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Abstract

This article provides an introduction to statistical inference for

the classical linear birth-death process, focusing on computational

aspects of the problem in the setting of discretely observed

processes. The basic probabilistic properties are given in Section

2, focusing on computation of the transition functions. This is

followed by a brief discussion of simulation methods in Section

3, and of frequentist methods in Section 4. Section 5 is devoted

to Bayesian methods, from rejection sampling to Markov chain

Monte Carlo and Approximate Bayesian Computation. Section 6

considers the time-inhomogeneous case, and the article ends with

a brief discussion in Section 7.
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1. Introduction

It is a pleasure to contribute to a volume that celebrates Peter Jagers’

considerable contributions to the mathematics of population dynamics,

and to branching processes in particular. I have chosen as my theme a

brief overview of what is known about the inferential aspects of the linear

birth-death process, a simple example of a Markov branching process, in

part because it reflects Jagers’ interest in all things branching, and in part

because 2018 is the 75th anniversary of Palm’s derivation of the transition

function of the process.

The linear birth-death process, a model for population growth and ex-

tinction, appears in many elementary probability textbooks as an example

of a Markov process for which many explicit results can be found, begin-

ning from Feller’s [9] calculation of the expected number of individuals

alive at a given time. Statistical inference for this model when observed

at discrete equidistant time points is closely related to parallel work on

inference for branching processes (cf. Harris [11]). The seminal paper of

Keiding [15] derives many asymptotic results for estimation in this process,

as well as providing more historical perspective.

Immel [12] noted that the complexity of the transition functions made

inference from discrete observations infeasible, a situation that has been

resolved only in part to the present day. Indeed, recently there has been

a flurry of interest in methods for robust computation of the transition

functions of general birth-death processes, and applications to inference

of parameters. See, for example, [5, 6, 7, 29].

In this chapter I will review some of the basic results for the process,

and discuss computational aspects of classical and Bayesian inference for
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the process observed at discrete, but not necessarily equidistantly spaced,

time points. I hope the article will provide a useful introduction to

computational methods for inference for stochastic processes, in a setting

in which the approaches may be compared. R code for performing the

computations is available from the author on request.

2. Linear birth and death processes

The constant-rate linear birth-death process {Z(t), t ≥ 0}, with state

space S = {0, 1, 2, . . .} is a classical example of a continuous-time Markov

process, in which Z(t) gives the number of individuals in the population

at time t. Individuals give birth to a new individual at rate λ > 0 and

die at rate µ > 0, independently for all individuals. In terms of transition

rates, we have

m→ m+ 1 at rate mλ

and

m→ m− 1 at rate mµ.

Feller [9] showed that if the population starts from a single individual, the

mean population size at time t is

EZ(t) = e(λ−µ)t (1)

and

VarZ(t) =


(λ+µ)
λ−µ e(λ−µ)t(e(λ−µ)t − 1), λ 6= µ,

2λt, λ = µ.
(2)

It is known that the process eventually dies out or tends to ∞, and

P(population dies out) = min
(

1,
µ

λ

)
(3)
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The distribution of Z(t) is due to Palm (1943), in an unpublished article.

Kendall [16] studied the non-homogeneous process in which both λ and µ

could be functions of t; this is discussed further in Section 6. Specialised

to the constant-value case, he showed that the distribution of the number

of progeny of a single individual is modified geometric. Writing

p1m(t) := P(Z(t) = m|Z(0) = 1), m = 0, 1, . . . ,

we have

p1m(t) = (1− α(t)) (1− β(t)) β(t)m−1, m = 1, 2, . . . (4)

p10(t) = α(t),

where, for λ 6= µ,

α(t) =
µ(e(λ−µ)t − 1)

λe(λ−µ)t − µ
, β(t) =

λ

µ
α(t),

while for λ = µ,

α(t) =
λt

1 + λt
= β(t).

From (4), for m = 1, 2, . . .,

p∗1m(t) := P(Z(t) = m|Z(t) > 0, Z(0) = 1) = (1− β(t)) β(t))m−1. (5)

The distribution in (4) is usually found by deriving and solving a pde

for the probability generating function of Z(t), obtaining ([16], eq. (9))

E(sZ(t) | Z(0) = 1) =
α(t) + (1− α(t)− β(t))s

1− β(t)s
. (6)

Writing this in the form

E(sZ(t) | Z(0) = 1) = α(t) + (1− α(t))
(1− β(t))s

1− β(t)s
(7)
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leads directly to (4) and (5). For an ingenious graphical construction using

binary planted plane trees, see Branson [3].

It follows immediately from (7) that when λ > µ the rescaled population

size Y (t) = e−ρtZ(t) has asymptotically the distribution of a point mass

at 0 with size µ/λ (corresponding to extinction), and conditional on non-

extinction, has an exponential distribution with mean λ/(λ− µ). On the

set of non-extinction, this convergence is almost sure.

