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Cognitive and emotional mathematics learning problems in primary and secondary school 
students. 

Amy Devine 

This thesis systematically examined the link between developmental dyscalculia, a 
specific learning difficulty of mathematics, and mathematics anxiety, a negative emotional 
reaction to mathematics tasks. The link between these maths learning issues was examined by 
measuring their prevalence in large samples of English primary (N = 1004; N= 830) and 
secondary school (N = 927) students. Gender differences were also explored. 

Systematically varying diagnostic criteria for dyscalculia revealed that its prevalence 
ranged between 0.89-17.23 percent. When absolute performance thresholds were used, there 
was no gender difference in dyscalculia prevalence.  

The association of mathematics performance with other cognitive skills and 
mathematics anxiety was investigated longitudinally in subsamples of children with 
dyscalculia (n =10), typical mathematics performance (n=10) and high maths ability (n = 11). 
80 percent of the children in the dyscalculia group still met the criteria for diagnosis at the 
final time point. Mathematics performance was positively associated with working memory 
performance and negatively associated with mathematics anxiety. Furthermore, children with 
dyscalculia had higher maths anxiety than the other two groups. 

The relationship between dyscalculia and high maths anxiety was estimated in a larger 
sample (N = 1757). Relatively few children with dyscalculia had high maths anxiety and the 
majority of students with high maths anxiety in fact had mathematics performance within or 
above the average range. Girls had higher maths anxiety than boys, and more girls had both 
dyscalculia and maths anxiety than boys. There was an expected negative correlation between 
maths anxiety and maths performance in the total sample, but this correlation was negligible 
in the children with dyscalculia. 

Collectively, these results suggest that cognitive and emotional mathematics problems 
are dissociable, and indicate that children with dyscalculia and maths anxiety likely require 
different types of intervention. Furthermore there appears to be no gender difference in maths 
performance or in the prevalence of dyscalculia. However, girls have higher maths anxiety 
than boys, and are more likely to be affected by maths anxiety alongside developmental 
dyscalculia. Maths anxiety may be a potential explanation for the underrepresentation of 
females in careers involving mathematics. 
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1. Chapter One: Introduction 

In today's information age, mathematical skills are becoming as important for 

everyday life and employment as literacy. However, cross-national research has 

suggested that a significant proportion of children and adults have problems acquiring 

mathematical skills. This can have large-scale implications, for example, National 

Numeracy UK has reported that only 22% of working-age people have functional 

maths skills equivalent to a GCSE grade C or above, which suggests that four in every 

five people have a low level of numeracy. Higher levels of numeracy are linked to 

better health and well-being, higher wages, and better employment opportunities. 

Thus, low numeracy in a large proportion of the population results in large monetary 

costs to the government, individuals, and employers (National Numeracy, n.d.). Fewer 

girls take mathematics beyond GCSE than boys (Smithers, 2014), and women are less 

likely to undertake degrees or careers in mathematically-related subjects (OECD, 

2014). Hence, research investigating the barriers to the acquisition of mathematical 

skills and the uptake of mathematical careers is of great significance. 

Mathematical learning impairments of developmental origin are usually 

termed mathematical learning disability (MLD) or developmental dyscalculia (DD). 

Mathematics anxiety (MA), on the other hand, refers to a debilitating negative 

emotional reaction to mathematical tasks, which may occur in children and adults 

with and without mathematics learning disabilities (LDs) (Ashcraft, 2002). 

Importantly, MA has been linked to an avoidance of careers involving quantitative 

skills (Ashcraft, 2002; Ma, 1999).The cognitive and affective factors underpinning 

mathematical learning problems are currently hot topics in education, psychology, and 

neuroscience research fields, hence the body of published work in these areas is 

growing rapidly. Despite this mounting research, there is little agreement on how to 

define or diagnose these mathematics learning problems. Furthermore, the causal 

origins of both DD and MA remain unclear as prior research findings have supported 

competing theories. International research has also revealed inconsistencies with 

regard to gender differences in mathematics performance, DD prevalence, and MA. 

The current thesis aims to investigate the diagnosis and prevalence of DD and MA, 

and gender differences in large samples of UK primary and secondary school 

students. 
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Furthermore, the current thesis aims to investigate the link between cognitive 

and emotional mathematics problems. It may be commonly thought by people 

unfamiliar with MA research that only children and adults who struggle with 

mathematics may be anxious about it, however, research to date has not provided 

adequate evidence that MA is exclusively linked to poor performance /MLD. 

