Thrombin Activated Interleukin-1α Drives Atherogenesis, but also Promotes VSMC Proliferation and Collagen Production

Laura C. Burzynski¹, Maria A. Morales-Maldonado¹, Amanda Rodgers¹, Lauren A. Kitt¹, Melanie Humphry¹, Nichola Figg¹, Martin R. Bennett¹, Murray CH. Clarke¹*

* For correspondence
E-Mail: mchc2@cam.ac.uk
Telephone: (44) 1223 762581
Fax: (44) 1223 331505

¹Section of CardioRespiratory Medicine,
The Heart & Lung Research Institute,
The University of Cambridge,
Papworth Road,
Cambridge Biomedical Campus,
Cambridge,
CB2 0BB,
UK.

Running title: Thrombin activated IL-1α drives atherogenesis.

Keywords: Atherosclerosis, inflammation, coagulation, IL-1, thrombin.
1. ABSTRACT (211 words)

Atherosclerosis is driven by multiple processes across multiple body systems. For example, the innate immune system drives both atherogenesis and plaque rupture via inflammation, while coronary artery-occluding thrombi formed by the coagulation system cause myocardial infarction and death. However, the interplay between these systems during atherogenesis is understudied. We recently showed that coagulation and immunity are fundamentally linked by the activation of Interleukin-1α (IL-1α) by thrombin, and generated a novel knock-in mouse in which thrombin cannot activate endogenous IL-1α (IL-1αTM). Here, we show significantly reduced atherosclerotic plaque formation in IL-1αTM/Apoel-/- mice compared to Apoe-/- and reduced T cell infiltration. However, IL-1αTM/Apoel-/- plaques have reduced vascular smooth muscle cells (VSMCs), collagen and fibrous caps, indicative of a more unstable phenotype. Interestingly, the reduced atherogenesis seen with thrombin inhibition was absent in IL-1αTM/Apoel-/- mice, suggesting that thrombin inhibitors can affect atherosclerosis via reduced IL-1α activation. Finally, bone marrow chimeras show that thrombin activated IL-1α is derived from both vessel wall and myeloid cells. Together, we reveal that the atherogenic effect of ongoing coagulation is, in part, mediated via thrombin cleavage of IL-1α. This highlights the importance of interplay between systems during disease and the potential for therapeutically targeting IL-1α and/or thrombin, but also forewarns that IL-1 may have a role in plaque stabilisation.
2. INTRODUCTION

Coagulation and inflammation are intrinsically linked. Indeed, the coagulation system likely developed from an early innate immune system, with blood serine proteases diverging from complement proteases1. In mammals inflammation can induce expression of tissue factor to promote coagulation2, while thrombin cleavage of protease activated receptors (PARs) induces cytokine and adhesion molecule expression, leading to inflammation3. Coagulation is rapid, with the intrinsic or extrinsic pathways triggering a protease cascade that activates thrombin, leading to fibrin deposition, platelet activation and haemostasis. Innate immunity is slower and typically requires sensing of pathogen-associated molecular patterns via cognate receptors to induce expression of cytokines that direct inflammation and subsequent adaptive immunity3. Importantly, we have recently identified a direct link between haemostasis and immunity in mammals whereby thrombin cleaves and activates IL-1\textalpha4, resulting in direct and rapid induction of inflammation.

The potential for thrombin activation of IL-1\textalpha is particularly interesting in the context of atherosclerosis and other vascular diseases. Although plaque rupture causes acute thrombosis and vessel occlusion leading to myocardial infarction (MI) or stroke, strong evidence suggests chronic ongoing coagulation drives plaque growth. For example, human plaques without fissures or ulceration contain large amounts of fibrin that is localized throughout5, whilst early plaques contain clotting factors and thrombin:antithrombin (TAT) complexes6. Indeed, levels of TAT complexes predict severity of coronary atherosclerosis7. Furthermore, inducing a hypercoagulable state in ApoE mice by knocking out heparin cofactor II8 or tissue factor pathway inhibitor9 increases plaque size. Conversely, thrombin inhibition reduces and stabilises plaques10,11. However, knockout of PAR4 has no effect on plaques in ApoE mice12, while PAR2 loss only modestly reduces athero13, suggesting the action of thrombin isn’t all mediated via PARs. Together, this implies that coagulation and thrombin activation occurs chronically throughout atherogenesis, not just at acute plaque rupture, and that this drives plaque growth. IL-1\textalpha is expressed by vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and macrophages, and is released upon necrosis or during inflammasome activation. However, if thrombin-activated IL-1\textalpha contributes to atherogenesis is currently not known.

IL-1 signalling is now established to be causative of the clinical manifestations of atherosclerosis, with CANTOS showing significantly reduced major adverse cardiovascular events (MACE) and mortality in patients treated with the IL-1\beta inhibitor canakinumab14,15. IL-1\alpha and \beta bind the type 1 IL-1 receptor (IL-1R1) and induce identical proinflammatory effects3, including cytokine secretion, upregulation of adhesion, MHC and costimulatory molecules, and vascular leakage16. IL-1 also has powerful effects on adaptive immunity by enhancing survival and expansion of T cells, Th17 cell differentiation, and effector T cell proliferation with Tregs present17 - all effects important during atherogenesis. Both IL-1\alpha and \beta are synthesised as proforms that require cleavage for full biological activity. IL-1\alpha is also an important damage-associates molecular pattern released upon necrosis18-24, but cytokine activity is controlled in a cell type-dependent manner25. Multiple studies find that IL-1 signalling drives plaque growth26-36, suggesting a consensus for a proatherogenic role of IL-1. However, controversies exist; for example, while reduced atherosclerosis is seen in IL-1\textalpha-/- mice31,36,37 lesions are either reduced27 or unchanged31,36 in IL-1\beta-/- mice. Another study using IL-1R1-/- mice found smaller plaques that were more unstable, suggesting that although IL-1 drives plaque growth, it could also have a stabilizing effect38. Cholesterol crystals activate inflammasomes33,39 and thus IL-1\beta; however, deficiency in the key inflammasome factors NLRP3 or ASC showed either reduced plaque33 or no change40. Such discrepancies are currently unexplained, but could reflect different temporal roles for IL-1\alpha and IL-1\beta31, and/or inflammasome-independent activation of IL-1\alpha, such as by thrombin4.