Remark 1. The process is sometimes parametrised in terms of the Malthu-

sian parameter

ρ = λ− µ, (8)

and the ratio

τ = λ/µ; (9)

then

µ =
ρ

τ − 1
, λ =

τρ

τ − 1
.

2.1. The process starting from Z(0) = n

The birth-death process is an example of a Markov branching process

in which individuals behave independently; the process starting from n

individuals behaves as the sum of n independent copies of the process

starting from a single individual. This shows that the extinction proba-

bility starting from n individuals is the nth power of that for the process

starting with a single individual, and the expected value and variance of

the population size are given by (1) and (2) multiplied by n, respectively.

The distribution {pnm(t),m = 0, 1, . . .} is the n-fold convolution of that

in (4). There is an explicit formula for this; for example, Bailey [2] showed
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that, for m = 0, 1, 2, . . . ,

pnm(t) = (10)
min(m,n)∑
j=0

(
n

j

)(
n+m− j − 1

n− 1

)
α(t)n−j β(t)m−j (1− α(t)− β(t))j.

It is useful to note (Keiding [15]) that the family initiated by each of

the n individuals at time 0 either survives to time t (probability 1−α(t)),

or dies out before time t (probability α(t)). Since the families evolve

independently, the number of families F (t) that survive to time t has

the Binomial distribution with parameters n and 1 − α(t), so that for

j = 0, 1, . . . , n

P(F (t) = j | Z(0) = n) = Bin(n, 1− α(t)){j} :=

(
n

j

)
(1− α(t))jα(t)n−j,

(11)

and each surviving family has the geometric distribution given in (5).

Hence we can write

Z(t) =

F (t)∑
j=1

Z∗i (t),

where F (t) and the Z∗i (t) are independent rvs, and the Z∗i (t) are dis-

tributed as (5). It follows immediately that, for m = 0, 1, 2, . . .,

pnm(t) =

min(m,n)∑
j=0

(
n

j

)
(1− α(t))jα(t)n−j p∗jm(t), (12)

where, for j = 1, 2, . . ., and m = j, j + 1, . . .

p∗jm(t) = NB(j, β(t)){m} :=

(
m− 1

m− j

)
(1− β(t))jβ(t)m−j, (13)

is the Negative Binomial distribution, the j-fold convolution of the distri-

bution in (5), and p∗00(t) = 1; cf. Guttorp [10], p47.
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2.2. Computing pnm(t)

The form of the classical result in (10) hides its real origin, and may

contain large binomial coefficients and alternating terms that make cal-

culation difficult for some parameter values. On the other hand, the

expression in (12) is a sum of positive terms, an advantage that can be

exploited in several ways.

To illustrate the point, values for both expressions are given in Table 1

for a variety of values of n,m for λ, µ ∈ {1, 2}. The middle column on the

right of Table 1 shows the potential danger of formula (10), where large

binomial coefficients and oscillating terms are causing the trouble; here

1− α− β = 1− 1.16190 = −0.16190.

n m λ µ value from (12) value from (10) value from (18)

4 10 1 2 0.00085036 0.00085036 0.00085036

4 10 2 1 0.054423 0.054423 0.054423

40 60 1 2 1.4864e-09 1.4849e-09 1.4869e-09

40 60 2 1 0.0015586 0.0015570 0.0015586

40 100 1 2 1.4509e-20 6.9489e-21 5.3020e-13

40 100 2 1 0.016728 0.0080116 0.016728

100 100 1 2 1.1507e-09 6.6500e+01 1.1501e-09

100 100 2 1 1.1507e-09 6.6500e+01 1.1515e-09

Table 1: Values of pnm(t) for t = 1 for various values of n,m, λ, and µ,

evaluated in R using (12), (10), and (18) with η = 10.

Remark 2. Note that, for any t ≥ 0,

α(t) := α(t;λ, µ) = β(t;µ, λ), β(t) := β(t;λ, µ) = α(t;µ, λ). (14)
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Denoting a typical summand in (12) by s(λ, µ), elementary algebra using

(14) shows that

s(µ, λ) =

(
λ

µ

)n−m
s(λ, µ), (15)

so that, in particular, if the birth and death rates are swapped,

pnm(t;µ, λ) =
(µ
λ

)m−n
pnm(t;λ, µ). (16)

The values in the table reflect this fact.

The identity in (16) was found by a probabilistic argument by Waugh [28],

where he showed inter alia that a supercritical process (λ > µ) conditioned

on ultimate extinction behaves just like the process with λ and µ swapped.

Remark 3. The identity in (16) also provides an alternative method for

computing the transition functions when n−m is large in absolute value.

For example, if µ > λ and m >> n then the transition probability is

likely to be very small, so is best calculated by swapping the roles of µ

and λ and using the identity in (16) to extract the leading exponential

coefficient.

