes (and neurons) are less capable of calcium buffer-
ing compared to cortical cells, providing another insight into
the selective vulnerability of this brain region*’. Moreover,
striatal mitochondria present with reduced mitochondrial
respiratory capacity compared to their cortical counterparts,
and antioxidant (N-acetylcysteine) treatment ameliorated
some motor symptoms in an HD mouse model®'.

Multiple other astrocytic genes were found to be altered
in HD models, which results in suppressed BDNF secre-
tion, perturbed calcium signaling pathways, and astrocyte
activation among other pathological changes???%. Since
astrocytosis is known to be associated with neurotoxicity,
pro-inflammatory cytokine profile, and even eventual
astrocyte apoptosis, as discussed above for other known
disorders, these factors could be expected to contribute to
MSN death and other manifestations of HD. Effective
healthy astrocyte replacement in HD could improve the
cognitive function or reduce the rate of cognitive decline,
reduce psychiatric symptoms, and/or help control the motor
manifestations of this disorder, thus increasing the func-
tional independence of patients.

Traumatic Injury to the CNS

SCI and traumatic brain injury (TBI) are among the leading
causes of preventable disability in the younger population.
Nearly half of the SCI incidents occur between ages 16 and
30, while only less than 1% of the affected patients make a
full recovery?*2%°, Globally, TBI is about twice as prevalent
as SCI with the numbers of cases of approximately 760 per
100 000 and 370 per 100 000, respectively?®. Even though

vehicle collisions, sport-related traumas, and physical
assault are common causes of CNS injuries in younger
patients, falls account for more injuries in the older popula-
tion?*®, sometimes becoming a co-morbidity of another
degenerative disorder affecting motor functions such as
those described above.

Unlike neurodegenerative conditions where cellular dys-
functions are found in multiple brain areas, traumatic injury
in cases such as spinal fracture-dislocation represents a local-
ized area of damage and inflammation. This makes cell
transplantation therapies more applicable, although many
cases of injury span beyond a single localized point, either
due to the diffuse injury during the traumatic event or sec-
ondary damage because of the widely reaching inflammatory
changes in the whole CNS?¥7:2%,

A specific type of astrocyte lineage cells differentiated
from GRPs using BMP4, but not CNTF, stimulated func-
tional motor recovery and had a protective effect on axot-
omised neurons??2°! in rats upon transplantation after SCI,
without enhancing pain fiber sprouting (which presented a
concern with some cell transplantation therapies in SCI?%?),
Interestingly, the same type of astrocytes (GRP-derived
astrocytes, GDABMP4) was also shown to be protective in a
rat model of PD'3! (Table 2). On the other hand, GRPs dif-
ferentiated in the presence of CNTF specifically promoted
mechanical allodynia and thermal hyperalgesia, which cor-
related with the increased pain fiber outgrowth*, providing
key evidence of astrocytic lineage heterogeneity and offering
at least partial explanation for inconsistent success of astro-
cyte transplantation in other studies?®? (Tables 5 & 6).

One obvious way in which an astrocyte graft can alleviate
the symptoms associated with trauma is by filling up the cav-
ity and replenishing lost cells in the damaged area. Lesioned
axons fail to send new projections through a fluid-filled cyst
that can result post-trauma, while astrocytes, which can be
engrafted in a gel biomaterial such as collagen?®’, contribute
to restoring a more physiological ECM composition. Even
though some earlier reports considered astrocytes to be the
primary source of inhibitory ECM components that are detri-
mental to axonal regrowth, new evidence strongly suggests
that astrocytic presence at the lesion site is crucial for heal-
ing?7%2%_ Furthermore, healthy transplanted astrocytes were
able to delay expression of inhibitory ECM molecules when
engrafted during early post-lesion stages, suppress astroglio-
sis of the resident cell populations, and re-organize the
injured tissue to potentially make the scar border more per-
missive to axonal growth?%274,