Although much research has focused on the correlation of MA and mathematics 

performance across the ability spectrum, little research has specifically investigated 

the association between MA and performance within mathematical disability 

subgroups or the prevalence of co-occurrence of cognitive and emotional mathematics 

problems. The current thesis investigates the association of MA and DD in a large 

sample of school students to elucidate whether these cognitive and emotional 

mathematics learning problems are closely linked or whether they are in fact 

dissociable issues. 

1.1 Developmental dyscalculia  

1.1.1 Definitions. 

Developmental dyscalculia (DD) is a learning difficulty highly specific to 

mathematics. Children with DD lag behind their peers in mathematics performance 

but otherwise, their general cognitive ability, reading, and writing skills are normal 

(Butterworth, 2005). International research has indicated that DD affects between 1.3 

and 13% of the population (see section 1.1.2). Surprisingly, research into DD has been 

relatively neglected compared to other developmental LDs such as reading disability 

(Hanich, Jordan, Kaplan, & Dick, 2001; Mazzocco & Myers, 2003). Consequently, 

there is no consensus with regard to how DD should be defined or measured; the 

selection criteria and tests used in different studies have varied greatly. 

One possible reason for the lack of consensus regarding the definition of DD is 

the use of different terminology in the literature. Other common terms include 

mathematics/ mathematical/ arithmetic learning disability (MLD or ALD), and 

mathematics /arithmetic difficulties. These terms are used interchangeably but often 

describe different groups of children (Szűcs & Goswami, 2013). Some researchers 

argue that MLD and DD refer to the same population: children with a specific, 

biologically-based disorder of mathematical skills, whereas the terms mathematics/ 

arithmetic difficulties and low achievement are used to refer to a larger group of 



3 
 

children (up to the lowest 25-30%) who underperform in mathematics for any of a 

number of reasons, including environmental factors (Butterworth & Reigosa-Crespo, 

2007; Mazzocco, 2007). However, this distinction is not universally adopted 

(Kaufmann et al., 2013). In the current work, we define DD as a specific, severe 

deficit of mathematical skills. This is a strictly operational definition of DD which 

does not make any theoretical assumptions about its causes. 

1.1.2 Prevalence. 

In order to estimate the prevalence of DD in the current work, it was necessary 

to first review the diagnostic criteria and prevalence rates reported in previous 

research. For the purposes of the following review, I discriminated two different kinds 

of studies. Firstly, the majority of DD research involves experimental studies, in 

which specific hypotheses related to the causal factors and characteristics of DD are 

tested in a controlled environment. Secondly, demographic studies measure the 

prevalence of DD in a particular population at a particular point in time.  

In general, experimental studies have used broad selection criteria for DD, 

usually in order to boost samples sizes and to increase the chances of detecting group 

differences (Murphy, Mazzocco, Hanich, & Early, 2007). These studies have used 

performance cut-offs ranging from the 10th to the 45th percentile (that is, performance 

ranging from 1.3 standard deviations, SD, below the mean, up to very near the mean 

performance score; Murphy et al. 2007). The range of cut-offs used in experimental 

studies is represented in Figure 1. A percentile score represents the value below which 

a certain percentage of cases fall (i.e., a cut-off at the 45th percentile would represent 

the lowest performing 45% of the sample). Therefore, studies using cut-offs of 10 – 

45% are inconsistent with the estimated prevalence of DD of between 1.3 and 13%. 

Furthermore, using broader selection criteria increases the likelihood of including 

children who show lower than average mathematics performance but do not have 

clinical MLD or whose mathematics performance is, in fact, within the average range. 

Problems with lenient cut-offs are further exacerbated by the fact that children's 

mathematical performance can naturally fluctuate in the normal range around the 

mean (e.g. in a ±0.5 or ±1 SD range).  
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Figure 1. The range of cut-off scores used in experimental DD studies illustrated on 

the normal distribution. 
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For these reasons, experimental studies cannot provide accurate prevalence 

estimates for DD and most experimental studies probably substantially inflate DD 

prevalence estimates. Therefore, it is questionable whether findings can be considered 

to characterise DD adequately. For more accurate estimates of DD frequency, it is 

necessary to examine prevalence studies, that is, studies that measure the number of 

cases of DD in a particular (sufficiently large) population at a particular point in time. 

In general, prevalence studies tend to use more conservative diagnostic criteria than 

experimental studies. The following section provides a survey of all the published 

prevalence studies relating to DD, followed by a critique of the studies as a whole. As 

we have defined DD as a selective impairment of mathematical skills, where possible, 

prevalence estimates for mathematics disability only are reported. 