2.3. Inverting probability generating functions

From (6), the probability generating function of Z(t), given Z(0) = n,

is given by

G(s) := E(sZ(t) | Z(0) = n) =

(
α(t) + (1− α(t)− β(t))s

1− β(t)s

)n
. (17)

One approach to calculate pnm(t) is therefore to invert the transform

in (17) numerically. A convenient way to do this is described in [1] as

the Lattice-Poisson method, which provides bounds on the error in the
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calculation. Define, for m ≥ 1 and 0 < r < 1,

p̃nm(t) =
1

2krk

(
G(r) + (−1)mG(−r) + 2

m−1∑
j=1

(−1)jRe(G(reπij/m))

)
,

(18)

where Re() denotes real part. It is shown in [1] that

|pnm(t)− p̃nm(t)| ≤ r2m

1− r2m
,

which suggests a method for choosing r: for accuracy to 10−η, choose

r = 10−η/2m. Values returned by the method, as implemented in R, are

shown in Table 1 for comparison.

There are several observations to make here. First, the anomalous

result in the fifth row in Table 1 is due to roundoff error. Indeed, Abate

and Whitt [1] show that accuracy to 10−η requires about 3η/2 digit

precision; for η = 10, this is pushing the limits of precision in the standard

implementation of complex arithmetic in R. The last two rows of the

table illustrate the need for higher precision too; both the rightmost terms

should be equal (as was the case with the estimates from the two explicit

formulae in the first two columns.

These numerical issues are readily resolved by using high precision

computation. This can be achieved for real calculations in R using the

multiple precision floating point package Rmfpr; this is not currently

implemented for complex arithmetic. An alternative is to use an F95

implementation of Smith’s FM multiple-precision software package (cf.

[26]). Using 40 significant digit computations within FM and η = 20

produced lattice-Poisson estimates that agree with the results in the first

column of the table. Higher precision arithmetic also can be used to

resolve the numerical instability displayed in the second column of the
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table. In the remainder of this paper, we use standard R computation

without further mention.

2.4. How many families?

As an example of historical inference in the process, we can find the

distribution of the number of families at t, given the total number of

individuals at time t. For j = 1, 2, . . . ,min(m,n), we have

P(F (t) = j | Z(t) = m,Z(0) = n)

=
P(Z(t) = m | F (t) = j)P(F (t) = j|Z(0) = n)

P(Z(t) = m|Z(0) = n)

=
NB(j, β(t)){m}Bin(n, 1− α(t)){j}

P(Z(t) = m|Z(0) = n)
(19)

Unconditionally, we have

E(F (t)|Z(0) = n) = n(1− α(t)), (20)

and

Var(F (t)|Z(0) = n) = nα(t)(1− α(t)). (21)

The values in (20) and the mean and variance of the distribution in (19) for

the case n = 10,m = 100 are given in Table 2. The symmetry reflected in

(15) shows that the conditional distribution of F (t) given Z(t) is invariant

under interchange of λ and µ, on the face of it a surprising result.

3. Simulating the process

The earlier results can be exploited for simulating the process at discrete

time points

0 = t0 < t1 < · · · < tm = t. (22)
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t E100F (t) Var100 F (t) EF (t) VarF (t)

0.0625 9.99 0.008 8.86 1.01

0.125 9.97 0.031 7.90 1.66

0.25 9.88 0.118 6.38 2.31

0.50 9.54 0.416 4.35 2.46

1.00 8.48 1.103 2.25 1.75

2.50 5.12 1.595 0.43 0.41

5.00 1.99 0.697 0.03 0.03

Table 2: Mean and variance of conditional (columns 2 and 3, from (19))

and unconditional (columns 4 and 5, from (20) and (21)) number of

surviving families (or lineages), for λ = 1, µ = 2 with Z(0) = 10, Z(t) =

100 for various values of t.

We write

Zi = Z(ti), i = 1, 2, . . . ,m, (23)

and

∆i = ti − ti−1, i = 1, 2, . . . ,m, (24)

and use the construction described in (11) and (13). Starting from Z(0) =

Z0 = n, simulate, for l = 1, 2, . . . ,m,

Fl ∼ Bin(Zl−1, 1− α(∆l)), Zl ∼ NB(Fl, β(∆l)). (25)

This generates observations on a richer process, namely {(Fl, Zl), l =

1, 2, . . . ,m} by keeping track of the number of surviving families in each

interval. Note that the process is elementary to simulate in R.

