
*For correspondence:
metzgermb@mail.nih.gov (MBM);
weissmaa@mail.nih.gov (AMW)

Competing interests: The
authors declare that no
competing interests exist.

Funding: See page 20

Received: 14 August 2019
Accepted: 01 March 2020
Published: 02 March 2020

Reviewing editor: Agnieszka
Chacinska, University of Warsaw,
Poland

This is an open-access article,
free of all copyright, and may be
freely reproduced, distributed,
transmitted, modified, built
upon, or otherwise used by
anyone for any lawful purpose.
The work is made available under
the Creative Commons CC0
public domain dedication.

A protein quality control pathway at the
mitochondrial outer membrane
Meredith B Metzger*, Jessica L Scales, Mitchell F Dunklebarger,
Jadranka Loncarek, Allan M Weissman*

Laboratory of Protein Dynamics and Signaling, Center for Cancer Research,
National Cancer Institute at Frederick, Frederick, United States

Abstract Maintaining the essential functions of mitochondria requires mechanisms to recognize
and remove misfolded proteins. However, quality control (QC) pathways for misfolded
mitochondrial proteins remain poorly defined. Here, we establish temperature-sensitive (ts-)
peripheral mitochondrial outer membrane (MOM) proteins as novel model QC substrates in
Saccharomyces cerevisiae. The ts- proteins sen2-1HA ts and sam35-2HAts are degraded from the
MOM by the ubiquitin-proteasome system. Ubiquitination of sen2-1HA ts is mediated by the
ubiquitin ligase (E3) Ubr1, while sam35-2HA ts is ubiquitinated primarily by San1. Mitochondria-
associated degradation (MAD) of both substrates requires the SSA family of Hsp70s and the Hsp40
Sis1, providing the first evidence for chaperone involvement in MAD. In addition to a role for the
Cdc48-Npl4-Ufd1 AAA-ATPase complex, Doa1 and a mitochondrial pool of the transmembrane
Cdc48 adaptor, Ubx2, are implicated in their degradation. This study reveals a unique QC pathway
comprised of a combination of cytosolic and mitochondrial factors that distinguish it from other
cellular QC pathways.

Introduction
Proper protein folding is essential for organelle and cell homeostasis. Proteins may fail to achieve or
retain their functional conformations due to genetic or environmental insults and cells have evolved
elaborate protein quality control (QC) mechanisms to combat misfolding. QC systems recognize and
refold misfolded proteins and, when not possible, sequester or degrade them to prevent their often
deleterious accumulation (Kevei et al., 2017 ). Such degradation frequently occurs via the ubiquitin-
proteasome system (UPS), where substrates are modified with ubiquitin leading to their destruction
by the 26S proteasome (Metzger et al., 2012 ). Ubiquitin modification requires the action of ubiqui-
tin-activating enzyme (E1), followed by either sequential or concerted activity of ubiquitin-conjugat-
ing enzymes (E2) and substrate-specific ubiquitin ligases (E3). Multiple rounds of ubiquitination
result in polyubiquitin chains, which can serve as targeting signals for recognition and degradation
by 26S proteasomes (Akutsu et al., 2016 ; Thrower et al., 2000 ). Other classes of factors play criti-
cal roles in substrate recognition and in their extraction from associated proteins or membranes
post-ubiquitination, as well as in shuttling to proteasomes ( Buchberger et al., 2015 ; Ye et al.,
2017 ; Zientara-Rytter and Subramani, 2019 ).

Distinct, yet overlapping UPS machinery found at different subcellular locations mediates local-
ized QC of misfolded proteins ( Sontag et al., 2017 ). The degradation of misfolded proteins at the
ribosome, endoplasmic reticulum (ER), nucleus, inner nuclear envelope, and cytosol is mediated by
dedicated UPS machinery (Boban and Foisner, 2016 ; Brandman and Hegde, 2016 ; Comyn et al.,
2014 ; Gamerdinger, 2016 ; Jones and Gardner, 2016 ; Zattas and Hochstrasser, 2015 ). Much of
what is known about these subcellular QC pathways was uncovered in yeast using model misfolded
substrates (Bays et al., 2001 ; Gardner et al., 2005 ; Huyer et al., 2004 ; Stolz and Wolf, 2012 ;
Vashist and Ng, 2004 ) and has served as the basis for characterizing mammalian degradation
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pathways. The most extensively studied organelle-based QC pathway is ER-associated degradation
(ERAD). Early steps in ERAD pathways, such as substrate recognition and ubiquitination, are distinct
for different substrates and defined (at least in yeast) by the location of the misfolded domain
(Carvalho et al., 2006 ; Huyer et al., 2004 ; Preston and Brodsky, 2017 ; Ruggiano et al., 2014 ).
Generally, pathways converge post-ubiquitination, where the Cdc48-Npl4-Ufd1 AAA-ATPase com-
plex and its associated co-factors facilitate unfolding and/or extraction of substrates from their natu-
ral environments prior to targeting to 26S proteasomes for degradation ( Olszewski et al., 2019 ;
Wolf and Stolz, 2012 ).

Mitochondrial proteins are subject to ongoing oxidative insults that can result in damage, misfold-
ing, and dysfunction. Mitochondria require mechanisms to eliminate these proteins to maintain
organellar integrity and essential functions ( Voos et al., 2016 ). In mammalian cells, the well-charac-
terized Parkin and PINK1 ubiquitin-dependent mitophagy pathway removes portions of, or entire,
damaged mitochondria ( McWilliams and Muqit, 2017 ; Pickles et al., 2018 ). In yeast, however,
mitophagy appears to function primarily to adapt to metabolic changes, rather than in protein QC
(Fukuda and Kanki, 2018 ; Kanki et al., 2015 ). Furthermore, there is little evidence indicating that
mitophagy is ubiquitin-dependent, in accordance with the absence of obvious yeast orthologues of
Parkin or PINK1 (Belgareh-TouzeÂet al., 2017 ; Tan et al., 2016 ).

In contrast to mitophagy, mitochondria-associated degradation (MAD) pathways for individual
misfolded or damaged mitochondrial proteins are not as well-established in mammals or yeast. Pro-
teases resident to the mitochondrial matrix, inner membrane (IM), and intermembrane space (IMS)
can act on damaged or aggregated proteins in these compartments ( Bohovych et al., 2015 ). While
there is no evidence for proteasomes inside mitochondria, the mitochondrial outer membrane
(MOM) is fully accessible to cytosolic proteasomes. In fact, the UPS is known to play a critical role in
mitochondrial morphology, dynamics, inheritance, and in the degradation of import-deficient

eLife digest Proteins are molecules that need to fold into the right shape to do their job. If
proteins lose that shape, not only do they stop working but they risk clumping together and
becoming toxic, potentially leading to disease. Fortunately, the cell has quality control systems that
normally detect and remove misfolded proteins before they can cause damage to the cell. First, sets
of proteins known as chaperones recognize the misfolded proteins, and then another class of
proteins attaches a molecular tag, known as ubiquitin, to the misshapen proteins. When several
ubiquitin tags are attached to a protein, forming chains of ubiquitin, it is transported to a large
molecular machine within the cell called the proteasome. The proteasome unravels the protein and
breaks it down into its constituent building blocks, which can then be used to create new proteins.

Proteins are found throughout the different compartments of the cell and quality control
processes have been well-studied in some parts of the cell but not others. Metzger et al. have now
revealed how the process works on the surface of mitochondria, the compartment that provides the
cell with most of its energy. To do this, they used baker's yeast, a model laboratory organism that
shares many fundamental properties with animal cells, but which is easier to manipulate genetically.
The quality control process was studied using two mitochondrial proteins that had been mutated to
make them sensitive to changes in temperature. This meant that, when the temperature increased
from 25ÊC to 37ÊC, these proteins would begin to unravel and trigger the clean-up operation. This
approach has been used previously to understand the quality control processes in other parts of the
cell.