Kosc (1974) is the first reported prevalence study of DD, in which a multi-step 

screening procedure was used to identify children with DD in Slovakia. 199 boys and 

176 girls in fifth grade undertook two sets of group tests. The first set included a dot 

calculation and geometrical figures task. The second set of assessments tested 

knowledge of numerical operations, sequences, and mathematical symbols. Children 

who received scores at or below the 10th percentile underwent further testing to rule 

out other comorbid neurological or developmental deficits. Children with an IQ lower 

than 90, as tested with three measures of general mental ability, were excluded. 

Although the exact criteria were not reported in this paper, out of the 375 children 

studied, 24 children (6.4 %) were identified as having DD (no gender ratio was 

reported). It is important to note that although Kosc used some standardised tests in 

the study, some of the tests used were not standardised until after data collection, and 

some were not standardised at all. Therefore it is unknown whether the tests used in 

Kosc’s study were at an appropriate level for the sample or whether the tests assessed 

a comprehensive range of mathematical skills. 

Since Kosc’s seminal study, other epidemiological studies have reported 

similar prevalence estimates for DD in Europe, the Americas, and Asia. These studies 

are discussed in detail in the following section and are summarised in Table 1. 
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Table 1.  

Summary of DD prevalence studies.  

First author Country Sample Prevalence Criteria 

Kosc (1974) Slovakia 375  6.4% ≤  10% + control 

Badian (1983)  US 1476 3.6 %  ≤  20% 

Klauer (1992) Germany 546 4.4% < 2 SD  

Lewis et al (1994) UK 1056  1.3% 1 SD + control 

Gross-Tsur et al (1996) Israel 3029 6.5 % 2 year lag + control 

Badian (1999) US 1075  3.9% < 25a  

Hein et al (2000) 

%  + control 

Germany 181/182  6.6 %  < 17 % / 25% + 

control 

Ramaa et al (2002) 

 

India 251/ 

1408 

5.98% / 

5.54% 

Exclusionary criteria /  

2 year performance 

lag  

a 

Mazzocco et al (2003) US 210 9.6% < 1 SD / < 10 %  b 

Desoete et al (2004) 

 

Belgium 3978 2.27% / 7.7% 

/ 6.59%

≤ 2 SD + control + 

RTI  c 

Koumoula et al (2004) Greece 240 6.3%  < 1.5 SD + control 

Barbaresi et al (2005)  

 

US 5718 5.9% / 9.8% / 

13.8% 

Minnesota Regression 

Formula; discrepancy 

formula; < 90 + 

control 

b 



7 
 

Table 1. Cont’d     

First author Country Sample Prevalence Criteria 

Barahmand (2008) Iran 1171 3.8% ≤ 2 SD  + control 

Dirks et al (2008) Netherlands 799  10.3 % / 

5.6% 

≤ 25% /  ≤ 10% + 

control b 

Geary et al (2007; 2010; 

2011; 2012)  

US 238  5.4% ≤ 15% + control 

Landerl et al (2010) Germany 2586 3.2 <1.5 SD  % 

Reigosa-Crespo et al 

(2012) 

Cuba 11,652/ 3.4% 

1966 

<15%/ <2 SD  

 

Notes. Where possible, reported prevalence estimates are for mathematics disability 

only. RTI = resistance to intervention. a Prevalence estimates when using the different 

criteria. b Prevalence for persistent DD. c Prevalence estimates for the Second, Third 

and Fourth grades respectively.  
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Lewis, Hitch, and Walker (1994) administered standardised reading and 

spelling tests, a mathematics test (Young's Group Mathematics Test; Young, 1971) 

and a non-verbal reasoning test on 1,056 children (497 girls) aged 9- to 10-years old 

in England. Children who had a standardised mathematics score below 85 (equivalent 

to the 16th percentile) as well as reading and nonverbal reasoning scores above 90, 

were classified as having DD. 1.3% of the sample had DD using these selection 

criteria. The prevalence of children with combined mathematics and reading 

difficulties was 3.6%. Although the achievement tests used by Lewis et al. were 

standardised, ceiling effects emerged for both of the achievement tests. The tests were 

standardised 14 to 20 years prior to data collection, so standard norms were likely 

outdated. Given that many children reached ceiling on the tests and that 

standardisation was based on outdated norms, it is likely that these tests did not detect 

all children with DD. 

Landerl and Moll (2010) screened 2,586 Austrian children in Grades 2 to 4 for 

LDs. Children completed standardised tests of arithmetic, reading, and spelling. 