This approach is making use of the explicit nature of the transition

functions of the process, an option not typically available for other birth-
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Observation l 1 2 3 4 5 6 7 8 9 10

time tl 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

Fl 8 11 11 15 14 17 19 20 21 27

Zl 11 13 16 17 17 21 23 23 28 32

Observation l 11 12 13 14 15 16 17 18 19 20

time tl 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80

Fl 30 35 42 54 67 72 93 111 119 146

Zl 36 48 61 68 80 96 123 135 161 173

Observation l 21 22 23 24 25

time tl 0.84 0.88 0.92 0.96 1.00

Fl 157 163 173 202 230

Zl 87 197 221 253 289

Table 3: Simulation of a process with Z(0) = 10, λ = 6, µ = 3

death processes. Instead, we can make use of the usual “wait-jump-wait-

· · · ” construction, which simulates exponential waiting times between

changes of state, and chooses whether to have a birth event or a death

event at the jump. If the process is now at n, the waiting time to the

next event is exponential with rate n(λ + µ), and the next state results

in a birth to a randomly chosen individual with probability λ/(λ + µ) or

the death of that individual with probability µ/(λ + µ). This approach

will be exploited when we discuss Approximate Bayesian Computation in

Section 5.3.
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4. Frequentist methods

There is an extensive literature concerning estimation of λ and µ (or,

equivalently, ρ and τ defined in (8) and (9) respectively). Parameter

estimation depends, of course, on the sampling scheme used to study the

population. For continuous observation over [0, t], Keiding [15] showed

that the maximum likelihood estimators of λ and µ are

λ̂ =
Bt

St
, µ̂ =

Dt

St
,

where St =
∫ t

0
Z(u)du is the total time lived in the population in [0, t], Bt is

the number of births and Dt the number of deaths in [0, t]. Asymptotics

for large values of Z(0), and for large values of t, conditional on non-

extinction and on ultimate extinction, are described there.

4.1. Moment estimators

We will focus instead on discretely observed samples Z0, Z1, . . . , Zm, as

described in Section 3. It is simple to construct moment estimators of

the Malthusian parameter ρ. Since E(Zi|Zi−1) = Zi−1e
ρ∆i , it is natural to

compare the values of Zi with those of Zi−1e
ρ∆i . For example, we might

minimise the quantity

D(ρ) =
m∑
i=1

(
Zi − Zi−1e

ρ∆i
)2
,

to find that the estimator ρ̃ satisfies

m∑
i=1

ZiZi−1∆ie
ρ̃∆i =

m∑
i=1

Z2
i ∆ie

2ρ̃∆i ,

which can be solved numerically using R.
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When the {ti} are equally spaced, so that ∆i ≡ ∆, an explicit solution

is available, namely

ρ̃ =
1

∆
log

(
m∑
i=1

ZiZi−1

/m−1∑
i=0

Z2
i

)
. (26)

It is straightforward to show that on the set of non-extinction, ρ̃ is a

consistent estimator of ρ.

4.2. Likelihood-based methods

The Markov property shows that the likelihood of the data Z0, Z1, . . . , Zm

is given by

L(λ, µ) =
m∏
l=1

pZl−1Zl
(∆l), (27)

the transition function pnm(t) being defined in (12). When the ∆l are

equal, Keiding (1975) showed, using a clever argument based on knowing

the values of the Fl, that the MLE of the Malthusian parameter is

ρ̂ =
1

∆
log

(
m∑
l=1

Zl
/m−1∑

l=0

Zl

)
, (28)

which should be compared to that in (26). For the example in Table 3, we

have ρ̂ = 3.19, while ρ̃ = 2.97; the true value is ρ = 3. A small simulation

study based on 100,000 runs gave an estimated mean and MSE of 2.85

and 0.35 for ρ̂ and 2.82 and 0.45 for ρ̃, suggesting the superiority of the

MLE in this example.

In principle, numerical minimization of the likelihood function presents

no difficulties, as long as the transition functions can be calculated accu-

rately. R code gave λ̂ = 5.23, µ̂ = 2.04, and ρ̂ = 3.19, in agreement with

the value from (28).
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If the Fl are not observed, as is assumed here, evaluation of the tran-

sition functions pnm(t) becomes more crucial, and if the population sizes

are large, this is likely to be difficult. Alternative methods to evaluate

pnm(t) for this model and related birth-death processes appear in [5] and

[7]. Hautphenne at al. [7] use saddlepoint approximations for the linear

case considered here.

5. Bayesian methods

We now move on to the Bayesian setting. We use π(·) to denote the

prior for the parameter θ = (λ, µ), and discuss methods for computing, or

simulating observations from, the posterior f(θ|D) of θ given observations

such as D = (Z1, Z2, . . . , Zm) or D = (F1, . . . , Fm, Z1, . . . , Zm).

Since the likelihood can, in principle, be computed, the normalising

constant

P(D) =

∫
θ

P(D|θ)π(θ)dθ (29)

can be evaluated by numerical integration, whence

f(θ|D) = P(D|θ)π(θ)/P(D) (30)

can be evaluated over a grid of θ-values. Rather than continue this theme,

we resort instead to methods for simulating samples from f(θ|D).