In addition to the primary damage to the tissue at the time
of trauma?!, secondary axonal injury leading to neuronal
body atrophy and apoptosis®? 2%, also occurs. Astrocyte-
mediated protection of myelin sheaths surrounding damaged
areas can be prompted by a combination of connexin cell-to-
cell contacts?? and secreted factors such as thrombin protease
inhibitors?}, ATP, and LIF?%. Additionally, astrocyte-derived
CXCL10 can promote microglia-mediated phagocytosis of
myelin debris*?, which is essential for remyelination?®’.
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Cell Transplantation

Astrocytes can also support surviving neurons and encour-
age new neurite outgrowth by providing neurotrophic cues,
both secreted (such as BDNF and NT-32¢2272) and cell sur-
face bound (such as Eph receptors?®®).

Purinergic®® and glutamatergic®”® excitotoxicity due to
excessive release of ATP or glutamate, respectively, repre-
sent another feature of traumatic CNS injury, and therefore
blockade of these pathways ameliorates secondary cell death
and function loss after trauma. Oxidative stress also contrib-
utes to the cell death following injury as rapid generation of
reactive oxygen and nitrogen species exacerbate excitotoxic-
ity and damage mitochondria?®!. The ability of astrocytic
syncytium to buffer excessive ATP and glutamate as well as
to supply glutathione and other antioxidants were reviewed
above in the context of other conditions, and it is likely that
similar canonical pathways could be tapped into in the con-
text of SCI and TBI.

Another important aspect of the functional recovery from
trauma is restoration of the BBB and vascular supply to the
injured area, in which astrocytes play a crucial role. Indeed,
transplanted human iPSC-derived astrocytes were found to
interact closely with the blood vessels?*?, and were able to
increase vascularization of the lesioned area?%%26,

Inconsistency of the astrocyte transplantation success
between different models of SCI is an important concern,
and several reasons for this phenomenon were suggested®®2,
First, the type of injury, location, and severity are likely to be
important determinants of what extent of functional recovery
can be reasonably expected. For example, some studies on
SCI rodent models have demonstrated locomotor recovery®*’
while others presented sensory recovery with no motor
improvement®”°. It is possible that the cell numbers, density,
and vehicle used for astrocyte delivery (e.g. collagen-based
gel or liquid medium) can play a role in determining the out-
come (Table 5).

Second, the time of transplantation post-injury is a key
variable that needs to be assessed. It has been suggested that
inflammation and reactive astrogliosis are beneficial at the
early healing stages?**?** (e.g. due to recruiting microglia to
promote debris clearance) and therefore not allowing the
natural protective response of resident astrocytes to develop
could be detrimental. In fact, delayed transplantation studies
are more likely to be relevant to the real clinical cases where
many patients would seek treatment days, weeks, or years
after the initial injury.

Finally, it is obvious from the published SCI studies that
the type of astrocytes to be transplanted (e.g. mature vs
embryonic, Al vs A2 type, BMP4- or CNTF-differentiated
GDAs, plus regional differences) plays a crucial role in
determining the likelihood of recovery. For instance, differ-
ent subtypes of astrocytes exhibit differential tropism for
encouraging support of specific neuronal fibers as demon-
strated by the GDAsBMP | which specifically promoted motor
axon outgrowth, while GDA™T mostly enhanced extension
of nociceptive calcitonin-gene-related peptide (CGRP)

c-fibers?®. Several different methods used to differentiate
rodent and human astrocytes using BMP4 are summarized in
Table 6. The ability of transplanted GDAs to maintain their
beneficial phenotype long-term in a hostile niche has been
debated; however, since their effect on functional recovery
may depend more on the initial positive effect on the host
tissue than the continued presence of these cells??, cell pre-
differentiation could still be a viable therapeutic approach. In
an attempt to ensure that GDABMP* retain their beneficial
phenotype and continue providing the trophic factors even
under unfavorable conditions, bioengineering approaches
have been employed: retroviral transduction of these cells
with D15A (an engineered neurotrophin that combines NT-3
and BDNF activities) enhanced the ability of the graft to
improve locomotion in rats with SCI?”%. Effective healthy
astrocyte replacement in traumatic CNS injury would help a
patient to regain the lost neurological function fully or par-
tially, and/or reduce the burden of neuropathic pain, thereby
increasing their capacity for independent living.