Here we present novel data revealing that a direct link between the coagulation and immune system drives atherogenesis independent of plaque rupture or frank thrombus formation. Thus, IL-1\alphaTM/Apoe-/- mice (in which thrombin cannot activate IL-1\alpha) have smaller atherosclerotic plaques with less T cell
infiltration, and were refractory to the reduction in plaque size usually seen with thrombin inhibition. However, IL-1αTM/Apoe^{−/−} plaques also have reduced VSMCs, collagen and fibrous caps, indicative of a more unstable phenotype. Indeed, IL-1α drives VSMC proliferation and collagen expression in vitro. Thus, although thrombin cleaved IL-1α drives plaque growth, in keeping with the consensus for IL-1 driving atherogenesis²⁶⁻³⁶, IL-1 may also play an important role in plaque stabilisation.
3. MATERIALS AND METHODS

All material from Sigma unless stated otherwise

Animal Protocols were performed under UK Home Office licensing. IL-1αTM mice were generated by homologous recombination of the R114Q point mutation into exon 5 of Il1a in a FLP ES cell line using an FRT flanked Neo selection cassette, followed by standard generation of chimaeras (inGenious Targeting Laboratory). IL-1αTM mice on a C57BL/6J background were crossed to Apoe−/− (Apoetm1Unc; Jax) to generate IL-1αTM−/−/Apoe−/− and IL-1αTM+/+/Apoe−/− littermates, which were born at expected frequencies with no gross phenotype. Mice were maintained on a 12 h light/dark cycle and normal chow (#105, SAFE) and water were available ad libitum. Euthanasia was via a rising concentration of CO2. For experimental atherosclerosis males were fed a high fat (HF) ‘Western’ diet (#829100; SDS) from 6 w for 10 or 12 w, as indicated. Serum lipids were profiled at 6 w (Siemens Dimension RXL). Full blood counts used a scil Vet ABC+ (Horiba). Dabigatran (Pradaxa) was mixed at 10g/kg of powdered HF diet. Bone marrow chimeras were generated by standard methods. Briefly, mice were irradiated with a split dose of 5.5 gray, 4 h apart, and 10x10^6 bone marrow cells injected via the tail vein within 2 h of the final irradiation. Mice were left to reconstitute for 4 w before HF feeding. Parallel experiments with CD45.1/2 showed ~95% donor engraftment, with normal blood counts within 4 w (Fig S8). Briefly, whole blood was incubated with anti-CD45.1 and anti-CD45.2 (1:50, 1:80; both Biolegend; all 16 h, 4°C). Washed αSMA and Mac-3 sections were incubated with biotinylated 2ry antibody (1:500; RT), then ABComplex (30 mins, RT), before visualisation with DAB (all Vector), washed and re-suspended in FACs buffer and analysed by flow cytometry (Accuri C6).

Immunohistochemistry and morphometry. Mouse tissues were fixed in 10% formalin overnight, before processing, paraffin embedding and 5 μm sectioning. Aortic root plaques were serial sectioned from the start of the valve leaflets, and at every 100 μm toward the heart. Slides were cleared before antigen retrieval with sodium citrate (10mM; pH 6), blocking in H2O2 (3%; 10 mins) and then horse serum (5%; 1 h), before incubation with anti-CD3 (1:75; NCL-CD3-12, Novacastra), anti-αSMA (1:400; 1A4, Dako), anti-Mac-3 (1:400; M3/84, BD), or isotype controls (Abcam; all 16 h, 4°C). Washed αSMA and Mac-3 sections were incubated with biotinylated 2ry antibody (1:500; 1 h, RT), then ABCComposite (30 mins, RT), before visualisation with DAB (all Vector), while CD3 used an Abcam kit (ab64264). Collagen was visualised with Masson’s trichrome staining (HT15). Imaging was performed on a BX51 (Olympus) using Image-Pro Insight 9.1 software (Media Cybernetics). Plaque area was identified by H&E; necrotic core as the acellular cholesterol cleft-rich area; fibrous cap as the VSMC and proteoglycan-rich area underlying the endothelial layer; media as the area between the internal and external elastic lamina. Plaque constituent areas were quantified as number of DAB (CD3, αSMA, Mac-3) or blue (Masson’s) positive pixels as a percentage of total plaque pixels (see Fig S5 & S6). Non-specific staining of the necrotic core was excluded from analysis. For Oil red O staining, aortas were cleaned of adipose, rinsed in isopropanol (60%; 30 s), then H2O (2 min), before tiled imaging using a 10x objective.

Spleen and whole blood immunoprofiling. Spleens were sieved (70μm), before washing (PBS; 350 g, 5 mins), re-sieving (40 μm), RBC lysis (eBioscience), washing, and resuspension in FACs buffer (1% BSA, 0.05% Na3, in PBS) or full RPMI. Cells in FACs buffer were Fc blocked (1:100; Biolegend; 10 mins, RT) before staining for T cell activation with: anti-CD4 (1:800; eBioscience), anti-CD8 (1:100), anti-CD62L (1:80), anti-CD44 (1:400; all Biolegend; 20 mins, RT); or for Tregs with: anti-CD4 (1:800), anti-CD25 (1:80; Biolegend; 20 mins, RT), before washing, fixation, permeabilisation (FOXP3 Fix/Perm; Biolegend), then anti-Foxp3 (1:20; Biolegend; 30 mins, RT). Cells in RPMI were treated ±ionomycin/PMA/brefeldin A (1:500; Biolegend), incubated (5 h, 37°C), washed, resuspended in FACs buffer, Fc blocked, stained with anti-CD4 or anti-CD8 (20 mins, RT), washed, fixed, permeabilised (Biolegend), then anti-IL-10, anti-IL-17, and anti-IFNγ (all 1:100; Biolegend; 30 mins, RT). For neutrophil, monocyte or Ly6C+ cells, whole blood (EDTA) was stained with anti-CD115 (1:100; eBioscience), anti-CD11b (1:800), anti-Ly6G (1:80; both Biolegend), anti-Ly6C (1:400; abD Serotec), RT for 30 mins, before RBC lysis, washing, and analysis by flow cytometry (Accuri C6).
Cell culture. Primary murine adult ear fibroblasts and primary human aortic VSMCs (two isolates from different individuals) were cultured in DMEM, 10% FCS, 10 mg/ml streptomycin, 5 mg/ml L-glutamine, and were passaged at 80% confluence. Mouse BMDMs were cultured in RPMI 1640 supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 10 µg/ml streptomycin, 50 µM β-mercaptoethanol and 10% FCS, with 15% L929 conditioned media during mBMDM differentiation. Briefly, bone marrow was flushed from femurs and tibias, washed, cells plated, and media replenished every other day. Where indicated cells were treated with IL-1α (20 ng/ml; Peprotech); calpeptin (30 µM; Enzo); LPS (1 µg/ml); SB203580 (50-500 nM); Isohelenin (0.5-5 µM; Santa Crap); DMSO.

Cleavage of macrophage-derived pro-IL-1α. Control and IL-1αTM BMDMs treated with LPS (1 µg/ml; 6 h, 37˚C) were lysed in 20 mM Tris pH 8.4, 150 mM NaCl, 2.5 mM CaCl₂ by freeze/thaw, debris removed by centrifugation and the pro-IL-1α-containing lysate incubated (2 h, RT) ±thrombin (0.09 U/ml; Novagen), ±PPACK (100 µM; Enzo), with reactions stopped by addition of Laemmli buffer. Where indicated BMDMs were preincubated with calpeptin before lysis (20 min, 37˚C).