By removing different quality control machinery in turn from the yeast cells, Metzger et al. could
detect which were necessary for the process on mitochondria. This showed that there were many
similarities with how this process happen in other parts of the cell but that the precise combination
of chaperones and enzymes involved was distinct. Furthermore, when the proteasome was not
working, the misfolded proteins remained on the mitochondria, showing that they are not
transported to other parts of the cell to be broken down. In the future, understanding this process
could help to find potential drug targets for mitochondrial diseases. The next steps will be to see
how well these findings apply to human and other mammalian cells.
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mitochondrial IMS proteins and mitochondria-mislocalized tail-anchored proteins ( Altmann and
Westermann, 2005 ; Bragoszewski et al., 2017 ; Cohen et al., 2008 ; Fisk and Yaffe, 1999 ;
Goodrum et al., 2019 ; Matsumoto et al., 2019 ; Rinaldi et al., 2008 ). A limited number of MOM
proteins have also been identified as specific UPS targets in yeast: Fzo1, Mdm12, Mdm34, Msp1,
and Tom70 (Belgareh-TouzeÂet al., 2017 ; Cohen et al., 2008 ; Fritz et al., 2003 ; Ota et al., 2008 ;
Wu et al., 2016 ). All of these are native (i.e. non-misfolded) proteins, whose ubiquitination and/or
degradation may be critical for homeostasis and not obviously related to QC. Of these, only Fzo1
has been examined in detail. The regulated recognition and ubiquitination of this mitofusin by
SCFMdm30 (Skp1-Cullin-F-box E3 with F-box protein Mdm30) and its subsequent proteasomal degra-
dation are integral to the process of MOM fusion ( Cohen et al., 2011 ; Cohen et al., 2008 ; Escobar-
Henriques et al., 2006 ). However, for the few other MOM proteins where ubiquitination has been
analyzed, the E3 Rsp5 has been implicated (Belgareh-TouzeÂet al., 2017 ; Goodrum et al., 2019 ;
Kowalski et al., 2018 ; Wu et al., 2016 ). The involvement of Cdc48 co-factors, Vms1 and Doa1, has
also been both reported and disputed for particular MOM proteins ( Chowdhury et al., 2018 ;
Esaki and Ogura, 2012 ; Heo et al., 2010 ; Wu et al., 2016 ). The degradation of tail-anchored pro-
teins mislocalized to the MOM uniquely requires the AAA-ATPase Msp1 for extraction from the
MOM prior to transfer to the ER where they are degraded by ERAD machinery ( Matsumoto et al.,
2019 ; Okreglak and Walter, 2014 ; Wohlever et al., 2017 ). Thus, a universal MAD pathway for
MOM proteins has not been described and many steps in substrate degradation remain unexam-
ined. Similarly, UPS components acting on misfolded MOM proteins have yet to be investigated.

In this study, we establish temperature-sensitive (ts-) peripheral MOM proteins (sam35-2HA ts and
sen2-1HAts) as QC substrates. The ts- nature of these substrates, coupled with their tight association
with the MOM, enabled study of their mitochondrial degradation without concerns of mislocalization
to the cytosol or elsewhere. We utilize these substrates to define a MAD pathway for non-native pro-
teins. The proteasomal degradation of these MAD QC substrates occurs at the MOM and requires
specific cytosolic and mitochondrial UPS components, most of which are conserved in higher eukar-
yotes. Our results reveal a requirement for factors not previously implicated in the degradation of
native MAD substrates and the combination of components identified defines a distinct QC
pathway.

Results

Identification of novel thermosensitive substrates for mitochondrial
quality control
Our knowledge of protein QC in the ER, cytosol, and nucleus derives in part from the study of pro-
teins that undergo temperature-dependent misfolding and degradation ( Biederer et al., 1996 ;
Gardner et al., 2005 ; Khosrow-Khavar et al., 2012 ; Ravid et al., 2006 ; Wang and Prelich, 2009 ).
To elucidate how misfolded mitochondrial proteins are targeted for destruction, we exploited two
previously-identified yeast ts- alleles, sam35-2 and sen2-1 (Li et al., 2011 ; Milenkovic et al., 2004 ;
Winey and Culbertson, 1988 ), whose degradation has not been assessed. Sam35 and Sen2 are
essential MOM proteins. Sam35 is the substrate receptor of the MOM-embedded multiprotein sort-
ing and assembly machinery (SAM) complex required for assembly of b-barrel proteins into the
MOM ( Chan and Lithgow, 2008 ; Kozjak et al., 2003 ; Kutik et al., 2008 ; Milenkovic et al., 2004 ).
Although Sam35 contains no apparent membrane spans, it is tightly embedded at the MOM via the
Sam50 protein (Kutik et al., 2008 ). Sen2 provides endonuclease activity for the multi-subunit tRNA
splicing endonuclease complex and also cleaves a mitochondria-targeted non-stop mRNA
(Ho et al., 1990 ; Tsuboi et al., 2015 ; Winey and Culbertson, 1988 ). The tRNA splicing complex
resides on the MOM in yeast, with Sen2 potentially anchoring it to the membrane via a hydrophobic
segment (Trotta et al., 1997 ; Yoshihisa et al., 2003 ).

We first determined that sam35-2 ts and sen2-1ts encoded full-length proteins. Each contained
multiple missense mutations (Figure 1Ðfigure supplement 1A ) that likely account for the pheno-
types reported ( Li et al., 2011 ; Milenkovic et al., 2004 ; Winey and Culbertson, 1988 ). To facilitate
detection, sequence encoding an HA tag was added to the C-terminus of each to generate sam35-
2HAts and sen2-1HAts. Genome-integrated versions of sam35-2HA ts and sen2-1HAts support cell via-
bility at the permissive (25ÊC) but not non-permissive temperature (37ÊC;Figure 1A ), consistent with
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Figure 1. The temperature sensitive proteins sam35-2HAts and sen2-1HAts are novel thermosensitive substrates for mitochondrial quality control. ( A)
Spot growth assay of cells expressing chromosomal SAM35HA, sam35-2HAts, SEN2HA, or sen2-1HAts (yMM36, 37, 40, and 41, respectively) at
permissive (25Ê) or non-permissive (37Ê) temperatures. (B) Wild type (WT; WCG4a) yeast were treated with cycloheximide (CHX) at 25ÊC or 37ÊC and
analyzed at the indicated times to assess the degradation of centromeric (CEN) plasmid-expressed SAM35HA, sam35-2HAts, SEN2HA, or sen2-1HAts

Figure 1 continued on next page
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the previously-described untagged versions ( Li et al., 2011 ; Milenkovic et al., 2004 ; Winey and
Culbertson, 1988 ).

To determine whether their ts- phenotypes are indicative of protein misfolding that may lead to
instability, we assessed sam35-2HAts and sen2-1HAts turnover by cycloheximide (CHX) chase when
expressed from centromeric (CEN) yeast plasmids. Cells were grown at 25ÊC until the addition of
CHX at time `zero', when the temperature was either maintained at 25ÊC or raised to 37ÊC. The addi-
tion of CHX prior to raising the temperature minimizes the contribution of newly synthesized ts- pro-
teins that may misfold prior to reaching the mitochondria. We find that increasing the temperature
to 37ÊC results in dramatic destabilization of the ts- proteins relative to the WT proteins ( Figure 1B ).
Chromosomal versions behaved similarly (Figure 1Ðfigure supplement 1B ). Thus, the ts- nature of
these alleles is likely attributable to misfolding leading to destabilization at the non-permissive
temperature.

Next, agarose-embedded cells expressing GFP-tagged sam35-2 ts and sen2-1ts were used to
assess whether these non-transmembrane MOM proteins remain mitochondrially-associated follow-
ing the increase to the non-permissive temperature. For this, the temperature was raised to 37ÊC for
5 min (sen2-1GFPts) or 15 min (sam35-2GFPts), times at which sam35-2GFPts and sen2-1GFPts were
already destabilized by CHX chase (Figure 1Ðfigure supplement 1C ). Co-expression of sam35-
2GFPts and sen2-1GFPts with a mitochondrial marker (mtRFP) demonstrated that the ts- proteins
remain mitochondrial after the temperature increase ( Figure 1C ).

To bypass difficulties associated with imaging these low abundance ts- proteins, we isolated mito-
chondria by subcellular fractionation and assessed the localization of destabilized sam35-2HA ts and
sen2-1HAts. Using the same conditions as for microscopy, we found that the HA-tagged ts- proteins
are destabilized upon the addition of CHX ( Figure 1Ðfigure supplement 1D ) and that protein turn-
over was still evident in the spheroplasted yeast used for fractionation (WT; Figure 1Ðfigure sup-
plement 1E ). Consistent with our microscopy, sam35-2HA ts and sen2-1HAts fractionated almost
exclusively to the mitochondrial pellet at 37ÊC (P; Figure 1D ). A similar fractionation pattern was
observed with chromosomal HA-tagged ts- alleles ( Figure 1Ðfigure supplement 1F ). Therefore,
sam35-2HAts and sen2-1HAts are destabilized at the non-permissive temperature yet remain mito-
chondrially-localized, validating their use as model MAD QC substrates.

The degradation of MAD QC substrates requires the ubiquitin-
proteasome system
Since proteasomes have broad roles in mitochondrial homeostasis and morphology, we assessed
whether the degradation of these MOM ts- proteins was dependent on proteasome function. The
turnover of sam35-2HA ts and sen2-1HAts was assessed at the non-permissive temperature in strains
containing conditional mutations in the 20S core ( pre1-1 pre2-2 ; Figure 2A ) or the 19S cap (cim3-1;
Figure 2B ) of the 26S proteasome. Both ts- proteins were substantially stabilized in these mutants
relative to isogenic WT strains. In contrast, vacuolar or mitochondrial resident proteases were not
required for sam35-2HA ts or sen2-1HAts turnover (Figure 2Ðfigure supplement 1A and B ).