Children who spoke German as a second language, had a diagnosis of AD(H)D, or a 

formal diagnosis of general learning problems were excluded from the study. In the 

screening phase, arithmetic disability was defined as mathematics performance below 

1 or 1.5 SD below the mean and the authors reported that 15.4% and 6.3% of the 

cohort met these criteria respectively. However, around 25- 40% of the children 

meeting these criteria had comorbid reading and spelling difficulties; the percentage 

of children with 'specific arithmetic disability' using the mean–1.5 SD criterion was 

3.2%.  

Klauer conducted a similar prevalence study in Germany, using a battery of 

tests including assessments of reading, spelling, and mathematics (Klauer, 1992). 

Klauer used a performance cut-off of 2 SD below the mean score on the mathematics 

test to define DD and found 4.4% of the total sample (546 children) met this criterion.  

In another German study, Hein and colleagues aimed to diagnose children 

with 'specific disorder in arithmetic' according to the ICD-10 criteria and to compare 

children from rural and urban areas (Hein, Bzufka, & Neumärker, 2000). The rural 

study included 181 children in 2nd Grade; the urban study involved 182 children in 

3rd Grade.  Hein and colleagues used a multi-step screening and validation process 
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for each study. For the screening phase, standardised mathematics, reading or spelling 

assessments were administered, appropriate for the grade level of each sample. The 

results from the rural study adhered to the standardisation norms which allowed Hein 

et al. to use the criteria specified by the tests to define discrepancies between reading 

and mathematics performance. Children with a score lower than the 17th percentile on 

the mathematics assessment and a score above the 34th percentile on the reading 

assessment were classified as having ‘suspected’ DD; 6.6% of the sample met these 

criteria. Grade 3 mathematics and spelling tests were used for the urban sample, but 

these tests were administered slightly earlier in the academic year than the tests were 

designed to be administered. Thus, the results did not correspond with the 

standardisation norms; performance on both tests was significantly lower than the 

standardisation mean. Hein et al. suggested that this was in part due to administering 

the Grade 3 tests too early, but also because the tests used for the urban sample were 

standardised many years earlier. Consequently, the test criteria could not be used to 

define DD. Hein et al. selected children who performed above the 50th percentile on 

the spelling test and below the 25th percentile on the maths assessment, which resulted 

in 6.6% of the sample meeting the criteria for suspected DD. A subset of children 

completed a battery of follow-up assessments. Only one-fifth of these children met the 

diagnosis criteria of the ICD-10 for 'specific disorder of arithmetic skills', however, 

many more showed significant difficulties in their mathematics performance.  

Dirks, Spyer, van Lieshout, and de Sonneville (2008) compared mathematics 

performance cut-offs at the 25th and 10th percentiles to identify children with LDs in 

The Netherlands. 799 Fourth and Fifth grade children were administered arithmetic, 

word recognition, reading comprehension, and spelling tests. 10.3% of the children 

met the criteria for DD when a cut-off at the 25th percentile was used (that is, a 

mathematics score below the 25th percentile and a word recognition score above the 

25th percentile). Regardless of which language measure was used as a control variable, 

approximately 9-10% of the sample met the criteria for DD diagnosis. The Dutch 

school system uses a cut-off at the 10th percentile to identify children at risk of having 

LDs; using this more conservative cut-off reduced the DD prevalence rate to 5.6%.  

In the largest European study conducted to date, Desoete and colleagues found 

the prevalence of DD to be between 2.27 and 7.7% (Desoete, Roeyers, & De Clercq, 

2004). 3,978 second, third and fourth grade children, from the Flemish community in 
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Belgium, participated in the study. The children completed a battery of mathematical 

tests including standardised tests of number fact knowledge (The Arithmetic Number 

Facts Test, Tempotest Rekenen, TTR, De Vos, 1992) geometry (leerlingvolgsysteem, 

LVS), and mental computation (The Kortrijk Arithmetic Test- Revised, De Kortrijkse 

Rekentest Revision KRT-R, Baudonck et al, 2006). The children were identified as 

having DD based on three different criteria: severity (mathematics performance equal 

to or lower than 2 SD below the mean), discrepancy (mathematics performance 

significantly lower than performance in other school subjects), and resistance to 

intervention (as indicated by teacher reports).  