IL-1 bioassay, ELISAs and thrombin assay. Murine fibroblasts were adhered overnight in full media. Media was replaced along with test treatments as indicated, and incubated for 6 h. Specific IL-1α activity was inferred with a neutralising antibody against mouse IL-1α (2 µg/ml; R&D), added throughout the 6 h incubation. Conditioned media was collected, clarified, and mouse IL-6 assayed by bead ELISA (ThermoFisher) as per the manufacturer’s instructions. Beads were analysed by flow cytometry (Accuri C6). Serum IL-1α was measured by ELISA (DuoSet; R&D) after a 1:3 dilution, while serum TAT was measured by ELISA (Abcam) after a 1:50 dilution and absorbance measured on a plate reader (BMG Labtech). Thrombin activity was measured with a fluorogenic substrate (605211; EMD Millipore). Briefly, 10 µl of diluted serum (as indicated) was mixed with 10 µl of substrate (0.25 mM final) in 80 µl of PBS, and incubated at 37˚C for 20 mins before measuring fluorescence.

Assessment of VSMCs proliferation. Human aortic VSMCs were plated at ~30% confluence in full media, allowed to adhere overnight, media replaced along with treatments as indicated and incubated for 7 d (37˚C). Media and treatments were refreshed every 3 d. Proliferation was assessed by addition of Alamar Blue (1:10; 1 h, 37˚C; Invitrogen) and absorbance measurement at 600 nm (BMG Labtech), followed by cell fixation (3:1 methanol:acetic acid; 5 min, RT), staining with crystal violet (0.1% in PBS; 10 min, RT), solubilisation of dye with acetic acid (10%) and absorbance measurement at 600 nm.

Western blotting and qPCR. Westerns were performed as previously described with lysis of cells directly in Laemmli buffer, SDS-PAGE and transfer onto PVDF membrane. After blocking (5% milk) membranes were incubated (16 h, 4˚C) with mouse IL-1α pAb (1:500; R&D), before washing (PBS/Tween) and incubation (1 h, RT) with anti-mouse HRP (1:2000; GE). After washing, membranes were visualised with ECL reagent (Amersham) and X-ray film (Fujifilm). qPCR was performed after RNA extraction (RNeasy; Qiagen) and cDNA synthesis (RT system; Promega) using SsoAdvanced SYBR green master mix (Biorad) and a CFX Connect thermocycler (Biorad). Relative expression was calculated by the ddCt method with B2M as the reference gene. Primer sequences: COL1A1: GATTCCCTGGACCTAAAGGTGC & AGCCTCTCCATCTTGTCCAGCA; COL1A2: CCTGGTGCTAAAGGAGAAAGAGG & ATCACCACGACTTCCAGCAGGA; COL3A1: TGGTCTGCAAGGACCTGTCCGCA & TCTTTCCCTGGACACCACATCAG; B2M: GAGGCTATCCAGGTACTCCA & CGGCAGCATTACTCATCTTTT.

Statistics. Data are presented as mean ± SEM, unless otherwise stated. All statistical analyses were carried out using Prism 7 (Graphpad). All assays that produced continuous data, with the exception of flow cytometry and mouse experiments, were performed in duplicate. n = an individual experimental replicate performed on a different day, or an individual mouse - never a technical replicate. Before statistical testing for significance data was analysed for normality with a Shapiro-Wilks test, with normal distribution analysed by parametric and non-normal by non-parametric. Parametric test analysis of
continuous data used unpaired t-test (two-tailed) or ANOVA with Dunnett’s post hoc or Tukey’s post-hoc multiple comparisons test. Non-parametric tests used the Mann-Whitney U Test or the Kruskal-Wallis test.
4. RESULTS

Mutation of the thrombin site in IL-1α prevents its cleavage and activation. We have recently shown that mammalian IL-1α contains a highly conserved consensus site that is targeted by thrombin, resulting in cleavage and activation of IL-1α. We mutated the key Arginine residue of this site to Glutamine (R114Q) within the endogenous mouse I’lla gene and bred to homozygosity (Il1a^{R114Q/R114Q}) to produce IL-1α Thrombin Mutant mice - herein known as IL-1αTM mice. Using LPS-treated bone marrow-derived macrophages (BMDMs) as a source of pro-IL-1α, we show that canonical cleavage of IL-1α by calpain occurs in wild-type (control) and IL-1αTM mice (Fig 1A) (as evidenced by loss of the p17 band with calpeptin), but thrombin cannot process pro-IL-1α derived from IL-1αTM mice (Fig 1A). Concomitantly, thrombin treatment of pro-IL-1α from control mice induces high levels of IL-1α-specific activity (as evidenced by reduced IL-6 with an anti-IL-1α Ab), while pro-IL-1α from IL-1αTM mice does not (Fig 1B). No other differences in physiological parameters (full blood count or clotting parameters; spleen/lymph node weight) or typical IL-1 responses (pro-IL-1α/β expression; cell surface IL-1α; IL-1α/β release after inflammasome activation; T cell number, subtypes or polarisation; Treg number) was found between genotypes, indicating the only tangible difference between control and IL-1αTM mice is the ability of thrombin to cleave and activate IL-1α.

IL-1αTM/Apo<sup>e^{−/−} mice generate less atherosclerotic plaque than Apo<sup>e^{−/−} mice. To investigate if thrombin cleaved IL-1α alters atherosclerosis we crossed IL-1αTM mice with Apo<sup>e^{−/−} mice, and fed a high fat (HF) diet for 10 w. Importantly, no difference in body weights (Fig 2A) or lipid levels (Fig 2B) was found during fat feeding. In addition, no difference in lipid level was seen between ⅡⅡα^{+/−}/Apo<sup>e^{−/−} and Apo<sup>e^{−/−} mice (Fig S1). Furthermore, no differences in haematological parameters (Fig 2C), blood monocyte activation (Fig S2A), or activation of the adaptive immune system (Fig S2B-D) was seen between groups. Notably, thrombin activity was indistinguishable between groups (Fig S3). Together this again supports that mutation of the thrombin site in IL-1α does not change systemic parameters that are known to alter atherosclerosis. However, after 10 w of HF diet, aortic root plaques were significantly smaller in IL-1αTM/Apo^{−/−} mice compared to Apo<sup>e^{−/−} mice, with the same finding in two separate experiments analysed by either ‘traditional’ peak plaque measurement (Fig 2D,E) or importantly plaque serial sectioning (Fig 2F), with significantly smaller area under the curve (AUC) (Fig 2G), peak root plaque (Fig 2H) and single largest plaque (Fig 2I) in IL-1αTM/Apo^{−/−} mice. Interestingly, no difference in % plaque coverage of the aorta was seen following Oil red O staining (Fig S4), perhaps because the haemodynamic forces within the aorta do not favour the plaque erosion/rupture needed to activate thrombin and enable IL-1α activation. Together, this suggests that thrombin activated IL-1α normally contributes to plaque growth.