After establishing that the stabilization of the ts- proteins in pre1-1 pre2-2 spheroplasts mirrors
that observed in intact cells ( Figure 1Ðfigure supplement 1E ), we assessed whether sam35-2HAts

Figure 1 continued

(pMM158, 157, 159, 160, respectively). The ts- proteins were detected by immunoblotting with HA antibody. Phosphoglycerate kinase (PGK) served as a
protein loading control. Graphed below is the mean and standard deviation (SD) of the PGK-normalized HA signal at each time point for three
biological replicates. (C) Live-cell microscopy analysis of agarose-embedded WT cells (WCG4a) co-expressing a mitochondrial-matrix targeted RFP
(mtRFP; pMD12) and either sam35-2GFPts (pMD1) or sen2-1GFPts (pMD4) at the indicated times after temperature shift to 37ÊC. CHX was also added at
0 min, although CHX diffusion through agarose is likely problematic. `Merge' of GFP (green) and RFP (magenta) channels and differential interference
contrast (DIC) are shown; Scale bar = 10mm. (D) Lysates of spheroplasted yeast from the strains used in B were fractionated at 12,000xg at 37ÊC into
mitochondrial pellet (P) and post-mitochondrial supernatant (S). Fractions were subject to immunoblotting with antibodies to HA, PGK (cytosolic protein
control), and PORIN (mitochondrial protein control).
The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Quantifications of cycloheximide chases.
Figure supplement 1. The temperature sensitive proteins sam35-2HAts and sen2-1HAts are novel thermosensitive substrates for mitochondrial quality
control.
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Figure 2. The degradation of MAD QC substrates requires the ubiquitin-proteasome system. ( A, B) CHX chase for the indicated times at 37ÊC assessing
the turnover of sam35-2HAts or sen2-1HAts (pMM157 or 160, respectively) in WT (WCG4a) andpre1-1 pre2-2 proteasome mutant (WCG4-11/21a) cells
(A) or WT (CIM) andcim3-1 proteasome mutant cells (B). Proteins were detected by immunoblotting. Graphed below is the mean and SD of the PGK-
normalized HA signal at each time point for three biological replicates. ( C) Lysates from the strains used in A were fractionated at 12,000xg into

Figure 2 continued on next page
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and sen2-1HAts remain mitochondrial when proteasome function is impaired. Even after 40 min at
the non-permissive temperature, the majority of both sam35-2HA ts and sen2-1HAts accumulated in
the 12,000xg mitochondrial pellet ( Figure 2C ). Extraction of both proteins from this pellet fraction
by sodium carbonate excluded the possibility that this represents aggregated protein ( Figure 2Ð
figure supplement 1C ). This crude mitochondrial pellet also contains ~20% of total ER as assessed
by measuring levels of the integral ER membrane protein Cue1 ( Figure 2Ðfigure supplement 1D ).
For this reason, we wished to exclude the possibility that these substrates were being translocated
to the ER for degradation. Such a pathway has recently been described for tail-anchored proteins
that are mislocalized to mitochondria ( Matsumoto et al., 2019 ). Further purification of the crude
12,000xg mitochondrial pellet isolated from pre1-1 pre2- 2 cells via sucrose gradient ultracentrifuga-
tion removes ~90% of contaminating ER, leaving only ~2% of total ER in these purified mitochondria
(Cue1; Figure 2Ðfigure supplement 1E ). On the other hand, this purified mitochondrial fraction
retains ~70% of the ts- proteins. As peripheral membrane proteins could dissociate from mitochon-
dria during manipulation, 70% may be an underrepresentation of the mitochondria-associated pool
in vivo. Thus, these data indicate that sam35-2HA ts and sen2-1HAts primarily accumulate at the mito-
chondria when their proteasomal degradation is blocked.

Consistent with being UPS substrates, stabilization of both sam35-2HA ts and sen2-1HAts was
observed in a ts- mutant of the ubiquitin-activating enzyme ( uba1-204; Figure 2D ; Ghaboosi and
Deshaies, 2007 ), indicating that ubiquitination is required for their degradation. Moreover, ubiqui-
tin-modified forms of sam35-2HA ts and sen2-1HAts were evident when proteasome function was
inhibited ( Figure 2E and F and see Figure 2Ðfigure supplement 1F for an additional control), as
indicated by characteristic higher molecular weight bands and a smear representing highly ubiquiti-
nated species (Emmerich and Cohen, 2015 ). By comparison, ubiquitinated forms of WT SAM35HA
and SEN2HA are much less prevalent (Figure 2Ðfigure supplement 1G ). We further assessed
whether ubiquitin-modified forms of the ts- proteins were localized to mitochondria under conditions
of proteasome impairment. Ubiquitinated sam35-2HA ts and sen2-1HAts both accumulated largely in
the mitochondrial pellet fraction (P12,000x g; Figure 2Ðfigure supplement 1H ) and to a lesser
extent in the soluble fraction, correlating with the relative distributions of unmodified species. Taken
together, these data establish roles for ubiquitination and proteasomal degradation in the turnover
of sam35-2HAts and sen2-1HAts at the MOM.

Distinct E3 ubiquitin ligases act on sam35-2HA ts and sen2-1HA ts

To date, the only ubiquitin ligases known to act on mitochondrial proteins in yeast are SCF Mdm30

and Rsp5 (Belgareh-TouzeÂ et al., 2017 ; Cohen et al., 2008 ; Escobar-Henriques et al., 2006 ;
Kowalski et al., 2018 ; Wu et al., 2016 ). However, the known mitochondrial substrates for these E3s
are native proteins. We assessed whether these E3s also play a role in MAD of QC substrates and
found that strains lacking either Mdm30 or Rsp5 function did not affect sam35-2HA ts or sen2-1HAts

stability (Figure 3Ðfigure supplement 1A and B ). To identify factors involved in targeting these ts-
MAD substrates, we screened a yeast deletion library consisting of non-essential known or putative
UPS components (Ravid and Hochstrasser, 2007 ) by CHX chase. Interestingly, we found that san1D
impaired turnover of sam35-2HA ts (Figure 3A , middle panel), while ubr1D impaired turnover of
sen2-1HAts (Figure 3B , middle panel). San1 has been implicated in QC of cytosolic and nuclear pro-
teins (Gardner et al., 2005 ; Heck et al., 2010 ). Ubr1 is the E3 that ubiquitinates N-end rule

Figure 2 continued

mitochondrial pellets (P) and post-mitochondrial supernatants (S) after incubation at 37ÊC for the indicated times. Fractions were subject to
immunoblotting with antibodies to HA, PGK, and PORIN. ( D) CHX chase for the indicated times at 37ÊC assessing the turnover of sam35-2HAts or sen2-
1HAts (pMM157 or 160, respectively) in auba1-204 strain relative to its isogenic WT strain. (E) Ubiquitination of sam35-2HAts and sen2-1HAts was
assessed by immunoprecipitation (IP) from lysates of the strains used in A with anti-HA agarose, followed by immunoblotting with ubiquitin antibodies.
1% of IP input lysate was reserved and also analyzed by immunoblotting. (F) Ubiquitination of sam35-2HAts and sen2-1HAts was assessed by IP from
lysates of the strains used in A using tandem ubiquitin-binding entities (TUBE) agarose, followed by immunoblotting with HA antibody. 2.5% of the
TUBE input lysate was reserved and analyzed by immunoblotting.
The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Quantifications of cycloheximide chases.
Figure supplement 1. The degradation of MAD QC substrates requires the ubiquitin-proteasome system.
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Figure 3. Distinct E3 ubiquitin ligases act on sam35-2HAts and sen2-1HAts. (A) CHX chase for the indicated times at 37ÊC assessing the turnover of
sam35-2HAts (pMM157) in WT (BY4741),san1D, and san1D ubr1D (SM5770) cells. Proteins were detected by immunoblotting. Graphed below is the
mean and SD of the PGK-normalized HA signal at each time point for three biological replicates. ( B) CHX chase for the indicated times at 37ÊC
assessing the turnover of sen2-1HAts (pMM160) in WT (BY4741),ubr1D (yMM149), andsan1D ubr1D (SM5770) cells, as in A. (C) Ubiquitination of sam35-
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substrates, but also plays a prominent role in the turnover of cytosolic proteins and, in some instan-
ces, may also degrade ER proteins (Bartel et al., 1990 ; Comyn et al., 2016 ; Eisele and Wolf, 2008 ;
Heck et al., 2010 ; Khosrow-Khavar et al., 2012 ; Rao et al., 2001 ; Scazzari et al., 2015 ;
Stolz et al., 2013 ; Summers et al., 2013 ). Since there are examples where these two E3s function-
ally interact, we assessed turnover in a san1D ubr1D double deletion strain. While ubr1D alone did
not affect sam35-2HA ts turnover (Figure 3Ðfigure supplement 1C ), loss of Ubr1 in conjunction with
san1D led to greater stabilization than loss of San1 alone ( Figure 3A , lower panel), indicating that
Ubr1 can target sam35-2HA ts in the absence of San1. Loss of San1, alone or in conjunction with
ubr1D, did not affect the stability of sen2-1HA ts (Figure 3Ðfigure supplement 1D and Figure 3B ,
lower panel). Notably, the polyubiquitination of sam35-2HA ts (Figure 3C ) and sen2-1HAts

(Figure 3D ) was greatly reduced when San1 or Ubr1, respectively, were deleted. Neither ts- protein
was entirely stabilized by san1D ubr1D, suggesting that other E3s, perhaps with overlapping specific-
ity or essential functions, may also act on these substrates. Likewise, loss of any single E2 did not sta-
bilize sam35-2HAts (data not shown). Loss of Ubc4, an E2 known to function with Ubr1 for select
substrates, stabilized sen2-1HAts to a similar degree as ubr1D (Figure 3E ).