5.1. Rejection

The simplest of these is the rejection method. The idea is to simulate

an observation θ from π(·), and accept θ as a draw from f(θ|D) with

probability proportional to P(D|θ).
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The constant of proportionality can make a big difference to the effec-

tiveness of the method. Suppose for example, thatD = (F1, . . . , Fm, Z1, . . . , Zm).

From (25) we know that the likelihood is

m∏
l=1

Bin(Zl−1, 1− α(∆l)){Fl}NB(Fl, β(∆l)){Zl},

which can be reordered to give[
m∏
l=1

Bin(Zl−1, 1− α(∆l)){Fl}

] [
m∏
l=1

NB(Fl, β(∆l)){Zl}

]
. (31)

The lth term in the left-hand product can be bounded above by

Bin(Zl−1, Fl/Zl−1){Fl}, (32)

while the lth term in the right-hand product can be bounded above by

NB(Fl, Fl−1/Zl){Zl}, (33)

leading to an upper bound for the likelihood term in (31) and therefore

for that in (27).

To give a feel for the effect of the bound, we note that for the example

in Table 3, in which just the Zl are observed and for which λ = 6, µ = 3,

the likelihood is 4.63× 10−32, while the upper bound is 1.97× 10−6. Thus

using the bound saves a factor of about 500,000 over the naive version;

nonetheless, the method is not going to be useful, as the success rate is

still 1 in 4.27× 1025 simulations.

5.2. Markov chain Monte Carlo

The next approach is to use Markov chain Monte Carlo to generate

observations that have, approximately, the required distribution f(θ|D)

for a given prior π(θ). MCMC generates a Markov chain of observations

on the parameter θ (here, θ = (λ, µ))) as follows.
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1. If now at θ, propose a move to θ′ according to a transition kernel

q(θ → θ′).

2. Calculate the Hastings Ratio

h = min

(
1,

P(D|θ′) π(θ′) q(θ′ → θ)

P(D|θ)π(θ) q(θ → θ′)

)

3. Move to θ′ with probability h, else stay at θ. Go to step 1.

Under suitable regularity conditions, f is the stationary (and limiting) dis-

tribution of the chain. The practical difficulties of implementing MCMC

methods are well known [4], and I will not rehearse them here.

For illustration, and for comparison with other methods, I will take D =

(Z0, Z1, . . . , Zm) as in Table 3, and assume independent, uniform priors

for λ and µ. The implementation takes U(a, b) for λ, and U(c, d) for µ.

The update mechanism for λ chooses a value that is uniformly distributed

with centre the current parameter value, and width w = (b−a)/g, suitably

modified to keep the proposed value in (a, b); a similar proposal is used

for µ. The parameter g tunes the method, and can be used to get any

required acceptance rate. In the implementation reported below, both

priors were U(0, 20), and g = 10 gave an acceptance rate of about 20%.

The chain was run for 100,000 steps, and the first 2,500 were used for burn

in. Values taken every 50 steps were used in the subsequent analysis.

Figures 1 and 2 show histograms of the 1950 observations. Figure 3

provides a contour plot of the joint posterior of (λ, µ).

Note that if we assume a wide, flat prior then the mode of the posterior

will correspond to the maximum likelihood estimator. In this example,

the contour plot reveals a maximum at λ = 5.26, µ = 2.06, so that the
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Figure 1: Posterior for λ, MCMC.
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Figure 2: Posterior for µ, MCMC.

estimated value of ρ is 3.20. These estimates agree well with those given

in Section 4.2.

5.3. Approximate Bayesian Computation

The earlier inference methods depend on being able to calculate the

likelihood accurately. However, it is often the case that likelihoods are

impossible to compute, either accurately or, indeed, at all. This problem

arises in many fields of science, particularly when trying to fit complex

mechanistic stochastic models to data.

One approach to inference in such settings is provided by what is now

called ABC – Approximate Bayesian Computation. This relies on our

ability to simulate observations from the stochastic model M of interest.

The likelihood-based version goes as follows:

1. Generate an observation θ from the prior π().
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Figure 3: Contour plot of posterior density for (λ, µ), MCMC.

2. Accept θ as an observation from the posterior with probability pro-

portional to P(D|θ).

Accepted values clearly have the required distribution, f(θ|D).

The basis of the ABC method replaces step 2 with:

2′. Simulate an observation D′ from model M with parameter θ

3′. Accept θ as an observation from the posterior if D′ = D

It is clear that observations accepted in this procedure also have the

required distribution, but the method is freed from the tyranny of calcu-

lating likelihoods. This approach arose in Rubin [23], although not in the

present setting. Of course, the simulation version only works if the chance

of hitting the target in step 3 is sufficiently large. This led Pritchard et

al. [22] to propose a version of the following ABC method. Start with a

measure of similarity d on the space of data sets (so that small positive
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values of d correspond to more similar data sets), and a tolerance ε > 0.