Ischemia/Stroke

Cerebral ischemia, most commonly resulting from stroke, is
one of the leading causes of disability and death worldwide,
which is associated with devastating losses of various neuro-
logical functions and increased risk of dementia for the
patients®”®. The incidence of stroke ranges from 95 to 290
new cases per 100 000 people per year, and 13% to 35% of
cases lead to death within 1 month?%. Stroke is more com-
mon in older patients with the mean age of occurrence around
70 years®’, but up to 15% of stroke patients are young
adults, for whom personal and economic implications of the
life-long disability are much greater®s. While some genetic
factors such as history of familial hypertension predispose
certain people to stroke, a combination of environmental
factors and lifestyle has a large impact on the probability of
development of this pathology, which include obesity, lack
of exercise, psychological stress, and smoking?®’.

Ischaemic stroke is commonly caused by an acute blockade
of a cerebral artery by a thrombus that results in the cessation
of blood supply to particular brain areas, leading to cell death
at the center of the infarction within minutes of the onset.
As in the case of traumatic injury, specific location of the
ischaemic event determines the extent and nature of the
disability that is likely to result from it.

To rescue memory deficits in the aftermath of an isch-
aemic stroke in rats, co-transplantation of NSCs alongside
astrocytes, brain microvascular endothelial cells (BMECs),
or both, has been performed. While NSC graft alone did not
affect rats’ cognitive performance, double (astrocytes+NSCs
or BMECs+NSCs) or triple transplantation led to significant
improvements®*®. Another approach to employ astrocytic
transplantation to improve cognitive and motor function
after ischemia in rats involved knocking down astrocytic
CDKS5 prior to engraftment®*!392 (Table 7).
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CDKS5 hyperactivation has been observed in several dis-
orders including ischemia, AD, and ALS, which results from
the calcium-dependent p35 to p25 cleavage’®3%. It was
therefore hypothesized that preventing CDKS5 activation can
render astrocytes in their non-pathologically activated state.
Indeed, CDKS5 knock-down increased the ability of trans-
planted astrocytes to prevent local cell loss, protect the
BBB, and ultimately improve neurological scores as well as
locomotor recovery>?!392,

Consistent with the detrimental role of calcium-mediated
hyperactivation of CDKS5 in ischaemic stroke, abnormally
increased levels of astrocytic calcium were seen in reactive
astrocytes following the insult, which result from the extra-
cellular calcium entry3® or release of calcium from the intra-
cellular stores’®. Interestingly, there appears to be a level of
heterogeneity in the roles played by astrocytic calcium
responses, which may stem from the spatial (endfeet vs
soma), or temporal (e.g. frequency of calcium oscillations*?7),
location of signaling after the ischaemic insult. For instance,
release of calcium in the astrocytic endfeet, but not cell bod-
ies, enhances vasodilation to improve brain microcirculation,
which may be protective in ischemia®®. At the same time,
mGluR activation that promotes rhythmic calcium oscilla-
tions leads to the pathological swelling in astrocytes®”, but
also has cytoprotective effects on white matter astrocytes®'”.
Decreasing CDKS may specifically dampen the detrimental
effects of calcium dyshomeostasis under ischaemic condi-
tions while allowing the protective signals to remain.

Excitotoxicity is a common feature of many pathologies,
and ischemia is no exception. Excessive calcium oscilla-
tions triggered in astrocytes by ischaemic insults were asso-
ciated with CaMKII inhibition, which led to the reduced
ability of astrocytes to buffer extracellular glutamate as well
as an increase in ATP release®!!. This therefore perpetuates
the excitotoxic cycle by acting on astrocytic glutamatergic
receptors—the expression of which can be stimulated by
hypoxic conditions*'?, and purinergic receptors, which fur-
ther dysregulates intracellular calcium levels. Damage to
astrocytic mitochondria was observed in other studies as
well?'3314 " which further contributes to the BBB break-
down®"® and GLT1 glutamate transporter downregulation3'®,
Certain regional populations of astrocytes, such as those
found in the hippocampus, were found to be specifically
vulnerable to ischemia-induced mitochondrial damage and
oxidative stress, leading to the early loss of glutamate trans-
porters®!” which further impacts neighboring hippocampal
neurons. This may be the underlying reason of frequently
observed memory deficits following stroke.