To confirm that Ubr1 and San1 can act on ts- proteins at the MOM, we examined the localization
of sam35-2HAts and sen2-1HAts by fractionation in san1D and ubr1D, respectively. In these strains,
both ts- proteins still accumulated almost exclusively in the pellet fraction ( Figure 3F and G ). These
results establish that San1 and Ubr1 can function as components of the MAD machinery for protea-
some-mediated degradation of sam35-2HA ts and sen2-1HAts, respectively.

Cytosolic chaperones are required for MAD QC substrate degradation
The cytosolic SSA family of Hsp70 chaperones (Ssa1, Ssa2, Ssa3, and Ssa4) is broadly involved in pro-
tein folding and refolding, but also plays a role in the degradation of several San1 and Ubr1 QC sub-
strates (Guerriero et al., 2013 ; Heck et al., 2010 ; Prasad et al., 2010 ; Stolz et al., 2013 ). During
protein QC, these chaperones appear to prevent protein aggregation and facilitate ubiquitination
(Huyer et al., 2004 ; Metzger et al., 2008 ; O'Donnell et al., 2017 ; Park et al., 2007 ;
Scazzari et al., 2015 ; Stolz et al., 2013 ). However, they have not been implicated in MAD. Interest-
ingly, both sam35-2HA ts and sen2-1HAts were strongly stabilized in a conditional yeast strain where
three SSA family members are deleted and the fourth ( SSA1) is ts- (ssa1-45ts; ssa1-45ts ssa2D ssa3D
ssa4D) relative to the control strain ( SSA1; SSA1 ssa2D ssa3D ssa4D; Figure 4A ).

SSA Hsp70 chaperones can play a role in the sorting of mitochondrial proteins to and into mito-
chondria (Deshaies et al., 1988 ; Eliyahu et al., 2012 ; Young et al., 2003 ). To rule out the possibility
that the stabilization of mitochondrial ts- alleles in the ssa1-45ts strain is reflective of a defect in mito-
chondrial targeting, mitochondrial fractionation was performed. Both sam35-2HA ts and sen2-1HAts

were localized to the pellet fraction ( Figure 4B ), where they were extractable by sodium carbonate
(Figure 4Ðfigure supplement 1A ). Notably, the SSA1 chaperone was also required for ubiquitina-
tion: despite the accumulation of unmodified sam35-2HA ts and sen2-1HAts, ubiquitin-modified forms
are dramatically reduced when SSA1 is inactivated (Figure 4C ). This is consistent with the estab-
lished QC function for SSA chaperones in engaging substrates prior to their ubiquitination
(Shiber and Ravid, 2014 ). In contrast to the ts- proteins, degradation of the native MOM UPS

Figure 3 continued

2HAts was assessed by IP with anti-HA agarose of lysates from WT (BY4741) andsan1D cells expressing myc-Ub (pSM3666) and either empty vector (EV;
pRS315) or sam35-2HAts (pMM157), followed by immunoblotting with c-myc antibody. 1% of IP input lysate was reserved and analyzed for sam35-2HAts

by immunoblotting. ( D) Ubiquitination of sen2-1HA ts was assessed by IP of lysates from WT andubr1D strains expressing either EV (pRS315) or sen2-
1HAts (pMM160) using TUBE agarose, followed by immunoblotting with HA antibody. 2.5% of the TUBE input lysate was reserved and analyzed by
immunoblotting for sen2-1HA ts. (E) CHX chase for the indicated times at 37ÊC assessing the turnover of sen2-1HAts (pMM160) in ubc4D cells compared
to isogenic WT (BY4741). (F) Lysates from the WT andsan1D strains used in A expressing sam35-2HAts (pMM157) were fractionated at 12,000xg at 37ÊC
into mitochondrial pellets (P) and post-mitochondrial supernatants (S). Fractions were subject to immunoblotting with antibodies to HA, PGK, and
PORIN. (G) Lysates from the WT andubr1D strains used in B expressing sen2-1HAts (pMM160) were fractionated at 12,000xg at 37ÊC into mitochondrial
pellets (P) and post-mitochondrial supernatants (S). Fractions were subject to immunoblotting with antibodies to HA, PGK, and PORIN.
The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Quantifications of cycloheximide chases.
Figure supplement 1. Distinct E3 ubiquitin ligases act on sam35-2HAts and sen2-1HAts.
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Figure 4. Cytosolic chaperones are required for the degradation of sen2-1HA ts and sam35-2HAts. (A) CHX chase for the indicated times at 37ÊC
assessing the turnover of sam35-2HAts (pMM231) and sen2-1HAts (pMM234) in WT (SSA1) and ssa1-45ts cells. Proteins were detected by
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Figure 4 continued on next page
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substrate, Fzo1HA, was largely unaffected by loss SSA function (Figure 4Ðfigure supplement 1B ).
This is consistent with a dichotomy in chaperone requirements between native and non-native MAD
substrates.

Hsp40 co-chaperones (J-proteins) stimulate the ATPase activity of Hsp70, which is required for
substrate interactions. In particular, Sis1 and Ydj1 play roles in SSA-dependent protein QC through-
out the cell (Heck et al., 2010 ; Lu and Cyr, 1998 ; Prasad et al., 2018 ; Shiber and Ravid, 2014 ;
Summers et al., 2013 ). Depletion of ~90% of Sis1 protein using Sis1 DAmP cells (Figure 4Ðfigure
supplement 1C ) slowed the turnover of both sam35-2HA ts and sen2-1HAts (Figure 4D ), while loss of
Ydj1 or its ortholog, Hlj1, did not ( Figure 4Ðfigure supplement 1D ). Recent studies indicate that
the degradation of many San1 and Ubr1 cytosolic substrates occurs following nuclear import that is
dependent both on Ydj1 and the Hsp70 nucleotide exchange factor (Hsp110) Sse1 ( Prasad et al.,
2018 ; Samant et al., 2018 ). We did not detect a role for Sse1 in the degradation of sam35-2HA ts

and sen2-1HAts (Figure 4Ðfigure supplement 1E ). Loss of other factors implicated in San1 and
Ubr1 nuclear import-dependent QC, including Hsc82/Hsp82, Sti1, Hsp104, and Dsk2 were also with-
out effect on the degradation of sam35-2HA ts and sen2-1HAts (Figure 4Ðfigure supplement 1F ).
These results establish that the degradation of the mitochondrial QC substrates is dependent on
both Hsp70 and Hsp40 chaperones, but independent of nuclear import.

The Cdc48-Npl4-Ufd1 complex is required for degradation of MAD QC
substrates
The AAA-ATPase Cdc48 plays a broad role in many QC pathways, generally functioning as a protein
`unfoldase' or `segregase,' while also maintaining protein solubility prior to proteasomal degradation
(Neal et al., 2017 ; Ye et al., 2017 ). Cdc48 and its co-factors Npl4 and Ufd1 have been implicated in
the UPS-mediated turnover of several yeast MOM proteins ( Cohen et al., 2008 ; Heo et al., 2010 ;
Wu et al., 2016 ). Both sam35-2HAts and sen2-1HAts were stabilized in conditional Cdc48, Npl4, and
Ufd1 strains (Figure 5A ). In contrast, loss of Msp1, another AAA-ATPase that localizes to mitochon-
dria and dislocates mislocalized tail-anchored proteins from the MOM ( Chen et al., 2014 ;
Okreglak and Walter, 2014 ; Wohlever et al., 2017 ), stabilized neither sam35-2HA ts nor sen2-1HAts

(Figure 5Ðfigure supplement 1A ).
Given the role of the Cdc48-Npl4-Ufd1 complex as a segregase, we examined whether the ts-

proteins accumulated at mitochondria when activity of the complex is compromised, as might be
predicted. For both cdc48-3 and its isogenic WT parental strain, interpretation of fractionation
results was clouded by some baseline protein detected in the post-mitochondrial supernatant
(Figure 5B , left panels). For npl4-1 and ufd1-1, however, both substrates remain primarily mitochon-
drial (Figure 5B , middle and right panels). This indicates that in the absence of a functional Cdc48-
Npl4-Ufd1 complex sam35-2HA ts and sen2-1HAts largely retain their mitochondrial localization.