Then,

1. Generate an observation θ from the prior π().

2. Simulate an observation D′ from model M with parameter θ

3. Accept θ as an approximate observation from the posterior if

d(D′,D) < ε.

In many applications the metric is used to compare summary statistics

of the data, rather than the data themselves; this has led to a large

literature on choosing summary statistics; see [25]. In our birth-death

example, we are assuming that all that can be measured are the population

sizes Zi = Z(ti), i = 0, 1, . . . ,m. Our example is therefore simpler, a case

of likelihood-free inference, for which we do not need to summarise the

data.

Fan and Sisson [8] provide a series of more sophisticated algorithms for

implementing ABC, but for our illustration we use the simplest method.

It also has the advantage of being an example of embarrassingly parallel

computation, which can be spread across multiple cores easily. We need

to choose a metric for comparing two sequences of population sizes, and

we chose

d((Z ′1, . . . , Z
′
m), (Z1, . . . , Zm)) =

(
m∑
l=1

(Z ′l − Zl)2

)1/2

. (34)

The wait-jump-wait approach was used to simulate observations from

the process, obviating the need for knowing the transition functions of

the process. Because this approach produces observations at increasing

timepoints, and the function in (34) increases with m, it is possible to
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25% median mean 75%

MCMC

λ 5.07 5.93 6.16 6.97

µ 1.86 2.73 2.98 3.78

ABC

λ 4.51 5.94 6.14 7.63

µ 1.32 2.71 2.97 4.46

Table 4: Comparison of percentiles and mean of posterior values for

MCMC and ABC methods.

abort runs that result in large values of the metric without simulating the

entire trajectory, thereby saving computation time. 500,000 runs were

obtained with cutoff chosen as d = 500. Figures 4 and 5 show histograms

of the values of λ and µ from the 1948 observations with the lowest d-

values (corresponding to values of d ≤ 53) with both priors uniform on

(0, 10). Figure 3 provides a contour plot of the joint posterior of (λ, µ).

As can be seen by comparing the contour plots in Figures 3 and 8, the

values are over-dispersed relative to the MCMC estimates, a fact that is

further verified from the data in Table 4.

Remark 4. If we could observe more details of the process than merely

the population sizes D = (Z1, . . . , Zm), for example if D included the fam-

ily sizes F1, . . . , Fm then ABC can be used to find approximate posterior

distribution of θ by choosing a metric such as the sum or maximum of

two metrics of the form in (34), one comparing simulated Z-values with

the observed target, and one the simulated F values with their observed

target. We leave the reader to explore this and other similar scenarios.
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Figure 4: Posterior for λ, ABC.
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Figure 5: Posterior for µ, ABC.

6. Variable rates

Kendall’s paper (1948) generalised earlier work by making the birth

and death rates depend on time. Here we summarise some of the results.

Define

ρ(t) =

∫ t

0

{µ(u)− λ(u)}du,

and

W (t) = 1 + e−ρ(t)

∫ t

0

eρ(u)λ(u)du (35)

= e−ρ(t)

{
1 +

∫ t

0

eρ(u)µ(u)du

}
(36)

and set

α(t) = 1− e−ρ(t)

W (t)
=

∫ t
0
eρ(u)µ(u)du

1 +
∫ t

0
eρ(u)µ(u)du

(37)

and

β(t) = 1− 1

W (t)
=

e−ρ(t)
∫ t

0
eρ(u)λ(u)du

1 + e−ρ(t)
∫ t

0
eρ(u)λ(u)du

. (38)
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Figure 6: Contour plot of posterior density for (λ, µ), ABC.

If the process starts from a single individual, the mean population size

at time t is

EZ(t) = e
∫ t
0 {λ(u)−µ(u)}du

and the variance is

VarZ(t) = e−2ρ(t)

∫ t

0

eρ(u){λ(u)+µ(u)}du;

these values are to be multiplied by n if Z(0) = n. The probability that

the process eventually dies out, starting from a single individual, is given

by

P(population dies out) = lim
t→∞

α(t) =

∫∞
0
eρ(u)µ(u)du

1 +
∫∞

0
eρ(u)µ(u)du

(39)

and starting from Z(0) = n, this should be raised to the power n. Finally,

we note that the distribution p1m(t),m ≥ 1 of Z(t) is given by (4), and,

when Z(0) = n, pnm(t) is given by (12) and (13).
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6.1. Simulation

The wait-jump-wait simulation method works as follows. Suppose the

process at time s has value r. The distribution function of the time to the

next jump is then

F (t|Z(s) = r) = 1− e−
∫ s+t
s r(λ(u)+µ(u))du, t ≥ 0.