A similar study was conducted in Greece by Koumoula et al (2004) with 240 

children attending grades two to five of primary school. All children in the study were 

individually assessed using a battery of tests including the Neuropsychological test 

battery of  Numerical Processing and Calculation in Children (NUCALC; von Aster, 

2001;  von Aster, Weinghold Zulauf, & Horn, 2006), the digit span subtest of the 

Wechsler Intelligence Scale for Children – Third edition (Wechsler, 1974) and a 

reading test. 6.3% of the cohort was found to have DD, which was defined as 

mathematics performance lower than 1.5 SD below the mean and reading 

performance within one SD of the mean. 

Badian has published twice on the prevalence of mathematics disability in the 

US (Badian, 1983, 1999). The 1983 study involved a city-wide assessment of the 

reading and calculation skills of 1,476 children in grades 1-8. The children were 

assessed using the Stanford Achievement Test (Gardner, Rudman, Karlsen, & 

Merwin, 1982) and arithmetic difficulty was defined as a score below the 20th 

percentile in arithmetic. 3.6% of the cohort met this criterion. Badian’s 1999 study 

was longitudinal and involved all children from a school district (N = 1,075) who 

began kindergarten during 1976-1989. The Stanford Achievement Test was 

administered to the children each year from grades 1– 8. Low achievement was 

defined as performance below the 20th percentile. Averaged over all grade levels, 

3.9% of the sample had low arithmetic achievement.  Persistent low arithmetic 

achievement was defined as a mean standard score (for the 7-to-8-year period) below 

the 25th percentile in arithmetic. The prevalence of persistent low achievement in 

arithmetic was 5.7% (including children with co-occurring reading difficulties) or 

2.3% (arithmetic only). 
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In Mazzocco and Myers’ (2003) longitudinal study, 209 US school children 

were followed from Kindergarten to Grade 3. The children were tested individually 

with standardised tests of intelligence (Stanford-Binet-IV; Thorndike, Hagen & 

Sattler, 1986; Wechsler Abbreviated Scale of Intelligence; WASI; Wechsler 1999) 

and mathematics, (Key-Math revised, Connolly, 1998, Test of Early Math Ability- 

second edition; Ginsburg & Baroody, 1990; Woodcock-Johnson- Revised, WJ-R, 

Math Calculations Subtest; Woodcock & Johnson, 1989). Tests of visual spatial/ 

perceptual performance and reading were also administered during the study; 

however, these tests were included to dissociate potential DD subtypes rather than to 

form part of the diagnostic criteria. Mazzocco and Myers compared different 

diagnostic criteria for DD: Key-Math revised score below 7; TEMA-2 score below 86 

or below the 10th percentile; WJ-R score below 86; and a discrepancy between IQ 

score and the mathematics test of more than 14 points. They found that different 

groups of children met the criteria for DD depending on which diagnostic criteria 

were used for selection. Mazzocco and Myers also compared the number of children 

meeting the different criteria across the different years of the study and found that 

individuals did not necessarily meet the criteria every year, even if the same 

assessment measures were used. However, the authors found that using a TEMA-2 

score below the 10th percentile for DD diagnosis was reasonably stable over time. 

This criterion was used to define persistent DD (that is, children who met this 

criterion for more than one school year) which included 9.6% of the sample. As 

mentioned above, children with low reading ability were not excluded from the 

persistent DD group, nor were children with low IQ which may explain why this 

prevalence estimate is greater than the estimates provided by other studies. 

Barbaresi and colleagues conducted a retrospective investigation of 

mathematics learning disorder in a population-based cohort in Rochester, Minnesota, 

US (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 2005). The cohort involved 

5,718 children born in the town between 1976 and 1982.  Barbaresi and colleagues 

used school and medical records to identify children at risk for having MLD. These 

children were then diagnosed with DD according to three different definitions: a 

regression-based discrepancy formula, a non-regression-based discrepancy formula 

and a low achievement definition (achievement score below 25th percentile; IQ score 

above 80). For each of these methods Barbaresi et al. calculated the cumulative 
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incidence rates of DD. In contrast to prevalence rate, which refers to the number of 

cases of DD at one point in time, incidence rate refers to the number of new cases that 

occur during a specific period. In Barbaresi et al’s study, the cumulative incidence rate 

represented the likelihood that the children who remained in the study for its duration, 

i.e., until they were 19-years-old, met the criteria for DD. The IQ-achievement 

discrepancy formulas resulted in cumulative incidence by age 19 of 5.9% and 9.8% 

for the regression-based formula and the non-regression-based formula respectively.  

The low achievement definition resulted in a cumulative incidence by age 19 of 

13.8%. The authors did not believe any one definition was more reliable or valid than 

the others; however, they did highlight that the low achievement definition identified 

more children with DD than the two discrepancy based formulas.   