Inflammatory molecules such as interleukin-13 (IL-1f3)
are known to contribute to cell damage in stroke, and one of
the inflammation-induced mechanisms of damage involves
activation of p38/stress-activated protein kinase 2 (p38/
SAPK2), leading to gap junctional closure. Accordingly,
inhibition of p38/SAPK2 pathway was found to reduce the
area of ischaemic lesion®'8, suggesting that the gap junctional
communication is crucial in preventing the injury spread.

Moreover, human marrow stromal cell (hMSC) transplanta-
tion aided neurological recovery in rats following stroke, and
these cells were shown to be able to release soluble factors
that upregulate gap junctional communication in astrocytes
through activation of PI3K/Akt pathway*'?. At the same
time, blockade of hemichannels composed of connexin 43,
the opening of which is potentiated under inflammatory and
hypoxic conditions, had beneficial effects through downreg-
ulation of inflammatory cytokine production and microglial
activation alongside prevention of release of ROS, ATP, and
glutamate320-322,

Even though neurons were thought to be more vulnerable
to ischemia than astrocytes, it is becoming clearer that both
cell types suffer from pathological changes that commonly
result in cell death®?. Transplanted astrocytes can therefore
replenish the resident panglial network, support the BBB,
and improve the blood flow to the brain, and supply neuro-
and astro-protective factors such as erythropoietin3%%324,
Effective healthy astrocyte replacement in the ischaemic
stroke could, similarly to the traumatic injury to the CNS,
help restore the compromised functionality, the exact nature
of which would depend on the affected region of the brain.

Overview

Astrocyte biology is an expanding topic of brain science
research with the functions of these cells continually expand-
ing from neuronal supporters to active partners at synapses to
cellular hubs integrating signals and influencing functions of
all major brain cell types. This review explores some promi-
nent examples of astrocyte transplantation strategies with
promising functional benefits in translational models of
ALS, PD, AD, HD, ischemia, and traumatic CNS injury, and
a pioneering clinical trial with human ALS patients points at
a clear therapeutic interest of these studies.

Considering that many more brain and spinal cord disor-
ders are found to be associated with astrocytic abnormalities,
it is likely that the insights gained from these experimental
transplantation strategies can be expanded to treatments of
other diseases. For example, astrocytic abnormalities were
found to precede demyelination in multiple sclerosis®?®, and
astrocytes carrying mutations associated with a higher risk of
autism were found to inflict damage on healthy neurons co-
cultured with these mutant cells*®. Therefore, replenishing
healthy astrocyte pools can alleviate symptoms of more than
one condition, especially considering that, despite different
aetiologies, many disorders share key pathological altera-
tions in astrocyte biology, demonstrated in this review.
Transplantation of healthy cells and/or tapping into the canon-
ical pathway onto which multiple pathologies converge (e.g.
inflammation-induced astrocytosis, mitochondrial stress, or
astrocytic syncytium-mediated calcium, ATP, and glutamate
buffering) represents a robust and versatile approach.