Thus to simulate the next waiting time T we let U ∼ U(0, 1), and solve

for T the equation

− log(U) =

∫ s+T

s

r(λ(u) + µ(u))du. (40)

6.2. Inference

Once again we focus on inference for the process observed at time points

0 = t0 < t1 < · · · < tm = t, and for i = 1, 2, . . . ,m we set Zi = Z(ti). The

likelihood of the observations Z0 = n, Z1, . . . , Zm is

L =
m∏
i=1

pZi−1,Zi
(ti−1, ti), (41)

so we are left with the problem of identifying the transition functions

pnm(s, t) = P(X(t) = m | X(s) = n), t ≥ s,

of the process; fortunately, this is easy. They can be read off from the

result for pnm(0, t) ≡ pnm(t) by letting

λ(u) = µ(u) = 0, 0 < u < s;

this traps the process at n until time s. Specifically, for 0 < s < t, define

ρ(s, t) =

∫ t

s

{µ(u)− λ(u)}du := ρ(t)− ρ(s),
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and set

W (s, t) = 1 + e−ρ(s,t)

∫ t

s

eρ(s,u)λ(u)du

= e−ρ(s,t)

{
1 +

∫ t

s

eρ(s,u)µ(u)du

}
α(s, t) = 1− e−ρ(s,t)/W (s, t)

β(s, t) = 1− 1/W (s, t).

The values of α(s, t) and β(s, t) can be inserted into the formulae (12) and

(13) to get the transition function starting from time s.

6.3. Example

For illustration, consider the case in which

µ(t) ≡ µ, λ(t) = λ+
γ

t+ 1
, t ≥ 0, (42)

and λ+ γ > 0. In this case,

ρ(t) = (µ− λ)t− γ log(t+ 1),

and

EZ(t) = e(λ−µ)t (t+ 1)γ,

and the probability of eventual extinction is 1 if λ ≤ µ, and I/(1 + I),

where

I = eλ−µµ(λ− µ)γ−1

∫ ∞
λ−µ

v−γe−vdv, (43)

if λ > µ. Values of the extinction probability as a function of γ for

λ = 6, µ = 3 are given in Fig. 7.

To implement the simulation method in (40), note that if Z(s) = r ≥ 1

then the next waiting time T is found as the solution of the equation

log(U)/r − γ log(s+ 1) + (λ+ µ)T + γ log(s+ 1 + T ) = 0
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Figure 7: Probability of extinction as a function of γ for λ = 6, µ = 3

computed from (43).

and, if T = t, the next state is r + 1 with probability

λ+ γ/(s+ t+ 1)

λ+ γ/(s+ t+ 1) + µ
,

and is otherwise r − 1.

Table 5 shows the results of a simulation of the process that will be used

to illustrate the inference problem. Computation of the MLEs of λ, µ, γ

via (41) offer no new problems. A grid search to determine good starting

values resulted in estimates of λ̂ = 6.18, µ̂ = 1.74, and γ̂ = 2.49. The ABC

approach is also illustrated here, based on independent priors uniform on

(0,10) for each parameter. The metric in (34) is used once more, and

10,000 simulations were generated using the rates method, rejecting any

runs with d > 500. The 1951 values with d < 239 were chosen to represent

the approximate joint posterior of the parameters, and resulted in median
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Observation l 1 2 3 4 5 6 7 8 9 10

time tl 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

Fl 8 12 14 22 24 28 38 52 68 84

Zl 12 16 24 28 35 43 55 76 92 115

Observation l 11 12 13 14 15 16 17 18 19 20

time tl 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80

Fl 102 115 162 209 264 341 431 564 707 891

Zl 126 178 227 299 380 472 628 778 993 1267

Observation l 21 22 23 24 25

time tl 0.84 0.88 0.92 0.96 1.00

Fl 1147 1477 1814 2310 2882

Zl 1623 2019 2546 3209 3995

Table 5: Simulation of the variable-rate process with Z(0) = 10,

λ = 6, µ = 3, γ = 5.

values of 7.24, 3.13 and 2.74 for λ, µ and γ respectively. The histograms

in Figs. 8, 9 and 10 illustrate the posteriors. There is, indeed, information

in the data about the parameters, the locations of the marginals being

broadly consistent with the MLEs.

7. Discussion

There are other models for which explicit results are available, includ-

ing the linear birth-and-death processes with immigration [14]. Explicit

availability of transition functions makes these models a useful calibration

for other computational approaches.