Plaque composition is altered in IL-1αTM/Apo<sup>e^{−/−} mice. Although plaque size affects vessel stenosis, plaque composition dictates stability and thus probability of acute rupture. No significant difference in the number of plaque Mac-3⁺ cells (typically indicative of macrophages) (Fig 3A) was found, but significantly less CD3⁺ cells (typically indicative of T cells) (Fig 3B) and αSMA⁺ cells (typically indicative of VSMCs) (Fig 3C) were seen in IL-1αTM/Apo<sup>e^{−/−} lesions (see Fig S5 for IHC controls). Furthermore, CD8 T cells from IL-1αTM/Apo<sup>e^{−/−} mice polarised less toward IFNγ expression after in vitro stimulation (Fig S2E). More inflammatory cells and less VSMCs typically indicates a more unstable plaque. Thus, less thrombin activated IL-1α in IL-1αTM mice lowers CD3⁺ cell recruitment, but also reduces VSMC content - perhaps indicating that although IL-1 signalling drives atherogenesis, it may also have a stabilising effect via promotion of VSMC proliferation. Indeed, although the smaller plaques in IL-1αTM/Apo<sup>e^{−/−} mice resulted in less vessel stenosis (Fig 3D), they also have smaller fibrous caps relative to plaque area (Fig 3E) and reduced collagen content (Fig 3F), in keeping with the reduced VSMC content witnessed (Fig 3C), and indicative of a more unstable plaque phenotype. Plaques in IL-1αTM/Apo<sup>e^{−/−} mice also have smaller necrotic cores (Fig 3G,H), but medial area was the same between groups (Fig 3I), indicating no alteration to vessel wall remodelling (see Fig S6 for example morphometry). Together, this indicates that thrombin-cleaved IL-1α normally drives atherogenesis and
Thrombin inhibition does not reduce atherogenesis in IL-1αTM/Apoe⁻/⁻ mice. Acute plaque rupture causes thrombosis, vessel occlusion and MI/stroke, while ongoing activation of coagulation drives plaque growth⁵-⁹. Indeed, thrombin inhibition is shown to reduce atherosclerosis by approximately half¹⁰,¹¹, but it is not known if this action could be, in part, via reduced thrombin activation of IL-1α. To investigate this we utilised the oral anticoagulant Dabigatran to inhibit thrombin activity during atherogenesis and compared plaque size and serum IL-1α level between IL-1αTM/Apoe⁻/⁻ and Apoe⁻/⁻ mice. Thrombin activity was reduced by Dabigatran treatment via diet, as evidenced by reduced TAT complexes in serum (Fig S7). Interestingly, although Dabigatran reduced plaque AUC, peak plaque or largest plaque size by ~60% in Apoe⁻/⁻ mice (Fig 4A-E), a finding in keeping with previous studies¹⁰,¹¹, no significant decrease in plaque size was seen in IL-1αTM/Apoe⁻/⁻ mice (Fig 4A-E). Importantly, Dabigatran treatment also significantly reduced serum IL-1α levels in Apoe⁻/⁻, but not IL-1αTM/Apoe⁻/⁻ mice, which already had lower serum IL-1α levels without Dabigatran (Fig 4F). Importantly, Dabigatran treatment did not alter serum lipid levels (Fig 4G), or haematological parameters (Fig 4H) between groups. Together, this data suggests that a new mode of action for thrombin inhibitors that retard atherogenesis is, in part, by preventing IL-1α cleavage and activation by thrombin.

Atherogenesis is driven by thrombin cleaved IL-1α derived from vessel wall and myeloid cells. pro-IL-1α is expressed constitutively by most non-myeloid cells³, including VSMCs²⁵ and ECs⁴², whilst myeloid expression requires stimulation by, for example, TLR ligands. To investigate the source of the pro-IL-1α activated by thrombin during atherogenesis we generated congenic bone marrow chimeras (IL-1αTM/Apoe⁻/⁻ > Apoe⁻/⁻ & Apoe⁻/⁻ > IL-1αTM/Apoe⁻/⁻), along with syngeneic controls (IL-1αTM/Apoe⁻/⁻ > IL-1αTM/Apoe⁻/⁻ & Apoe⁻/⁻ > Apoe⁻/⁻). Engraftment level was ~95% for both Apoe⁻/⁻ and IL-1αTM/Apoe⁻/⁻ bone marrow (Fig S8A,B), and engraftment rate was equivalent between all groups (Fig S8C). Plaque AUC, peak plaque and largest plaque remained smaller in syngeneic IL-1αTM/Apoe⁻/⁻ transplanted mice compared to syngeneic Apoe⁻/⁻ (Fig 5A-E), in keeping with our previous data without bone marrow transplant (Fig 2D-I). Interestingly, reduced plaque size was seen in both congenic IL-1αTM/Apoe⁻/⁻ > Apoe⁻/⁻ and Apoe⁻/⁻ > IL-1αTM/Apoe⁻/⁻ transplants (Fig 5A-E), indicating thrombin-activated pro-IL-1α can be derived from both vessel wall and myeloid cells during atherogenesis. Importantly, no difference in body weight (Fig 5F), serum lipid levels (Fig 5G) or haematological parameters (Fig 5H) was seen between groups, excluding an effect of genotype on bone marrow repopulation or, for example, leukocyte levels. Together, this again supports that thrombin-cleaved pro-IL-1α promotes atherogenesis, but that the source of pro-IL-1α is not critical.

IL-1-driven NF-κB activation increases VSMC proliferation. Plaques with fewer VSMCs, less collagen and smaller fibrous caps in IL-1αTM/Apoe⁻/⁻ mice (Fig 3C,E,F) suggests that in addition to driving atherogenesis, IL-1α may also play a positive role via plaque stabilisation. To investigate this we cultured two different primary VSMC isolates with IL-1α for 7 days and measured proliferation with Alamar Blue. IL-1α resulted in a significant increase in Alamar Blue signal, which was entirely reversed with an IL-1α neutralising antibody (Fig 6A). However, because Alamar Blue can sometimes be confounded by increased metabolic activity, we repeated experiments but measured VSMC proliferation by cell mass with crystal violet, which essentially gave the same results (Fig 6B). As IL-1α signalling via IL-1R1 utilises MyD88, akin to TLR4, we also treated VSMCs with LPS, which also increased proliferation (Fig 6C). IL-1 and LPS signalling downstream of MyD88 can engage MAP kinases and NF-κB activation. Thus, to determine the pathway inducing VSMC proliferation we utilised the p38 MAP kinase inhibitor SB203580 and the NF-κB inhibitor isohelelin. SB203580 had no effect on VSMC proliferation over and above any effect of the DMSO carrier control (Fig 6D). However, isohelelin reduced both basal VSMC proliferation and that induced by IL-1α or LPS (Fig 6E). Finally, we measured expression of the vascular collagen genes COL1A1, COL1A2 and COL3A1 in VSMCs treated ±IL-1α, which revealed a modest increase in expression (Fig S9), in keeping with previous findings⁴³. Together,
this suggests that in addition to an atherogenic role for IL-126-36, IL-1-induced NF-κB activation may help stabilise plaques via directly increasing VSMC number, along with their associated production of structural matrix.
5. DISCUSSION

With the transition to larger multicellular organisms came the need to keep blood and nutrients in and pathogens out, and thus the evolution of a rudimentary combined immuno-coagulation system. Indeed, simple organisms with combined coagulation and immune systems are still extant today, underscoring the importance of coordinating these processes. Although modern mammals have evolved increasingly complex immune and coagulation systems, essential links between them still exist, including the activation of IL-1α by thrombin. Atherosclerosis is driven by chronic aberrant immune activation, with the major clinical outcome driven by acute occlusive thrombosis. However, the effect of long term crosstalk between coagulation and immunity on atherogenesis is still poorly understood.