Autologous cell sources are especially promising in
human astrocyte transplantation therapies due to the lack of
ethical concerns and minimized risk of rejection. Enteric glia
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have proven beneficial in an AD model upon engraftment in
the brain?; however, recent studies point toward early dys-
function of these cells in degenerative disorders such as AD
and PD*?*, Moreover, in case a patient harbors a mutation in
all somatic cells that predisposes one to a certain disorder,
even reprogramming of patient own fibroblasts into seem-
ingly healthy astrocyte-lineage cells may result in inherently
diseased astrocytes devoid of beneficial properties®!. Gene-
editing technologies such as CRISPR could be employed to
correct known mutations associated with familial forms of
diseases prior to implantation of the cell graft. Increased
expression of transcription factors and neurotrophins, or
knock-down of factors known to be associated with patho-
logically reactive astrocyte states, which is likely to shift the
astrocytic phenotype toward a less inflammatory state, could
also be additionally employed!5%272301.302,

One interesting point to consider during cellular repro-
gramming is regional heterogeneity of vulnerability to par-
ticular diseases—it is becoming increasingly apparent that
brain cells in different brain regions exhibit different levels
of susceptibility to pathologies associated with PD, AD,
ALS, or ischaemic challenge. At the same time, progress
has been made in the field of regional patterning of repro-
grammed astrocytes®?’ 3%, Thence, should the transplanta-
tion therapy aim to replace the cells that correspond to the
most vulnerable and affected region since these cells are
more likely to be lost or severely affected by the disease, or
should it supply those cells exhibiting a more “robust”
regional phenotype?

Astrocytes, once matured and integrated in the brain, are
not migratory>3®*¥!| and they retain many aspects of their
regional identity in vitro’*%; hence, they can be expected to
retain important aspects of such identity after transplantation
as well. One study has shown that grafting midbrain, and not
cortical, astrocytes were more beneficial in a PD model,
arguing that the midbrain cells are more naturally adapted to
supporting dopaminergic neurons'>2. One limitation of this
study is that these astrocytes were transplanted into the rat
striata, while no astrocytes from striatal origin were
engrafted, and no transplantation into the midbrain was
explored. Another good example of this point can be found in
the field of ALS research. While cervical spinal cord-local-
ized transplantation of rodent spinal cord-derived astrocyte
precursors was beneficial in a rat model of ALS”!, human
forebrain-derived astrocyte precursors showed no protective
effects in a mouse ALS model’. Even though both studies
were conducted by the same group and used the same overall
approach, the number of variables makes it difficult to com-
pare these studies directly (e.g. mouse vs rat model, rat vs
human cells); nevertheless, it is possible that the spinal cord
astrocytes are specifically more apt to integrate into the
spinal cord astrocytic and neuronal networks and restore rel-
evant functions. Another corroboration of this idea comes
from a study of the corticospinal tract (CST) axonal growth
in neonatal rat spinal cords—when nitrocellulose inserts
were placed in the cords to deflect the normal CST growth

path, only spinal cord astrocytes grown on the inserts were
able to support CST axon growth as opposed to cortical
astrocytes®3. On the other hand, enteric astrocytes have
proven protective in an AD model when transplanted into the
brain’®, even though no comparison with other regional
types was offered by that study. In addition, it has been sug-
gested that astrocytes from the brain regions representing
axonal targets, such as cortical astrocytes for hippocampal
neurones, could promote axonal outgrowth more efficiently
that astrocytes from the same brain regions as neurones, or
unrelated regions of the brain.3** This property could be use-
ful in cases where prompt neurite extension is desirable, such
as after acute SCI, but the long-term effects of non-native
astrocyte subtypes in a particular region of the brain are not
known. More research is needed to address this issue in
greater depth.

Engraftment of neurons, as described above?~, and other
cell types such as brain microvascular endothelial cells
(BMECs)*® and oligodendrocytes®*® also provide valuable
therapeutic strategies, and, in fact, olidogendroglial differen-
tiation of GRPs (in addition to astrocytic differentiation) can
be at least partially responsible for the success of the GRP
engraftment in some of the studies discussed above®2™,

Astrocytic transplantation can be conducted in parallel
with engraftment of other cell lineages, as explored in sev-
eral studies'323%, in order to maximize the beneficial effects,
since even in those CNS disorders where pathology is com-
monly found most prominently in one cell type, multiple
cellular perturbations are expected, and the cellular culprit
of the pathology is not always obvious. Examples of that
include the non-cell autonomous neuronal death in rodent
models of ALS bearing mutant astrocytes®*? and myelina-
tion pathology in Alexander’s disease caused by mutations in
GFAP*%—an intermediate filament protein associated with
the astrocytic lineage.