The Cdc48-Npl4-Ufd1 complex generally binds to ubiquitinated proteins ( Bodnar et al., 2018 ;
Park et al., 2005 ; Tsuchiya et al., 2017 ), acting downstream of E3-mediated ubiquitination. Accord-
ingly, we detected a relative increase in ubiquitinated sam35-2HA ts and sen2-1HAts in Cdc48-Npl4-
Ufd1 complex mutants ( Figure 5C and Figure 5Ðfigure supplement 1B and C ). In ERAD, the UBL-
and UBA-containing proteins Rad23 and Dsk2 have been implicated as factors that shuttle ubiquiti-
nated substrates from the Cdc48 complex to proteasomes. Deletion of these or another proteasome
shuttling factor, Ddi1, did not affect the degradation of sam35-2HA ts or sen2-1HAts (Figure 5Ðfig-
ure supplement 1D ), further distinguishing MAD from ERAD. All together, these results indicate

Figure 4 continued

pellets (P) and post-mitochondrial supernatants (S). Fractions were subject to immunoblotting with antibodies to HA, PGK, and PORIN. (C)
Ubiquitination of sam35-2HA ts and sen2-1HAts was assessed by IP with anti-HA agarose from lysates from WT andssa1-45ts cells expressing either
empty vector (EV; pRS316), sam35-2HAts (pMM231), or sen2-1HAts (pMM234), followed by immunoblotting with either ubiquitin or c-myc antibody. 1%
of IP input lysate was reserved and analyzed by immunoblotting. (D) CHX chase for the indicated times at 37ÊC assessing the turnover of sam35-2HAts

(pMM157) and sen2-1HAts (pMM160) in WT (yTHC) and Sis1-DAmPcells treated with 10 mg/mL doxycycline for 18 hr at 25ÊC to decrease Sis1 mRNA
abundance prior to the addition of CHX.
The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Quantifications of cycloheximide chases.
Figure supplement 1. Cytosolic chaperones are required for the degradation of sen2-1HA ts and sam35-2HAts.
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Figure 5. The Cdc48-Npl4-Ufd1 complex is required for degradation of MAD substrates. ( A) CHX chase for the indicated times at 37ÊC assessing the
turnover of sam35-2HAts (pMM157) or sen2-1HAts (pMM160) in cdc48-3, npl4-1, and ufd1-1 mutant strains compared to isogenic WT strains. Proteins
were detected by immunoblotting. Graphed below is the mean and SD of the PGK-normalized HA signal at each time point for three biological
replicates. (B) Lysates from the strains used in A expressing sam35-2HAts (pMM157) or sen2-1HAts (pMM160) were fractionated at 12,000xg at 37ÊC into
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that ubiquitinated mitochondrial QC substrates require the Cdc48-Npl4-Ufd1 complex for efficient
proteasomal degradation.

The Cdc48 complex co-factors Ubx2 and Doa1 are implicated in MAD
The Cdc48-Npl4-Ufd1 complex can be recruited to substrates via Cdc48's interaction with co-factors
(Buchberger et al., 2001 ; Buchberger et al., 2015 ; Wu et al., 2016 ). Vms1 and Doa1 are two cyto-
solic Cdc48 co-factors implicated in mitochondrial homeostasis ( Heo et al., 2010 ; Izawa et al.,
2017 ; Nielson et al., 2017 ; Wu et al., 2016 ), although their reported involvement in mitochondrial
protein turnover, particularly with respect to Fzo1, has been inconsistent ( Chowdhury et al., 2018 ;
Esaki and Ogura, 2012 ; Wu et al., 2016 ). Loss of Vms1 had no effect on the degradation of sam35-
2HAts and sen2-1HAts (Figure 6Ðfigure supplement 1A ), while loss of Doa1 had a small, but signifi-
cant effect (Figure 6A ).

We next examined deletions of each of the UBX (Ubiquitin-regulatory X) proteins, a family of
Cdc48 binding co-factors containing a C-terminal Ub fold (UBX) domain ( Schuberth and Buch-
berger, 2008 ; Schuberth et al., 2004 ). Notably, only the loss of Ubx2 significantly stabilized sam35-
2HAts and sen2-1HAts (Figure 6B and Figure 6Ðfigure supplement 1B ). Ubx2 (as well as its mam-
malian ortholog, UbxD8) is well-characterized as an ER membrane protein with roles in ERAD and
lipid droplet homeostasis ( Kolawa et al., 2013 ; Neuber et al., 2005 ; Schuberth and Buchberger,
2005 ; Wang and Lee, 2012 ). We confirmed Ubx2's role in degradation of the mitochondrial ts- pro-
teins by complementation with FLAG-tagged Ubx2 in the ubx2D strain (Figure 6C ). Furthermore,
redundant functions for Ubx2 and Doa1 were ruled out by a failure of Doa1 overexpression to
restore sam35-2HAts or sen2-1HAts degradation in ubx2D cells (Figure 6D ).

As might be predicted given the role of Ubx2 in linking ubiquitinated proteins to the Cdc48 com-
plex, ubiquitinated forms of the ts- substrates accumulated in the absence of Ubx2 ( Figure 6E ). We
also detected a physical association between Ubx2-FLAG and the ts- proteins as assessed by co-
immunoprecipitation ( Figure 6F ). We see no evidence that loss of Ubx2 affects the already slow
turnover of either SAM35HA or SEN2HA ( Figure 6Ðfigure supplement 1C ), and an association
between these WT proteins and Ubx2 was also not as pronounced relative to their abundance ( Fig-
ure 6Ðfigure supplement 1D ). However, in agreement with recent reports ( Chowdhury et al.,
2018 ; Nahar et al., 2020 ; Wu et al., 2016 ), we find that loss of Ubx2 and, to a lesser extent, Doa1,
stabilizes Fzo1HA, which is a native MOM UPS substrate (Figure 6Ðfigure supplement 1E and F ).
Importantly, we also establish that Fzo1HA physically interacts with Ubx2, accompanied by an
increase in ubiquitinated forms ( Figure 6Ðfigure supplement 1G and H ). Our findings are consis-
tent with Ubx2 interacting with UPS-targeted native and misfolded substrates downstream of their
ubiquitination to facilitate degradation.

Although Ubx2 is an ER transmembrane protein, one study suggested it may also localize to mito-
chondria (Wang and Lee, 2012 ), which was recently corroborated ( MaÊrtensson et al., 2019 ). We
also confirmed this by co-localization of Ubx2-GFP with both ER (Sec63-RFP) and mitochondrial
(mtRFP) markers by microscopy (Figure 6Ðfigure supplement 1I ). The mitochondrial localization of
a portion of Ubx2 was further verified biochemically by isolation of mitochondria largely devoid of
co-purifying cytosolic (PGK), ER luminal (CPY), or ER membrane (Cue1) proteins (Figure 6G ).

As the ER and mitochondria are in close apposition at ER-mitochondrial contact sites, it is possi-
ble that ER-localized Ubx2 facilitates mitochondrial protein degradation. Recent studies have also
characterized a pathway for degradation of tail-anchored proteins mislocalized to mitochondria that
entails Msp1-mediated extraction and subsequent degradation at the ER by ERAD machinery
(Dederer et al., 2019 ; Matsumoto et al., 2019 ). To exclude a potential role for the ER in sam35-

Figure 5 continued

mitochondrial pellets (P) and post-mitochondrial supernatants (S). Fractions were subject to immunoblotting with antibodies to HA, PGK, and PORIN.
(C) Ubiquitination of sam35-2HAts and sen2-1HAts was assessed by IP from lysates of theufd1-1 mutant and isogenic WT strain used in A using TUBE
agarose, followed by immunoblotting with HA antibody. 2.5% of the TUBE input lysate was reserved and analyzed by immunoblotting.
The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Quantifications of cycloheximide chases.
Figure supplement 1. The Cdc48-Npl4-Ufd1 complex is required for degradation of MAD substrates.
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Figure 6. The Cdc48 co-factors Ubx2 and Doa1 are implicated in MAD. (A) CHX chase for the indicated times at 37ÊC assessing the turnover of sam35-
2HAts (pMM157) and sen2-1HAts (pMM160) in WT (BY4741) anddoa1D cells (yJS208). Proteins were detected by immunoblotting. Graphed below is the
mean and SD of the PGK-normalized HA signal at each time point for three biological replicates. ( B) CHX chase as in A for the indicated times at 37ÊC
assessing the turnover of sam35-2HAts (pMM157) and sen2-1HAts (pMM160) in WT (BY4741) andubx2D cells (yJS155). (C) CHX chase as in A for the