Computation of the transition function of continuous-time Markov chains
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Figure 8: Posterior for λ, ABC.
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Figure 9: Posterior for µ, ABC.

can be a challenge. For a finite process with generator matrix Q = (qij),

this is equivalent to computing eQt. Moler and Van Loan [20, 21] discuss a

number of numerical methods for this for arbitrary matrices Q, and point

to the scaling and squaring method as a good general choice. Melloy and

Bennett [19] specialise to the stochastic case. Their method is connected

to the so-called Poissonization, or uniformization, representation [13]. If

we define

ρ = max
i
|qii|

and

P = ρ−1Q+ I

then P is a stochastic matrix, and

eQt =
∑
n≥0

e−ρt(ρt)n

n!
P n. (44)

Thus the process jumps at the points of a Poisson process, making moves
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Figure 10: Posterior for γ, ABC.

according to the transition matrix P , which might not result in chang-

ing state. This can be used to compute eQt as a sum of non-negative

terms. Uniformization for inhomogeneous chains was described in [27];

see also [17]. Uniformization can also be used to simulate the process.

For infinite stochastic matrices with unbounded entries, things are more

complicated. Northwest corner truncation approaches are available; see

for example [24], Chapter 7 and [18]. Because of likelihood approaches

to inference of model parameters, there has recently been a resurgence

of interest in calculating the transition probabilities of general birth-and-

death processes, those in which the birth and death rates may depend on

the state in more complicated ways than the linear case. See, for example,

the continued fraction method of [6, 5], the compressed sensing approach

of [29], and the saddlepoint approach in [7] for the linear case.
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Acknowledgement

I thank Dr. Sophie Hautphenne for alerting me to her work in [7].

References

[1] Abate, J. and Whitt, W. (1992). Numerical inversion of probability generating

functions. Operations Research Letters, 12, 245–251.

[2] Bailey, N. T. J. (1964). The Elements of Stochastic Processes with Applications

to the Natural Sciences. Wiley, New York-London.

[3] Branson, D. (1991). Inhomogeneous birth-death and birth-death-immigration

processes and the logarithmic series distribution. Stochastic Processes and their

Applications, 39, 131–137.

[4] Brooks, S., Gelman, A., Jones, G. and Meng, X.-L. (eds.) (2011).

Handbook of Markov Chain Monte Carlo, Handbooks of Modern Statistical

Methods, Chapman & Hall/CRC Press.

[5] Crawford, F. W., Minin, V. N. and Suchard, M. A. (2014). Estimation

for general birth-death processes. Journal of the American Statistical Association,

109, 730–747.

[6] Crawford, F. W. and Suchard, M. A. (2012). Transition probabilities

for general birth-death processes with applications in ecology, genetics, and

evolution. Journal of Mathematical Biology, 65, 553–580.

[7] Davison, A. C., Hautphenne, S. and Kraus, A. (2018). Parameter estima-

tion for discretely-observed linear birth-and-death processes. arXiv:1802.05015v1.

[8] Fan, Y. and Sisson, S. A. (2018). ABC samplers. arXiv:1802.09650v1.

[9] Feller, W. (1939). Die Grundlagen der Volterraschen Theorie des Kampfes

ums Dasein in wahrscheinlichkeitstheoretischer Behandlung. Acta Biotheoretica,

5, 11–40.



Inference for birth-death processes 31

[10] Guttorp, P. (1991). Statistical Inference for Branching Processes. Wiley, New

York.

[11] Harris, T. (1948). Branching processes. Annals of Mathematical Statistics, 19,

474–494.

[12] Immel, E. R. (1951). Problems of estimation and of hypothesis testing connected

with birth-and-death Markov processes. Thesis, University of California, Los

Angeles.

[13] Jensen, A. (1953). Markoff chains as an aid in the study of Markoff processes.

Skandinavisk Akrtuarietidskrift, 36, 87–91.

[14] Karlin, S. and McGregor, J. (1967). The number of mutant forms

maintained in a population. In Proc. Fifth Berkeley Symposium on Mathematical

Statistics and Probability, ed. LeCam L & Neyman J pp. 415–438. University of

California Press, Berkeley.

[15] Keiding, N. (1975). Maximum likelihood estimation in the birth-and-death

process. The Annals of Statistics, 3, 363–372.

[16] Kendall, D. G. (1948). On the generalized “birth-and-death” process. Annals

of Mathematical Statistics, 19, 1–15.

[17] Li, Y. F., Zio, E. and Lin Y. H. (2014). Methods of solutions of inhomogeneous

continuous time Markov chains for degradation process modeling. Chapter 1,

Applied Reliability Engineering and Risk Analysis: Probabilistic Models and

Statistical Inference, eds. Ilia B. Frenkel, I. B., Karagrigoriou, A. Lisnianski,

A. and Kleyner, A. John Wiley & Sons, Ltd.

[18] Masuyama, H. (2016). Limit formulas for the normalized fundamental matrix of

the northwest-corner truncation of Markov chains: Matrix-infinite-product-form

solutions of block-Hessenberg Markov chains. arXiv:1603:07877v5.

[19] Melloy, B. J. and Bennett, G. K. (1993). Computing the exponential of an

intensity matrix. Journal of Computational and Applied mathematics, 46, 405–

413.



32 S. Tavaré
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