But does cell transplantation merely alleviate disease
symptoms? A fascinating study demonstrated that human
glial precursors, which abundantly differentiate into astro-
cytes, when grafted into the mouse forebrain could integrate
into the local cellular circuits and maintain their highly
branched morphology, and also increase the number of syn-
aptic contacts. Most importantly, these human cells enhanced
the memory retention ability of these animals®’ (Table 8).

Considering the accumulating data showing that attention-
modifying and psycho-modulatory (e.g. antidepressants)
drugs commonly used in humans, which used to be considered
acting purely on neuronal networks, are increasingly recog-
nized to also affect astrocyte biology**, and that glial precur-
sors (abundantly differentiated into astrocytes) derived from
schizophrenic patients were able to recapitulate certain key
behavioral aspects of this pathology in rodents after transplan-
tation®*, the idea of treating more subtle psychological disor-
ders and even enhancing cognitive abilities by modifying the
phenotype and number of astrocytes in the human brain may
become a realistic perspective. Perhaps attenuation of aging-
related decline could represent a more immediately achievable
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Table 8. Astrocyte Transplantation in the Healthy Rodent Brain.

Disease or disease Type of astrocyte-lineage  Site of transplantation Endpoint/

model and age at cells or precursors within the central treatment

transplantation transplanted nervous system duration Outcome summary Reference

Healthy neonatal Human fetal glial Two locations within 2 weeks to  Glial precursors differentiated  Han et al.3¥’
immunodeficient progenitors extracted the forebrain, within 20 months largely into astrocytes and

(ragl-/- or rag2-/-) from the forebrain

mice ventricular and
subventricular zones
(17- to 22-week-
gestational age);

murine glial progenitor

cells were prepared
from newborn pups
in a similar fashion
and used in parallel
transplantations

a day of birth

retained hominid features
(larger size, threefold faster
calcium wave propagation);
chimaeric mice containing
human cells exhibited
enhanced long-term
potentiation (LTP) and
learning, as assessed by
Barnes maze test, object-
location memory, and

fear conditioning. No
enhancement of memory
was observed in animals
who received murine grafts.

goal as benefits of rejuvenation of the astrocytic niche have
started being explored in aged animals*.

Summary and Conclusions

Grafting of healthy astrocytes can slow down the disease
progression and/or improve functional outcome in transla-
tional models of ALS, PD, AD, HD, ischemia, and traumatic
CNS injury, and a human phase Ila clinical trial has shown a
significant patient benefit in the case of ALS.

There are some common pathological features that are
typically found in the diseased native astrocytes in these con-
ditions that can lead to astrocyte atrophy and death, damage
to surrounding neurons, loss of myelin, and recruitment of
neurotoxic microglia (Fig. 1). These include:

1. Pro-inflammatory cytokine release profile (e.g. IL-6,
TNFa, IL-1pB) and loss of ability to release protective
factors (e.g. BDNS, NT-3, GDNF);

2. Mitochondrial damage and increased ROS production,
decreased ATP production;

3. Calcium signaling disturbance;

4. Connexin dysregulation including abnormal hemi-
channel opening;

5. Loss of glutamate transporters leading to excitotoxicity;

6. Loss of potassium buffering ability further leading to
increased excitability of surrounding neurons;

7. Autophagy and proteasome deficits;

8. Apoptosis.

Transplanted astrocytes may therefore be able to (among
other, disease-specific benefits):

1. Replace the apoptotic/necrotic astrocytes;
2. Reduce astrocytosis and inflammation;

3. Supply protective soluble (e.g. anti-inflammatory
cytokines) and membrane-bound (e.g. Eph receptors,
connexins) factors;

4. Reduce accumulation of toxic compounds including
misfolded proteins and excessive glutamate, potas-
sium, and calcium through lysosomal and protea-
somal degradation and “glymphatic unit” clearance;

5. Act as stem cell-like cells with neurogenic potential.

Considering the emerging role of astrocytes in many other
disorders, astrocyte transplantation is likely to become a more
widespread therapeutic approach, alone or in combination with
transplantation of other cell types such as neurons or NSCs.