Geary and colleagues have conducted a prospective longitudinal study in 

Missouri, US (Geary, Hoard, Nugent & Bailey, 2011; Geary, 2010; Geary, Hoard, 

Byrd-Craven, Nugent, & Numtee, 2007; Geary et al., 2012). The study followed over 

200 children from kindergarten to ninth grade. The Numerical Operations and Word 

reading subtests of the Wechsler Individual Achievement Test-II (WIAT-II, Wechsler, 

2005a) were administered at the end of each academic year. IQ was measured using 

the mean score from Raven’s coloured progressive matrices (Raven, 1965), 

administered at the end of kindergarten, and the vocabulary and matrix reasoning 

subtests of the WASI (Wechsler, 1999) administered at the end of the first grade. The 

children were identified as having MLD if their mathematics achievement score was 

less than or equal to the 15th percentile in both kindergarten and first grade and their 

IQ was between 80 and 130. 5.4% of the sample was identified as having MLD 

according to these criteria. 

In the largest prevalence study included in this review, Reigosa-Crespo et al. 

(2012) screened children in Havana, Cuba, for DD. The cohort consisted of 11,652 

children in second to ninth grades in an urban school municipality. All children 

completed a group administered, curriculum-based test of mathematics attainment. 

The mathematics test was non-standardised but developed by researchers at the Cuban 

ministry of Education, and consisted of eight computational problems appropriate for 

each grade level. In the first stage, children were selected for the study if their 

mathematics scores fell within the lowest 15% (for each grade level). In a second step, 

children completed tests of mental arithmetic and basic numerical abilities 
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(Butterworth, 2003). DD was defined as performance below 2 SD on these follow-up 

mathematics tests and 3.4% of the sample met these criteria for DD. 

In Israel, Gross-Tsur, Manor, and Shalev also conducted a city-wide 

assessment of mathematics ability in order to estimate the prevalence of DD (Gross-

Tsur, Manor, & Shalev, 1996). 3,029 fourth grade children completed a group 

administered mathematics achievement test (Shalev, Manor, Amir & Gross-Tsur, 

1993). The children scoring in the lowest 20% of each class were selected for further 

assessment. 555 children were tested using an individually administered standardised 

arithmetic battery. 188 children were classified as having DD, which was defined as 

maths scores equal to or below the mean score for normal children two grades 

younger. 140 of the identified children underwent further testing including 

standardised assessments of reading, writing, and intelligence (WISC-R; Wechsler, 

1974). Gross-Tsur and colleagues found that the prevalence of DD was 6.5%.  Of 

these children, 17% also had dyslexia and, and 26% had ADHD-like symptoms.  

Barahmand (2008) measured the prevalence of DD in a sample of 1,171 

children in Grades 2–5 in Iran. Children completed Shalev's standardised arithmetic 

battery (Shalev et al., 1993) and 46 children whose performance was lower than 2 SD 

below the mean performance for children of their age were selected for further 

assessment. Two children were excluded on the basis of IQ scores below 90, resulting 

in 44 children (3.75% of the sample) being diagnosed with DD. 

Ramaa and Gowramma (2002) estimated the prevalence of DD in Indian 

children using two different approaches: 1) as an isolated LD and 2) as a LD with 

comorbid reading or writing difficulties. Only the first approach is relevant to this 

review and is described here. 251 children completed an individually administered, 

standardised arithmetic test. The researchers observed the children’s strategies during 

completion. Identification of DD was based on exclusionary criteria including: 

unfamiliarity of the tasks; lack of practice; lack of exposure to mathematics content; 

carelessness and lack of perseverance. 15 children (5.98%) met the criteria for a 

diagnosis of DD as an isolated LD.  

As the above review shows, the ways in which DD has been defined and 

measured in prevalence studies has varied greatly. In accordance with the DSM-IV 

criteria (American Psychiatric Association, 2000), which was the relevant diagnostic 
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manual at the time that most of the reviewed studies were conducted, some 

researchers (e.g., Barbaresi et al., 2005; Lewis et al., 1994; Mazzocco & Myers, 2003) 

defined DD using an IQ-achievement discrepancy, that is, mathematics performance 

substantially below what would be expected given an individual’s general 

intelligence. However, the IQ-achievement discrepancy definition has been criticised 

for being imprecise as different researchers calculate the discrepancy using different 

methods, (e.g., expectancy formulas, regression adjusted comparisons of test scores or 

by simply comparing standardised achievement and IQ scores; reviewed in Francis et 

al., 2005). Furthermore, research suggests that the IQ-achievement discrepancy is an 