We have studied one aspect of this interplay using a novel mouse model in which endogenous IL-1α has been mutated to prevent its activation by thrombin. We find that IL-1α⋅/Apoe^{−/−} mice generate smaller atherosclerotic plaques after fat feeding, but with no change to systemic parameters such as lipids or leucocyte counts. IL-1α⋅/Apoe^{−/−} plaques have fewer T cells, but also less VSMCs, collagen and smaller fibrous caps, suggesting that although thrombin-activated IL-1α can drive atherogenesis, it also can induce features associated with plaque stabilisation. Indeed, we show that IL-1α potently drives VSMC proliferation via NF-κB. Interestingly, the well-reported reduction in plaque size upon thrombin inhibition was absent in IL-1α⋅/Apoe^{−/−} mice, suggesting the action of thrombin inhibitors on atherosclerosis are, in part, via reduced IL-1α activation. Finally, bone marrow chimeras reveal that pro-IL-1α cleaved by thrombin can be derived from either vessel wall or myeloid cells.

The most pathological role of coagulation in atherosclerosis is the production of vessel-occluding thrombi after plaque rupture. Plaque rupture both interrupts continuity of the endothelial layer and exposes thrombogenic material within the necrotic core, often leading to MI or stroke. However, the systemic response to MI actively accelerates atherogenesis via increased monocyte recruitment, suggesting downstream effects of acute coagulation can drive chronic inflammation. IL-1 is a powerful inducer of endothelial adhesion molecule expression that leads to monocyte recruitment, but if thrombin-activated IL-1α drives this is currently unknown. Similarly, repeated rounds of subclinical plaque rupture and erosion, followed by repair, is also suggested to drive atherogenesis. Indeed, layers of fibrin deposition witnessed throughout human plaques supports this, and could explain how chronic low grade coagulation provides thrombin to activate local IL-1α and drive plaque growth. Much of the crosstalk between coagulation and immunity is via thrombin activation of PARs, which instigate cell signalling via G-proteins to ultimately induce pro-inflammatory cytokines. However, despite the large effect of thrombin inhibitors on plaque growth, PAR-deficient mice either show a modest reduction or no change in plaque size, suggesting that thrombin influences atherogenesis via other mechanisms. Our data indicates that cleavage and activation of IL-1α may in part explain some of the PAR-independent effects of thrombin on atherosclerosis.

Notably, we did not see altered plaque coverage of the aorta between groups. However, serial sectioning of aortic roots is a proxy for plaque volume (i.e. \(\mu m^3\)), while staining aortas en face measures plaque area (i.e. \(\mu m^2\)). Thus, processes initiating plaque formation that alter % coverage are likely different to processes that drive subsequent plaque growth to alter volume. Given that thrombin cleavage of IL-1α would likely need an established plaque environment to occur, it is plausible that thrombin/IL-1α does not initiate atero formation, but rather accelerates plaque growth. Alternatively, haemodynamic forces within the aorta may not favour the plaque erosion/rupture needed to activate thrombin and enable IL-1α activation.

In addition to smaller plaques, lesion composition in IL-1α⋅/Apoe^{−/−} mice was also altered. Significantly reduced numbers of CD3⁺ T cells were found, suggesting that IL-1α normally recruits and/or retains T cells in the plaque. In addition, spleen CD8⁺ T cells from IL-1α⋅/Apoe^{−/−} mice also produce significantly less IFNγ, perhaps indicative of less interaction with antigen presenting cells. Interestingly,
IFNγ-producing CD8+ T cells have been shown to be persistently higher in CAD patients with ACS and stable angina, with human plaques showing more activated CD8 than CD4. Indeed, IL-1 induces expression of multiple CXC chemokines able to recruit CXCR3+ T cells. Lesions in IL-1αTM/Apoε-/- mice also have less VSMCs and collagen and relatively smaller fibrous caps, which are related given that VSMCs produce the collagen that supports fibrous caps. This hints at a dual role for IL-1 signalling in driving both atherogenesis and plaque stabilisation. Indeed a report with global Il1r1 knockout resulted in smaller plaques that were unstable, while IL-1β neutralisation or Il1r1 deletion in VSMCs reduces VSMC number and fibrous cap size. We also show that IL-1 strongly promotes proliferation of VSMCs via NF-κB, supporting previous work, but also that it upregulates VSMC collagen expression. Thus, we have the paradox where IL-1 promotes VSMC-mediated plaque stabilisation in mice, but IL-1β blockade lowers MACE in humans that are typically caused by rupture of unstable plaques.

Thrombin inhibitors are reported to reduce atherosclerosis in mice, but whether this is via reduced coagulation or inflammation is not clear. Much of the action of thrombin on inflammation is thought to be via PARs, but as stated above PAR2 or PAR4 loss have no or minimal effect on plaque size. While some mouse atherosclerosis studies show reduced inflammatory markers with thrombin inhibition, treatment of post-MI patients with the direct thrombin inhibitor Ximelagatran increased serum IL-18 and CRP levels. In addition, a thrombin-driven factor XI feedback loop on platelets drives vascular inflammation and hypertension, which could also involve IL-1α activation. In terms of cardiovascular risk, HORIZONS-AMI indicated thrombin inhibition with bivalirudin after STEMI did not alter MACE but did lower mortality, albeit to a small degree, while the LURIC study reported an inverse correlation between cardiovascular risk and endogenous thrombin potential, suggesting a low level of thrombin activity may actually be protective. Clearly acute coagulation and the downstream inflammatory sequelae of ischaemia have profound effects on patients with cardiovascular disease, but how ongoing coagulation and thrombin activity affect atherogenesis and plaque stability is still unknown. Our finding that IL-1αTM/Apoε-/- mice are refractory to the reduction in plaque size seen with thrombin inhibitors suggests a new mode of action for thrombin inhibitors, in part via the reduced production of active IL-1α. However, whether this new link drives cardiovascular risk and/or mortality in patients is currently unknown.