The source of the cells suitable for transplantation needs
to be determined with caution. Scalability and reproducibil-
ity issues with the available cell material may be a limitation
of this therapeutic approach when scaling up from the exper-
imental settings into the clinical trials and wider administra-
tion to the patients. There are three main types of cell sources
that could be used for this purpose that we have identified:

1. Astrocyte precursor from ethically derived from the
human embryos. This source has been used e.g. for
the derivation of stem cells in transplantation trials
involving people with PD>!;

2. Commercially available pre-differentiated cells such
as AstroRx produced by Kadimastem for the treat-
ment of ALS;

3. Autologous cell transplantation where fibroblasts or
mesenchymal stem cells are harvested from each
patient and differentiated into the astrocyte-lineage
cells ready for transplantation.

While there is a certain advantage to using the latter type
of cells that are patient-specific, and thereby minimize the
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Figure 1. Brain cell network alterations in disease. Magenta—astrocytes, blue—neurons, orange—oligodendrocytes, green—microglia.

ATP: adenosine triphosphate.

potential rejection and the extent of immunosuppression
needed, they present two considerable limitations. First, differ-
entiation of fibroblasts or mesenchymal stem cells into astro-
cyte-lineage cells, especially with the addition of time to
characterize the resulting cells, can take several months, there-
fore delaying the benefit to the patient. Second, the presence of
the known and yet-unknown mutations and epigenetic modifi-
cations that contribute to the disease phenotype may persist in
the reprogrammed cells. Related to this issue, the batch-to-
batch variability would be high between the cell transplants
influenced by the patient-specific characteristics, and faithful
comparison of the treatment outcomes would be difficult.

The precursor cells derived from human embryos could
be considered more reliable in terms of their true astrocytic
phenotype when compared with the differentiated cells, the
identity of which is typically determined by the expression of
rather generic astrocyte markers including GFAP. At the

same time, use of human embryonic material presents an
obvious limitation in the quantity of cells that can be obtained
and the ethical considerations of scaling the cell supply up.
In addition, batch-to-batch variability related to the differ-
ences between the embryos remains.

With this in mind, commercially available pre-differenti-
ated and pre-characterized cells such as AstroRx could prove
the most practical for the clinical use, as corroborated by their
success in the first astrocyte transplantation clinical trial.
These cells can be expanded, pre-characterized, and cryopre-
served—these processes are currently being standardized to
make the cells more suitable for the clinic. Refining the astro-
cyte-generation technology by creating more brain-region
specific astrocyte types can expand this approach to a more
diverse range of brain conditions.

The following additional consideration could be taken
into account before this treatment finds its way into clinic:
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1. Any cell graft has a small risk of over-proliferation.
Pre-differentiation of stem cells into committed
astrocyte precursors can help reduce the risk of graft
overgrowth;

2. Hostile microenvironment of the diseased/lesioned
tissue can predispose initially healthy cells to adopt
a reactive and detrimental phenotype. Engineering
astrocytes to artificially express trophic factors such
as D15A (a human-designed neurotrophin that com-
bines NT-3 and BDNF activities?’?), transcription
factors (Nurrl and Foxa2!'’?) that are known to
promote a non-reactive phenotype, or suppressing
factors such as CDKS5 that enhance pathological
reactivity>*!%% can ensure long-term maintenance of
a healthy phenotype even in the presence of unfavor-
able conditions. Additionally, other small molecule
or gene therapy-based approaches can be employed
alongside transplantation to reduce inflammatory
responses. For instance, minocycline and COX-2
inhibitors suppress neuroinflammation and extend
lifespan of ALS mice*!342; more specific astrocyte-
and brain-targeted interventions can be developed in
the near future.
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