unreliable method of identifying children with LDs as some children with LDs may 

not present with a discrepancy (Badian, 1999; Francis et al., 2005). Indeed, Mazzocco 

and Myers (2003) found that the majority of the children with poor mathematics 

achievement (performance below the 10th percentile) did not show an IQ- 

mathematics discrepancy. Similarly, in their rural study, Hein et al (2000) found that 

four out of the nine children with DD who participated in follow-up assessments did 

not show an IQ-mathematics discrepancy. Barbaresi and colleagues also found that 

fewer cases of DD were identified using the two discrepancy based formulas than 

when they used a low achievement definition of DD. Therefore, the IQ-achievement 

discrepancy does not appear to be a suitable method for identifying children with DD. 

Nevertheless, IQ measures may be useful for ensuring that LDs are not a result of low 

general intelligence, and several of the reviewed studies included average IQ as a 

diagnostic criterion for DD (e.g., Barahmand, 2008; Barbaresi et al., 2005 [low 

achievement definition]; Geary, 2010; Gross-Tsur et al., 1996; Kosc, 1974).  

Other studies defined DD by the severity of mathematics impairment using 

performance cut-offs on standardised tests; the range of cut-offs used in the 

prevalence studies are represented in Figure 2. As illustrated in the review above and 

in Figure 2, the cut-offs are not used with any consistency across studies. Similar to 

experimental studies of DD, the definitions of poor mathematics performance used in 

the prevalence studies ranged from performance below the 3rd percentile to the 25th 

percentile (2 SD to 0.68 SD below the mean).
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Figure 2. The cut-offs used in DD prevalence studies illustrated on the normal distribution. 

The percentile scale runs from 0 to 100. Percentile values are shown on top of the normal 

distribution curve. 
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Another way in which DD was defined was using a two year achievement delay as a 

diagnostic criterion, that is, children were categorised as having DD if their mathematics 

performance was equal to or below the average level of children two years younger (e.g., 

Gross-Tsur et al., 1996; Ramaa & Gowramma, 2002). Similarly, Desoete and colleagues 

defined DD as children showing a resistance to mathematics intervention (Desoete et al., 

2004). 

As mentioned earlier, there is disagreement over whether DD should be defined as an 

isolated learning disability or considered as a disorder co-occurring with other learning 

problems. This may be because researchers have referred to the different definitions offered 

by the ICD-10 and DSM diagnostic manuals. The ICD-10 diagnostic criteria for DD specify 

that reading and spelling skills must be within the average range whereas the DSM manuals 

acknowledge that DD can occur alongside other LDs (American Psychiatric Association, 

2000; World Health Organisation, 1994). The reviewed studies differ with respect to how 

control variables were used in the diagnosis of DD. Some did not include a control variable in 

their definitions of DD (Barbaresi et al., 2005; Geary, 2010; Kosc, 1974; Reigosa-Crespo et 

al., 2012). Some studies included children with other learning disorders in the DD groups 

(Gross-Tsur et al., 1996; Mazzocco & Myers, 2003; Ramaa & Gowramma, 2002 [second 

diagnosis approach]), whereas others defined DD as an isolated LD and specified average 

performance for control measures in their definitions of DD (Desoete et al., 2004; Dirks et 

al., 2008; Hein et al., 2000; Koumoula et al., 2004; Lewis et al., 1994; Ramaa & Gowramma, 

2002). Some studies combined both approaches and reported separate prevalence estimates 

for isolated DD and those with co-occuring reading difficulties (Badian, 1983, 1999; Dirks., 

et al., 2008; Landerl & Moll, 2010; Lewis et al., 1994).  

The above review also highlights the considerable variability in the number and type 

of tests used to measure mathematics performance.  The choice of mathematics test can have 

a significant impact on the percentage of children identified as having DD. In his seminal 

study, Kosc (1978) used a composite test battery in which some of the tests were not 

standardised, meaning that it was unknown how the normal population would perform on the 

tests and it was not adjusted for the age of the participants. Yet, many cite this research when 

providing DD prevalence estimates. Similarly, Reigosa-Crespo et al. (2012) used a non-

standardised test of mathematical attainment in their screening stage; however, these tests 

were tailored for the different grade levels of their sample. Nonetheless, the use of non-
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standardised tests raises concerns about the validity of these tests as diagnostic tools for DD. 