Finally, percutaneous coronary angioplasty (i.e. stenting) is a common intervention that widens the vessel lumen and increases blood flow. Stent implantation causes significant damage to the endothelium that results in acute thrombus formation that often resolves itself, although impaired re-endothelialisation can cause subsequent stent thrombosis. However, in many cases VSMC proliferation around the stent results in re-narrowing of the vessel in a classic ‘response to injury’ reaction occurring ~3-12 months after stenting. We have previously shown that damaged VSMCs and ECs release IL-1α, and that thrombin is a potent activator of IL-1α that can be presented on activated platelets. Here we show that IL-1α is a potent inducer of VSMC proliferation and collagen. Interestingly, polymorphisms in the IL-1RA gene that increase its plasma concentration, and therefore reduce IL-1 activity, are significantly associated with reduced restenosis. Thus, the potential exists for the immediate damage caused during stenting and subsequent thrombus formation to be a source of IL-1α that acts on VSMCs to induce their proliferation and cause restenosis.

In conclusion, we show that IL-1α activation by thrombin represents a previously unappreciated point of interplay between coagulation and immunity that promotes atherosclerosis, and that the inhibitory action of thrombin inhibitors on plaque growth are mediated, in part, via thrombin activation of IL-1α. However, IL-1α may also play an important role in stabilising lesions via induction of VSMC proliferation and collagen, and thus therapeutic targeting of IL-1 and/or thrombin clearly requires more research.
6. FUNDING

This work was funded by British Heart Foundation Grants FS/13/3/30038, FS/18/19/33371, RG/16/8/32388 and SP/F/22/150038 to MC; the BHF Cambridge Centre for Research Excellence RE/13/6/30180 and RE/18/1/34212; and the Cambridge NIHR Biomedical Research Centre.

7. AUTHOR CONTRIBUTIONS

LB, MM, AR, LK and MH performed & designed experiments and analysed data; NF performed histology; MB provided helpful discussions. MCHC conceived the project, performed & designed experiments, analysed data, and wrote the manuscript.

8. CONFLICT OF INTEREST

All authors declare no conflicting interests, financial or otherwise.
9. FIGURE LEGENDS

Figure 1: Mutation of the thrombin site in IL-1α prevents its cleavage and activation. (A) Western blot for IL-1α derived from LPS stimulated IIla WT/WT (control) and IIla R114Q/R114Q (IL-1αTM) macrophages treated ±calpeptin (Calp), ±thrombin (Tmb), or ±PPACK, showing cleavage of pro-IL-1α (p33) to a ~p17 form by calpain and p18 form by thrombin in control samples, but a failure of thrombin to cleave pro-IL-1α in IL-1αTM samples. (B) IL-1α-dependent IL-6 production by mouse fibroblasts incubated with thrombin cleaved control or IL-1αTM pro-IL-1α, ± a neutralizing IL-1α antibody (+αAb). Data represents mean ±SEM; n=3 (B); representative of n=2 (A). p = ***≤0.001; NS = not significant.

Figure 2: IL-1αTM/Apoε−/− mice generate less atherosclerotic plaque than Apoε+/− mice. Apoε−/− (control) and IL-1αTM/Apoε−/− (IL-1αTM) mice were fed a high fat diet for 10 w, with total body weight measured longitudinally (A), and serum lipid concentrations (B) and full blood counts (C) measured at 6 w. Analysis of aortic root plaque in IL-1αTM/Apoε−/− and Apoε−/− mice by quantification of ‘traditional’ peak plaque (D,E), or aortic root plaque serial sections quantified (F) and analysed for area under the curve (AUC) (G), peak plaque area (H) and single largest plaque (I). White/red blood cell (W/RBC); Haemoglobin (HGB); Haematocrit (HCT); Mean corpuscular volume (MCV); RBC distribution width (RDW); Mean platelet volume (MPV); Lymphocyte (LYM); Monocyte (MON); Granulocyte (GRA); Platelet count (#PLT). Data represent mean ± SEM; n=12/10 (A,B,D), 11/7 (C) and 7/7 (F-I) (Control/IL-1αTM) mice. p = *≤0.05; NS = not significant. Scale bar = 500µm.

Figure 3: Plaque composition is altered in IL-1αTM/Apoε−/− mice. (A-C) Apoε−/− (control) and IL-1αTM/Apoε−/− (IL-1αTM) mice were fed a high fat diet for 10 w, aortic root plaques stained for Mac-3 (A), CD3 (B) and αSMA (C), and % of the plaque staining for the marker enumerated, with representative images below, and boxed sections magnified. (D-I) Aortic roots were also analysed for the level of vessel stenosis (D), the ratio of fibrous cap area to plaque area (E), collagen content (F), necrotic core total area (G), necrotic core as a % of plaque (H) and vessel medial area (I). Data represent mean ± SEM; n = 12/10 (Control/IL-1αTM) mice, or number of individual plaques as indicated. p = *≤0.05, **≤0.01; NS = not significant. Scale bar = 200µm.

Figure 4: Thrombin inhibition does not reduce atherogenesis in IL-1αTM/Apoε−/− mice. Apoε−/− (control) and IL-1αTM/Apoε−/− (IL-1αTM) mice were fed a high fat diet for 10 w, ± the thrombin inhibitor Dabigatran (+Dabi), with aortic root plaque serial sectioned, quantified (A) and analysed for area under the curve (B), peak plaque area (C) and single largest plaque (D), along with representative images (E). (F) Serum cleaved IL-1α level by ELISA at 10 w in mice treated ±Dabigatran. (G,H) Lipid concentrations (G) and full blood counts (H) measured at 6 w in mice receiving dabigatran. Data represent mean ± SEM; n = 7/9/7/10 (A-D), 10/10 (G,H), 12/9/9/10 (F). p = *≤0.05, **≤0.01, ***≤0.001, ****≤0.0001; NS = not significant. Scale bar = 200mm.

Figure 5: Atherogenesis is driven by thrombin cleaved IL-1α derived from vessel wall and myeloid cells. Apoε−/− (control) and IL-1αTM/Apoε−/− (IL-1αTM) syngeneic and congenic bone marrow chimeras, as indicated, were fed a high fat diet for 12 w and aortic root plaque serial sectioned, quantified (A) and analysed for area under the curve (B), peak plaque area (C) and single largest plaque (D), along with representative images (E). (F-H) Longitudinal body weight (F), and serum lipid concentrations (G) and full blood counts (H) measured at 6 w of fat feeding. Data represent mean ± SEM; n = 8/10/10/10 (A-D), 9/10/10/10 (F-H). p = *≤0.05, **≤0.01, ***≤0.001; NS = not significant.

Figure 6: IL-1-driven NF-kB activation increases VSMC proliferation. (A,B) Relative proliferation rate of different ‘01’ or ‘05’ isolates of human primary VSMCs treated ±IL-1α, ± an IL-1α neutralising antibody (+αAb), as measured with Alamar Blue (A) or Crystal Violet (B). (C) Relative proliferation rate of ‘05’ VSMCs treated ±IL-1α or ±LPS, as measured with Crystal Violet. (D,E) Relative proliferation rate of VSMCs treated ±IL-1α or ±LPS, ± the p38 MAP kinase inhibitor SB203580 (500/50 nM) (D), or
± the NF-kB inhibitor Isohelenin (5/0.5 mM) (E), measured with Alamar Blue or Crystal Violet, as indicated. Dotted line indicates the lower value of untreated VSMCs or DMSO control. Data represent mean ± SEM; n= 3-7 (A), 4-7 (B,C), 4 (D), 5 (E); p = *≤0.05, **≤0.01, ***≤0.001, ****≤0.0001; NS = not significant.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1: Serum lipids are equivalent between Apoe⁺/IL-1α⁺/Apoe⁺ mice. Apoe⁺ and IL-1α⁺/Apoe⁺ mice were fed a high fat diet for 6 w and serum lipids measured. Data represent mean ± SEM; n = 10/10; NS = not significant.