Figure 6 continued on next page
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2HAts and sen2-1HAts degradation, we assessed their turnover in mutants of the well-characterized
ER-mitochondrial encounter structure (ERMES) complex. Loss of individual ERMES subunits reduces
ER-mitochondrial tethering by greater than 70% and partially disrupts ion and lipid exchange
between the organelles ( Kornmann and Walter, 2010 ; Lahiri et al., 2014 ; Murley and Nunnari,
2016 ). The turnover of sam35-2HAts and sen2-1HAts was unaffected in strains mutant for each of the
four ERMES components (Figure 6Ðfigure supplement 1J ), indicating that significant reductions in
ER-mitochondrial contact do not impair their degradation. Furthermore, ts- protein degradation is
unaffected by combined loss of the major ERAD E2s, Ubc6 and Ubc7, or E3s, Doa10 and Hrd1 ( Fig-
ure 6Ðfigure supplement 1K and L ), with which Ubx2 functionally and physically interacts at the ER
(Neuber et al., 2005 ; Schuberth and Buchberger, 2005 ). Ubc6, Ubc7, and Doa10 have also been
implicated in the degradation of mislocalized tail-anchored proteins subsequent to Msp1-dependent
removal from mitochondria ( Dederer et al., 2019 ; Matsumoto et al., 2019 ). Degradation of sam35-
2HAts and sen2-1HAtsis independent of Msp1 ( Figure 5Ðfigure supplement 1A ). Finally, as
only ~20% of the ER is found in the mitochondrial pellet fraction at 12,000 xg (Figure 2Ðfigure sup-
plement 1D ), the ts- substrates would be expected to accumulate predominantly in the post-mito-
chondrial supernatant (S) if they were being degraded from the ER. However, fractionation data in
the proteasome mutant strain ( Figure 2C and Figure 2Ðfigure supplement 1E ) strongly suggests
that ts- protein degradation occurs from the mitochondria. Sam35-2HA ts and sen2-1HAts also largely
accumulate in the mitochondrial pellet in ubx2D cells (Figure 6H ). Similar to the ts- proteins, degra-
dation of Fzo1HA, which is a substrate for the cytosolic E3 SCFMDM30 and its cognate E2 Cdc34
(Cohen et al., 2008 ), is unaffected by loss of ERMES components (Figure 6Ðfigure supplement
1M ). Fzo1 also accumulates predominantly in the mitochondrial pellet when Ubx2 is absent ( Fig-
ure 6Ðfigure supplement 1N ). Thus, our data indicate that the mitochondrial population of Ubx2
interacts with UPS-targeted MAD substrates post-ubiquitination to facilitate their degradation from
the MOM.

Discussion
Mitochondria are essential to cellular bioenergetics and metabolism. It is therefore vital that QC
mechanisms dispose of damaged proteins that can compromise function. In mammalian cells, this is
accomplished at the macroscopic level through mitophagy ( Pickles et al., 2018 ). Here, we define a
UPS-mediated pathway for the degradation of individual dysfunctional yeast MOM proteins using
two newly-established model QC substrates, sam35-2HA ts and sen2-1HAts (schematized in Figure 7 ).
While previous mitochondrial UPS substrates have consisted primarily of native proteins ( Belgareh-
TouzeÂet al., 2017 ; Cohen et al., 2008 ; Heo et al., 2010 ; Wu et al., 2016 ), sam35-2HAts and sen2-
1HAts contain mutations that render them unstable at the non-permissive temperature, and thus
mimic damaged, misfolded proteins. These new mitochondrial model substrates have revealed a

Figure 6 continued

indicated times at 37ÊC assessing the turnover of sam35-2HAts (pMM157) and sen2-1HAts (pMM160) in WT (BY4741) andubx2D (yJS155) cells co-
expressing either empty vector (EV; pRS315) orCEN Ubx2-FLAG (pMM242). (D) CHX chase as in A for the indicated times at 37ÊC assessing the
turnover of sam35-2HAts (pMM231) or sen2-1HAts (pMM234) in WT (BY4741) cells orubx2D (yJS155) cells expressing either EV (pRS315) or Doa1-FLAG
(pMM254) from a high copy 2mplasmid. (E) Ubiquitination of sam35-2HAts and sen2-1HAts was assessed by IP using TUBE agarose or anti-HA agarose
from ubx2D (yJS155) and WT (BY4741) lysates expressing EV (pRS315), sam35-2HAts (pMM157), or sen2-1HAts (pMM160), followed by immunoblotting
with HA or c-myc antibody. 2.5% or 1% of the IP input lysate was reserved and analyzed by immunoblotting. (F) Co-IP of Ubx2-FLAG (pMM242) with
sam35-2HAts or sen2-1HAts (pMM231 and 234, respectively) frompre1-1 pre2-2 (WCG4-11/21a) cells was assessed by immunoblotting with the
indicated antibodies. IP of Ubx2-FLAG from cells co-expressing EV (pRS316) in place of HA-tagged substrates and 0.5% of the input lysate are shown
for comparison. (G) Lysate (`Total') and increasing amounts of mitochondria purified by 12,000xg and sucrose gradient fractionation (`Mitos') from Ubx2-
TAP-expressing cells were examined by immunoblotting with the indicated antibodies. ( H) Lysates from WT (BY4741) andubx2D (yJS155) cells
expressing sam35-2HAts or sen2-1HAts (pMM157 and 160, respectively) were fractionated at 12,000xg at 37ÊC into mitochondrial pellets (P) and post-
mitochondrial supernatants (S). Fractions were subject to immunoblotting with antibodies to HA, PGK, and PORIN.
The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Quantifications of cycloheximide chases.
Figure supplement 1. The Cdc48 co-factors Ubx2 and Doa1 are required for MAD.
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tightly-coupled degradation pathway at the MOM that requires both cytosolic and mitochondrial
machinery.

This MAD QC pathway utilizes factors that have not been previously linked to mitochondria or
implicated in MAD of native MOM proteins. It is also not identical to any other cellular QC pathway,
although there are points of intersection. All of these degradation pathways, unsurprisingly, require
26S proteasome activity. In many cases, the involvement of the Cdc48-Npl4-Ufd1 AAA-ATPase com-
plex represents another point of convergence ( Benischke et al., 2014 ; Cohen et al., 2008 ;
Gallagher et al., 2014 ; Heo et al., 2010 ; Jarosch et al., 2002 ; Tanaka et al., 2010 ; Wu et al.,
2016 ; Xu et al., 2011 ). However, tail-anchored proteins mistargeted to mitochondria and unim-
ported mitochondrial precursors that accumulate at the mitochondrial surface following mitochon-
drial import stress also require the AAA-ATPase Msp1 for their recognition and extraction from
mitochondria ( Chen et al., 2014 ; Matsumoto et al., 2019 ; Okreglak and Walter, 2014 ;
Weidberg and Amon, 2018 ; Wohlever et al., 2017 ). We found Msp1 to be dispensable for the
degradation of mitochondrial ts- substrates. It was recently determined that the degradation of
these mislocalized tail-anchored proteins involves their re-localization to the ER following Msp1
extraction, where they are then ubiquitinated by ERAD machinery ( Dederer et al., 2019 ;
Matsumoto et al., 2019 ). The MAD QC pathway characterized here is distinct from this pathway: ts-
substrates remain mitochondrial and are degraded independently of ERAD E2s or E3s. The molecu-
lar determinants, spatial restrictions, and co-factors that underlie ubiquitination and degradation at
the mitochondria versus Msp1-dependent ER re-targeting will be of particular interest to elucidate
going forward.
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Figure 7. A model MAD QC pathway based on the present study. When the temperature is increased to 37ÊC, the peripheral MOM ts- proteins sam35-
2HAts and sen2-1HAts become non-functional (denoted by a star) yet remain at the mitochondrial outer membrane (step 1). They are recognized as
quality control substrates and ubiquitinated (step 2), which requires cytosolic chaperones (Ssa1 and Sis1) and the ubiquitin ligase San1 (for sam35-2HAts)
or Ubr1 and the ubiquitin conjugating enzyme Ubc4 (for sen2-1HA ts). Once ubiquitinated, the Cdc48-Npl4-Ufd1 unfoldase, along with its co-factor
Doa1 and a mitochondria-localized pool of its co-factor Ubx2 (step 3), act to direct them to the 26S proteasome for degradation (step 4).
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The Cdc48-Npl4-Ufd1 complex plays a role in both of these pathways and utilizes unique sub-
strate recruitment co-factors. Of these co-factors, Vms1 is recruited to mitochondria from the cytosol
in response to translational or oxidative stress ( Izawa et al., 2017 ; Nielson et al., 2017 ) and cyto-
solic Doa1 is implicated in the turn-over of native MOM proteins ( Wu et al., 2016 ). Only loss of
Doa1 had an effect on mitochondrial ts- protein degradation. However, we found another Cdc48
complex co-factor, Ubx2, to have a substantially greater role in degradation of the two ts- sub-
strates. Ubx2 is well-known as an ER transmembrane protein with a role in ERAD. Here, we provide
strong evidence for a discrete, functional, mitochondrial pool of Ubx2. Interestingly, we find that
Ubx2 also interacts with Fzo1 at mitochondria and is required for its degradation. This raises the
interesting possibility that Ubx2, as well as its mammalian ortholog UbxD8, will have a broad role in
MAD and mitochondrial homeostasis in addition to its role in ERAD. Consistent with this, while this
manuscript was in preparation, a role for Ubx2 in the turnover of mitochondrial precursor proteins
arrested in the Tom40 translocon was reported ( MaÊrtensson et al., 2019 ).