Figure S2: CD8 T cells in fat fed IL-1αTM/Apoe⁺ mice produce less IFN_γ. Apoe⁺ (control) and IL-1αTM/Apoe⁺ (IL-1αTM) mice were fed a high fat diet for 10 w before assessment of circulating myeloid cells (A), splenic CD4/8 T cell level (B) and subtype (C), splenic Treg level (D), and splenic CD4/8 T cell polarisation after PMA/Ionomycin (E). Data represent mean ± SEM; n = 4/4 (A), 7/7 (B-E). p = *≤0.05; NS = not significant.

Figure S3: Thrombin activity is equivalent between Apoe⁺ and IL-1αTM/Apoe⁺ mice. Apoe⁺ (Control) and IL-1αTM/Apoe⁺ (IL-1αTM) mice were fed a high fat diet for 6 w and serum thrombin activity measured with a fluorogenic substrate assay. Dil = serum dilution. Data represent mean ± SEM; n = 3; NS = not significant.

Figure S4: Plaque coverage of the aorta is not different between Apoe⁺ and IL-1αTM/Apoe⁺ mice. (A,B) Apoe⁺ (Control) and IL-1αTM/Apoe⁺ (IL-1αTM) mice were fed a high fat diet for 10 w, aortas stained with Oil red O to visualise plaque (A), and the area quantified (B). Data represent mean ± SEM; n = 12/10; NS = not significant.

Figure S5: Mac-3, CD3 and αSMA IHC shows specific staining in control tissues. Sectioned formalin fixed paraffin embedded tissue of mouse carcinoma, thymus and heart stained with isotype controls (negative control) or anti-CD3, anti-Mac-3 or anti-αSMA (positive control), followed by identical development, as detailed in the materials and methods.

Figure S6: Examples of the delineation of plaque features for morphometry measurements. (A-D) Sectioned formalin fixed paraffin embedded aortic root plaque was stained as indicated. (A) Plaque area (red), internal (black) and external (white) elastic lamina (IEL/EEL) were masked, with % stenosis calculated as the area of plaque occupying the area inside the IEL, and the medial area representing the area between the EEL and IEL. (B) Fibrous cap (red) and plaque (black) were masked, areas calculated and the ratio of cap to plaque calculated. (C) Plaque area (black) was masked, pixels within matching the colour range (blue circle) were selected and % of collagen calculated. (D) Necrotic cores (red) and plaque (black) were masked, areas calculated and the % of necrotic core within the plaque, or total necrotic core area calculated.

Figure S7: Dabigatran administered via diet inhibits thrombin. Thrombin-antithrombin (TAT) complexes by ELISA in the serum of mice before (Pre) or 6 w after Dabigatran administration via diet (+Dabi). Data represent mean ± SEM; n = 2.

Figure S8: Engraftment level and rate after bone marrow transplant is equivalent between groups. (A,B) CD45.2 Apoe⁺ (Cont) or CD45.2 IL-1αTM/Apoe⁺ (αTM) bone marrow was adoptively transferred into irradiated CD45.1 mice, allowed to reconstitute for 4 w, and the level of circulating CD45.1 and CD45.2 cells enumerated by flow cytometry (B). (C) Full blood counts in Apoe⁺ (Con) and IL-1αTM/Apoe⁺ (αTM) syngeneic and congenic bone marrow chimeras, as indicated, after 4 w of
reconstitution. Data represent mean ±SEM; n = 3 (A), 10,7,10,11 (C), or representative (B); NS = not significant.

Figure S9: IL-1α upregulates collagen expression in VSMCs. qPCR data showing level of *COL1A1*, *COL1A2, COL3A1* in primary human VSMCs treated with IL-1α for 6 h. Data represent mean ± SEM; n = 2.
REFERENCES

inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. *Atherosclerosis.*

Figure 1: Mutation of the thrombin site in IL-1α prevents its cleavage and activation. (A) Western blot for IL-1α derived from LPS stimulated $\text{Il1a}^{WT/WT}$ (control) and $\text{Il1a}^{R114Q/R114Q}$ (IL-1αTM) macrophages treated ±calpeptin (Calp), ±thrombin (Tmb), or ±PPACK, showing cleavage of pro-IL-1α (p33) to a ~p17 form by calpain and p18 form by thrombin in control samples, but a failure of thrombin to cleave pro-IL-1α in IL-1αTM samples. (B) IL-1α-dependent IL-6 production by mouse fibroblasts incubated with thrombin cleaved control or IL-1αTM pro-IL-1α, ± a neutralizing IL-1α antibody (+αAb). Data represents mean ±SEM; n=3 (B); representative of n=2 (A). p = ***≤0.001; NS = not significant.
Figure 2: IL-1αTM/Apoe−/− mice generate less atherosclerotic plaque than Apoe−/− mice. Apoe−/− (control) and IL-1αTM/Apoe−/− (IL-1αTM) mice were fed a high fat diet for 10 w, with total body weight measured longitudinally (A), and serum lipid concentrations (B) and full blood counts (C) measured at 6 w. Analysis of aortic root plaque in IL-1αTM/Apoe−/− and Apoe−/− mice by quantification of ‘traditional’ peak plaque (D,E), or aortic root plaque serial sections quantified (F) and analysed for area under the curve (AUC) (G), peak plaque area (H) and single largest plaque (I). White/red blood cell (WBC); Haemoglobin (HGB); Haematocrit (HCT); Mean corpuscular volume (MCV); RBC distribution width (RDW); Mean platelet volume (MPV); Lymphocyte (LYM); Monocyte (MON); Granulocyte (GRA); Platelet count (#PLT). Data represent mean ± SEM; n = 12/10 (A,B,D), 11/7 (C) and 7/7 (F-I) (Control/IL-1αTM) mice. p = *≤0.05; NS = not significant. Scale bar = 500μm.
Figure 3: Plaque composition is altered in IL-1αTM/Apoe⁻/⁻ mice. (A-C) Apo e⁻/⁻ (control) and IL-1αTM/Apo e⁻/⁻ (IL-1αTM) mice were fed a high fat diet for 10 w, aortic root plaques stained for Mac-3 (A), CD3 (B) and αSMA (C), and % of the plaque staining for the marker enumerated, with representative images below, and boxed sections magnified. (D-I) Aortic roots were also analysed for the level of vessel stenosis (D), the ratio of fibrous cap area to plaque area (E), collagen content (F), necrotic core total area (G), necrotic core as a % of plaque (H) and vessel medial area (I). Data represent mean ± SEM; n = 12/10 (Control/IL-1αTM) mice, or number of individual plaques as indicated. p = *≤0.05, **≤0.01; NS = not significant. Scale bar = 200μm.
Figure 4: Thrombin inhibition does not reduce atherogenesis in IL-1αTM/Apoe^{−/−} mice. Apoe^{−/−} (control) and IL-1αTM/Apoe^{−/−} (IL-1αTM/αTM) mice were fed a high fat diet for 10 w, ± the thrombin inhibitor Dabigatran (+Dabi), with aortic root plaque serial sectioned, quantified (A) and analysed for area under the curve (B), peak plaque area (C) and single largest plaque (D), along with representative images (E). (F) Serum cleaved IL-1α level by ELISA at 10 w in mice treated ±Dabigatran. (G,H) Lipid concentrations (G) and full blood counts (H) measured at 6 w in mice receiving Dabigatran. Data represent mean ± SEM; n = 7/9/7/10 (A-D), 10/10 (G,H), 12/9/9/10 (F). p = *≤0.05, **≤0.01, ***≤0.001, ****≤0.0001; NS = not significant. Scale bar = 500µm.
Figure 5: Atherogenesis is driven by thrombin cleaved IL-1α derived from vessel wall and myeloid cells. Apoe^{−/−} (control) and IL-1αTM/Apoe^{−/−} (IL-1αTM) syngeneic and congenic bone marrow chimeras, as indicated, were fed a high fat diet for 12 w and aortic root plaque serial sectioned, quantified (A) and analysed for area under the curve (B), peak plaque area (C) and single largest plaque (D), along with representative images (E). (F-H) Longitudinal body weight (F), and serum lipid concentrations (G) and full blood counts (H) measured at 6 w of fat feeding. Data represent mean ± SEM; n = 8/10/10/10 (A-D), 9/10/10/10 (F-H). p = *≤0.05, **≤0.01, ***≤0.001; NS = not significant.
Figure 6: IL-1-driven NF-κB activation increases VSMC proliferation. (A,B) Relative proliferation rate of different ‘01’ or ‘05’ isolates of human primary VSMCs treated ±IL-1α, ± an IL-1α neutralising antibody (+αAb), as measured with Alamar Blue (A) or Crystal Violet (B). (C) Relative proliferation rate of ‘05’ VSMCs treated ±IL-1α or ±LPS, as measured with Crystal Violet. (D,E) Relative proliferation rate of VSMCs treated ±IL-1α or ±LPS, ± the p38 MAP kinase inhibitor SB203580 (500/50 nM) (D), or ± the NF-κB inhibitor Isohelenin (5/0.5 μM) (E), measured with Alamar Blue or Crystal Violet, as indicated. Dotted line indicates the lower value of untreated VSMCs or DMSO control. Data represent mean ± SEM; n= 3-7 (A), 4-7 (B,C), 4 (D), 5 (E); p = *≤0.05, **≤0.01, ***≤0.001, ****≤0.0001; NS = not significant.
Figure S1: Serum lipids are equivalent between Apoe^{−/−} Il1a^{−/−}/Apoe^{−/−} mice. Apoe^{−/−} and Il1a^{−/−}/Apoe^{−/−} mice were fed a high fat diet for 6 w and serum lipids measured. Data represent mean ± SEM; n = 10/10; NS = not significant.
Figure S2: CD8 T cells in fat fed IL-1αTM/Apoε−/− mice produce less IFNγ. Apoε−/− (control) and IL-1αTM/Apoε−/− (IL-1αTM) mice were fed a high fat diet for 10 w before assessment of circulating myeloid cells (A), splenic CD4/8 T cell level (B) and subtype (C), splenic Treg level (D), and splenic CD4/8 T cell polarisation after PMA/ ionomycin (E). Data represent mean ± SEM; n = 4/4 (A), 7/7 (B-E). p = *≤0.05; NS = not significant.

Figure S3: Thrombin activity is equivalent between Apoε−/− and IL-1αTM/Apoε−/− mice. Apoε−/− (Control) and IL-1αTM/Apoε−/− (IL-1αTM) mice were fed a high fat diet for 6 w and serum thrombin activity measured with a fluorogenic substrate assay. Dil = serum dilution. Data represent mean ± SEM; n = 3; NS = not significant.

Figure S4: Plaque coverage of the aorta is not different between Apoε−/− and IL-1αTM/Apoε−/− mice. (A,B) Apoε−/− (Control) and IL-1αTM/Apoε−/− (IL-1αTM) mice were fed a high fat diet for 10 w, aortas stained with Oil red O to visualise plaque (A), and the area quantified (B). Data represent mean ± SEM; n = 12/10; NS = not significant.
Figure S5: Mac-3, CD3 and αSMA IHC shows specific staining in control tissues. Sectioned formalin fixed paraffin embedded tissue of mouse carcinoma, thymus and heart stained with isotype controls (negative control) or anti-CD3, anti-Mac-3 or anti-αSMA (positive control), followed by identical development, as detailed in the materials and methods.
Figure S6: Examples of the delineation of plaque features for morphometry measurements. (A-D) Sectioned formalin fixed paraffin embedded aortic root plaque was stained as indicated. (A) Plaque area (red), internal (black) and external (white) elastic lamina (IEL/EEL) were masked, with % stenosis calculated as the area of plaque occupying the area inside the IEL, and the medial area representing the area between the EEL and IEL. (B) Fibrous cap (red) and plaque (black) were masked, areas calculated and the ratio of cap to plaque calculated. (C) Plaque area (black) was masked, pixels within matching the colour range (blue circle) were selected and % of collagen calculated. (D) Necrotic cores (red) and plaque (black) were masked, areas calculated and the % of necrotic core within the plaque, or total necrotic core area calculated.
Figure S7: Dabigatran administered via diet inhibits thrombin. Thrombin-antithrombin (TAT) complexes by ELISA in the serum of mice before (Pre) or 6 w after Dabigatran administration via diet (+Dabi). Data represent mean ± SEM; n = 2.

Figure S8: Engraftment level and rate after bone marrow transplant is equivalent between groups. (A,B) CD45.2 Apoe−/− (Cont) or CD45.2 IL-1αTM/Apoe−/− (αTM) bone marrow was adoptively transferred into irradiated CD45.1 mice, allowed to reconstitute for 4 w, and the level of circulating CD45.1 and CD45.2 cells enumerated by flow cytometry (B). (C) Full blood counts in Apoe−/− (Con) and IL-1αTM/Apoe−/− (αTM) syngeneic and congenic bone marrow chimeras, as indicated, after 4 w of reconstitution. Data represent mean ±SEM; n = 3 (A), 10,7,10,11 (C), or representative (B); NS = not significant.

Figure S9: IL-1α upregulates collagen expression in VSMCs. qPCR data showing level of COL1A1, COL1A2, COL3A1 in primary human VSMCs treated with IL-1α for 6 h. Data represent mean ± SEM; n = 2.