With regard to ubiquitination, we find no evidence for the involvement of Rsp5 or SCF Mdm30 ubiq-
uitin ligases, which are both implicated in ubiquitination of native MOM proteins and/or mainte-
nance of mitochondrial integrity ( Belgareh-TouzeÂ et al., 2017 ; Cohen et al., 2008 ; Escobar-
Henriques et al., 2006 ; Fritz et al., 2003 ; Wu et al., 2016 ). Instead, San1 and Ubr1, which have
broad roles as quality control E3s for misfolded cytosolic and nuclear proteins ( Amm et al., 2016 ;
Amm and Wolf, 2016 ; Eisele and Wolf, 2008 ; Gardner et al., 2005 ; Guerriero et al., 2013 ;
Heck et al., 2010 ; Khosrow-Khavar et al., 2012 ; Lewis and Pelham, 2009 ; Nillegoda et al., 2010 ;
Prasad et al., 2012 ; Prasad et al., 2018 ; Samant et al., 2018 ; Summers et al., 2013 ), are required
to degrade mitochondrial ts- substrates. Recent studies suggest that the degradation of many cyto-
solic San1 and Ubr1 substrates requires prior nuclear import ( Prasad et al., 2018 ; Samant et al.,
2018 ). Sam35-2HAts and sen2-1HAts, however, remain mitochondrial when degradation is blocked
and specific factors implicated in nuclear import were found to be dispensable. While there have
also been reports of Ubr1 contributing to ERAD ( Stolz et al., 2013 ), as noted above, MAD QC
appears to be distinct from ERAD.

For ubiquitination of QC substrates to occur, they must first be recognized as being improperly
folded. In most QC systems, this recognition requires chaperones. Here, the involvement of the SSA
family of Hsp70s in mitochondrial ts- protein degradation reflects commonality with cytosolic QC
pathways and ERAD pathways for cytosolic misfolded domains (ERAD-C). The SSA family of chaper-
ones is required for co-translational folding or import of at least some mitochondrial proteins ( Ben-
Menachem et al., 2018 ; Deshaies et al., 1988 ; Sass et al., 2003 ; Young et al., 2003 ), positioning
them to play a role in recognizing misfolded mitochondrial proteins and targeting them to the UPS.
On the other hand, we have found that the degradation of a native MOM protein, Fzo1, largely
does not require Hsp70 chaperones, extending to mitochondria a distinction between misfolded
substrates and those whose ubiquitination occurs in a regulated manner.

Whether there are other, yet to be identified, factors involved in the degradation of MOM pro-
teins remains to be seen. Several mitochondrial inner membrane and IMS proteins have also been
identified as proteasome substrates ( Bragoszewski et al., 2013 ; Margineantu et al., 2007 ;
Pearce and Sherman, 1997 ; Radke et al., 2008 ). It now becomes of interest to ascertain how their
degradation overlaps with and diverges from the QC pathway defined herein. Finally, it will also be
important to determine how our findings extend to mammalian mitochondrial protein turnover and
mitochondrial homeostasis as a whole.

Materials and methods

Yeast strains, plasmids, and growth conditions
Saccharomyces cerevisiaestrains expressing ts- alleles were cultured at 25ÊC in minimal media sup-
plemented with 2% glucose and the appropriate amino acids, unless otherwise indicated. For spot
growth assays, 10-fold serial dilutions beginning with 0.1 OD 600 units of cells were spotted to YPD
and incubated at 25ÊC for 3 days or 37ÊC for 2 days.

Strains used in this study can be found in the Supplementary file 1 : Key Resources Table. Dele-
tion collection strains were confirmed by PCR using a KanMX-specific oligo (oMM19; see
Supplementary file 1 : Key Resources Table for oligo sequences) paired with ORF-specific primers
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annealing 500 bp upstream of the start codon. A strain expressing genomic sam35-2HA ts (yMM37)
was constructed by a one-step PCR-mediated HA tagging using pFA6a-3HA-His3M � 6
(Longtine et al., 1998 ) as a PCR template with oligos oMM84 and oMM85 and integration into a
sam35-2ts strain (Li et al., 2011 ). Deletion strains yMM149 (ubr1::KanMX) and yJS155 (ubx2::KanMX)
were constructed by PCR-mediated gene disruption using yeast deletion collection strains (GE Dhar-
macon) as PCR templates with oligos oMM236 and oMM237, followed by integration into strain
WCG4a (for yMM149) or oligos oJS18 and oJS20 with integration into BY4741 (for yJS155). Strain
yJS208 (doa1::KanMX) was constructed by PCR-mediated gene disruption using pFA6a-KanMX6
(Longtine et al., 1998 ) as a PCR template with oligos oMM257 and oMM258 and integration in
strain WCG4a.

Plasmids used in this study can be found in the Supplementary file 1 : Key Resources Table. Plas-
mid pMM157 was constructed by PCR amplification of sam35-2HA ts with adjacent promoter and ter-
minator sequence from yMM37 using oligos oMM128 and oMM129 containing flanking XhoI and
XbaI restriction sites, respectively, and ligation of this insert into the XhoI and XbaI sites in pRS315
(Sikorski and Hieter, 1989 ). Plasmid pMM160 was constructed by PCR amplification of sen2-1HA ts

with adjacent promoter and terminator sequence from yMM41 using oligos oMM129 and oMM130
containing flanking XbaI and XhoI restriction sites, respectively, and ligation of this insert into the
XhoI and XbaI sites in pRS315. Plasmids pMM231 and 234 were constructed by subcloning the
Xho1/XbaI flanked insert from pMM157 and 160, respectively, into pRS316 ( Sikorski and Hieter,
1989 ). Plasmids pMD1 and pMD4 were constructed by digestion of pMM157 and pMM160, respec-
tively, with BamHI/AscI to replace the HA tag with GFP from pFA6a-GFP cut with the same sites.

Plasmid pMM242 was generated in two steps. First, pUBX2-UBX2-TAP with flanking XhoI and
AscI sites was PCR amplified using a Ubx2-TAP strain (GE Dharmacon) as a template with oligos
oJS18 and oJS19 and ligated into pRS315. The TAP tag was then dropped out by restriction digest
with BamHI/AscI and replaced with annealed oligos oMM240 and oMM241 encoding a 3x FLAG epi-
tope with overhang compatible for ligation into BamHI/AscI. pMM254 was generated by PCR ampli-
fying the Doa1 promoter and ORF from the genome of BY4741 with oligos containing flanking XhoI
(oMM267) and AscI/3xFLAG epitope (oMM268) and ligation into pRS426 ( Christianson et al., 1992 )
digested at the same sites.

Antibodies
Rabbit polyclonal anti-Sam35 (Chan and Lithgow, 2008 ) was a generous gift from Trevor Lithgow.
Rabbit polyclonal anti-Sis1 (Yan and Craig, 1999 ) was a generous gift from Elizabeth Craig. Rabbit
polyclonal anti-Cue1 and anti-ubiquitin were described previously ( Kostova et al., 2009 ). Commer-
cial antibodies used were: mouse monoclonal PORIN (MTCO1; abcam); rabbit polyclonal Prc1 (CPY;
abcam); mouse monoclonal GFP (Santa Cruz Biotechnology); mouse monoclonal phosphoglycerate
kinase 1 (PGK; Life Technologies); rat monoclonal peroxidase-conjugated anti-HA (3F10; Roche);
mouse monoclonal anti-FLAG (M2; Sigma-Aldrich); rabbit polyclonal anti-FLAG (Sigma-Aldrich); and
rabbit polyclonal anti-c-myc (Abcam).

Cycloheximide chase and immunoblotting
Cycloheximide (CHX) chase analyses were performed as described previously Metzger et al. (2013)
at 25ÊC or 37ÊC. For chases at 37ÊC, cells were cultured at the permissive temperature of 25ÊC until
the addition of 100 mg/mL CHX, after which the temperature was increased to 37ÊC to accelerate
the turnover of the ts- proteins. Maintaining cells at 25ÊC until the addition of CHX may be insuffi-
cient to fully inactivate ts- conditional yeast strains prior to the CHX chases, resulting in an underesti-
mation of the role of the inactivated protein in degradation of substrates. Cells were then lysed in
1% b-mercaptoethanol ( bme)/250 mM NaOH and proteins were precipitated in 5% trichloroacetic
acid (TCA). Protein pellets were resuspended in TCA sample buffer (3.5% SDS, 0.5 M DTT, 80 mM
Tris pH8.8, 8 mM EDTA, 15% glycerol, 0.1 mg/mL bromophenol blue). Samples were analyzed by
SDS-PAGE and immunoblotting with the indicated antibodies according to standard procedures.
Proteins were detected using SuperSignal West Pico Luminol Enhancer Solution (Thermo Scientific)
or Amersham ECL Select (GE Healthcare) and a G:box (Syngene) or c280 Imager (Azure). Each CHX
chase was repeated at least three times; shown in each figure is a representative blot. The percent
of substrate remaining was calculated by quantification of anti-HA signal using ImageJ (National
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Institutes of Health, Bethesda, MD), followed by normalization of this signal to the anti-PGK signal at
the same time point. The `0' time points were set to 100% and the mean and standard deviation
(SD) at each time point for three independent biological replicates were graphed using GraphPad
Prism 8 and fitted with one phase decay curves. Time points appearing to not have error bars have
SD smaller than the size of the symbol.

Mitochondrial fractionation and sodium carbonate extraction
Mitochondria were isolated as described previously Gregg et al. (2009) , with the following changes
for the analysis of ts- proteins. Cultures were grown in minimal media containing the appropriate
amino acids at 25ÊC. Cells were incubated in DTT Buffer (Gregg et al., 2009 ) for 30 min at 25ÊC and
in Zymolyase Buffer (Gregg et al., 2009 ) with Zymolyase-100T (MP Biomedicals) for 45 min at 25ÊC,
after which time the resulting spheroplasts were washed and resuspended in an equal volume of
Zymolyase Buffer without Zymolyase-100T, either at 25ÊC or prewarmed to 37ÊC, as indicated. CHX
(100 mg/mL) was added and spheroplasts were incubated without shaking at 25ÊC or 37ÊC for 5 min
(sen2-1HAts) or 15 min (sam35-2HAts). Spheroplasts were then homogenized using a glass homoge-
nizer and the resulting cleared lysate was fractionated at 12,000x g into a post-mitochondrial super-
natant fraction (S) and mitochondrial pellet (P). Both fractions were precipitated in 10% TCA and
washed in 2% TCA prior to resuspension in TCA sample buffer. Equivalent proportions of S and P
were analyzed by SDS-PAGE and immunoblotting.

For the isolation of purified mitochondria devoid of other organelles, mitochondrial pellets iso-
lated as above were resuspended in 3 mL SEM buffer (10 mM Tris-HCl pH 7.4, 0.6 M sorbitol, 1 mM
EDTA, 0.2% BSA) and overlaid on a sucrose gradient layered top to bottom with 6 mL 15% (weight/
volume) sucrose/6 mL 23% sucrose/16 mL 32% sucrose/6 mL 60% sucrose and spun in a swinging-
bucket rotor at 134,000x g for 1 hr at 4ÊC. The intact mitochondria residing at the 60%/32% sucrose
interface were recovered and gently resuspended in SEM buffer and spun in a swinging-bucket rotor
at 10,000xg for 30 min at 4ÊC. The pure mitochondrial pellet was precipitated in 10% TCA and
washed in 2% TCA prior to resuspension in TCA sample buffer.

For sodium carbonate (Na2CO3) extraction of peripheral mitochondrial proteins, crude mitochon-
dria isolated as above were treated with 0.2 M Na 2CO3 or NaCl as described previously
Boldogh and Pon (2007) and analyzed by immunoblotting.

Ubiquitin immunoblotting and tandem ubiquitin-binding entities (TUBE)
isolation of ubiquitinated proteins
For ubiquitin visualization using anti-ubiquitin immunoblotting, 10±30 OD 600 units of mid log phase
(OD600 = 0.8±1) cells were grown at 25ÊC and incubated at 37ÊC for 30 min prior to protein prepara-
tion using bme/NaOH/TCA, as described above. Protein pellets resuspended in TCA sample buffer
were diluted in Dilution buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM EDTA, 5% glycerol, 1%
Triton X-100, 1x Complete Protease Inhibitor Cocktail (Roche), 1 mM NEM) and HA-tagged sub-
strates were isolated by immunoprecipitation (IP) for 18 hr at 4ÊC using mouse monoclonal anti-HA
affinity matrix (Sigma). Immunoprecipitated proteins were eluted with SDS-PAGE sample buffer and
analyzed by SDS-PAGE. Ubiquitinated species were visualized by immunoblotting with ubiquitin
antibodies. Unmodified substrates were detected by immunoblotting with HA antibodies.

For ubiquitin visualization using anti-myc immunoblotting, 10±30 OD 600 units of early log phase
(OD600 = ~0.4) cells were grown at 25ÊC, treated with 0.1 mM CuSO4 for 4 hr to induce expression
of myc-ubiquitin, then incubated at 37ÊC for 30 min. Proteins were prepared as above. Mouse mono-
clonal anti-HA affinity matrix was pre-blocked with 1% ovalbumin and protein lysate was pre-cleared
with Glutathione Sepharose 4-B (GE Healthcare Life Sciences) overnight at for 18 hr at 4ÊC, prior to
IP of cleared protein lysate with the pre-blocked anti-HA affinity matrix for 4 hr at 4ÊC. Ubiquitinated
species were visualized by immunoblotting with rabbit anti-c-myc antibodies. Unmodified substrates
were detected by immunoblotting with HA antibodies.

For TUBE isolation of ubiquitinated proteins, 30±100 OD 600 units of mid log phase cell were
grown at 25ÊC and incubated at 37ÊC for 30 min, at which time they were frozen at � 80ÊC. Cell lysis
was performed using glass beads in Lysis buffer (50 mM Tris-HCl pH 7.5, 200 mM NaCl, 1% Triton
X-100, 1x Complete Protease Inhibitor Cocktail, 1 mM NEM). Lysates were cleared by centrifugation
at 13,000xg for 20 min, then centrifugation at 13,000x g for 5 min. An aliquot of input lysate was
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precipitated in 10% TCA and protein pellets were resuspended in TCA sample buffer. The remainder
of the lysate was incubated with TUBE-1 agarose (Life Sensors) for 18 hr at 4ÊC; ubiquitinated pro-
teins were eluted from the TUBE-1 agarose with SDS-PAGE sample buffer. HA-tagged substrates in
the input and TUBE-bound species were analyzed by SDS-PAGE and immunoblotting with HA
antibodies.

For analysis of ubiquitination from 12,000x g mitochondria and post-mitochondrial supernatant
fractions, cells were grown at 25ÊC and treated with 0.1 mM CuSO4 for 2 hr to induce expression of
myc-ubiquitin prior to crude mitochondrial fractionation as described in the previous section. S and
P fractions were then subject to protein preparation and IP as described above for ubiquitin visuali-
zation using anti-myc immunoblotting.

Co-immunoprecipitation
For co-IP, 10±30 OD600 units of mid log phase (OD 600 = 0.8±1) cells expressing Ubx2-FLAG were
grown at 25ÊC and incubated at 37ÊC for 1 hr prior to glass bead lysis in Lysis Buffer (50 mM Tris-HCl
pH7.5, 100 mM NaCl, 5% glycerol, 1 mM DTT, 1 mM PMSF, 1x Complete Protease Inhibitor Cock-
tail, 1 mM NEM). Cleared lysate was added to anti-HA affinity matrix and immunoprecipitated for 18
hr at 4ÊC; bound proteins were eluted with SDS-PAGE sample buffer and analyzed by
immunoblotting.

Microscopy
For imaging Ubx2-GFP, logarithmically-growing yeast cells were immobilized on coverslips coated
with concanavalin A and imaged using a Nikon Eclipse Ti inverted microscope, equipped with a 64
mm pixel CoolSNAP HQ 2 camera (Photometrics), Intensilight C-HGFIE illuminator, and 100x NA 1.42
Plan Apo objective. For live-cell analysis of ts- proteins, logarithmically growing cells were embed-
ded in agarose and treated with 100 mg/mL CHX at 25ÊC (time = 0) and then incubated at 37ÊC for
the indicated times before imaging using a Nikon Eclipse Ti inverted microscope u60x NA 1.45 Plan
Apo objective, Yokogawa spinning disc, 488 and 561 nm excitation lasers (Agilent technology MCL-
400), back-illuminated EMCCD camera (Andor, DU888), and a 2x relay lens. A Nikon DS-U3 camera
was used to record DIC images. 200 nm thick Z-sections spanning entire cell ( ~6 mm), were acquired.
ImageJ (National Institutes of Health) was used to assemble the figures.
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