All of the other reviewed studies measured mathematics performance using standardised 

tests, but even standardised tests are not without their problems. For example, in two of the 

reviewed studies, test results did not adhere to standardisation norms which made it difficult 

to define DD using the usual test criteria (Hein et al., 2000) or may have resulted in some 

cases of DD not being identified (Lewis et al., 1994). These issues highlight the importance 

of using tests that have been standardised close to the time of testing.  Furthermore, a 

particular standardised test may overestimate abilities in some areas and underestimate 

abilities in other areas (Geary, 2004), which highlights the need for multiple tests covering a 

wide range of mathematical domains. As Desoete and Roeyers (2000) and Mazzocco and 

Myers (2003) found, several mathematics tests may be required to identify all children with 

mathematics difficulties.  

Overall, the above review suggests that the difficulties in establishing prevalence 

estimates may in part be due to methodological problems, yet it is important to note that 

prevalence estimates may also be difficult to establish because of the lack of an objective and 

universally adopted definition of DD for research (Kaufmann et al., 2013).  

Nonetheless, with this background in mind, the current thesis aims to estimate the 

prevalence of DD in large samples of English primary and secondary school students, 

comparing different diagnostic criteria (Chapters Two and Five) and examines the stability of 

DD diagnosis over time (Chapter Four). 

1.1.3 Theories of DD. 

Similar to the inconsistencies regarding diagnosis and prevalence of DD, the causal 

origins of DD are also highly contested in the field. Several theories of DD exist, which 

suggest that it is caused by an impairment of one or many possible cognitive functions/ 

representations. A dominant theory in both behavioural and neuroscience research is the 

deficient number module theory, which argues that DD is caused by an impairment in 

magnitude representation (Landerl, Bevan, & Butterworth, 2004; Piazza et al., 2010), which 

may represent exact and approximate numerical magnitudes (Iuculano, Tang, Hall & 

Butterworth, 2008). The horizontal intraparietal sulci (IPS) of the human brain are thought to 

be responsible for the core number module or 'number sense' (Butterworth, 1999, Dehaene et 

al, 2004). Numerical magnitude representation is typically assessed by measuring 

participants’ accuracy and reaction times on non-symbolic and symbolic comparison tasks 
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(e.g., comparing two sets of dots [non-symbolic numerosity comparison] or two Arabic digits 

[symbolic comparison]).Whereas the former task is thought to measure the representation of 

magnitudes, the latter task is thought to measure the link between magnitude representation 

and numerical symbols (Szűcs, Devine, Soltesz, Nobes, & Gabriel, 2013). Some believe that 

DD is caused by deficient automatic activation of magnitude representation (Rubinsten & 

Henik, 2005), whereas others believe that a defective link between magnitude representation 

and numerical symbols is problematic in DD (De Smedt, Noël, Gilmore, & Ansari, 2013; 

Rousselle & Noël, 2007). However, research supporting a causal link between IPS 

dysfunction and DD is weak due to inconsistent findings and methodological limitations. 

Brain imaging studies have suggested reduced grey matter density in the parietal cortex of 

DD compared to controls, and in some cases, reduced parietal activation in DD (Isaacs, 

Edmonds, Lucas, & Gadian, 2001; Rotzer et al., 2008; Rykhlevskaia, Uddin, Kondos, & 

Menon, 2009). However, several neuroscience studies have failed to show neuro-imaging or 

behavioural evidence of differences in magnitude processing in DD (e.g., Davis et al., 2009; 

Kovas et al., 2009; Kucian et al., 2006; Kucian, Loenneker, Martin, & von Aster, 2011; 

Mussolin et al., 2010). Other studies have not included appropriate control tasks (Price, 

Holloway, Rasanen, Vesterinen, & Ansari, 2007). Thus, it is unclear whether the IPS 

differences are in fact related to impairments in magnitude representation or impairments in 

other cognitive functions also associated with the IPS such as working memory, inhibition 

and attention (Cieslik, Zilles, Grefkes, & Eickhoff, 2011; Coull & Frith, 1998; Culham & 

Kanwisher, 2001; Davranche, Nazarian, Vidal, & Coull, 2011; Yang, Han, Chui, Shen, & 

Wu, 2012). These ideas are discussed in more detail in Szűcs, et al., (2013) and Szűcs & 

Goswami (2013). 

Similarly, behavioural studies claiming to support the deficient number module theory 

have not provided clear evidence for deficient magnitude representation in DD either. For 

example, Landerl and colleagues reported contradictory findings in their studies (Landerl et 

al., 2004; Landerl & Kölle, 2009).  Iuculano and colleagues (Iuculano et al., 2008) 

investigated approximate and exact numerical representation in 8- to 9- year-old children and 

found that one child diagnosed as having DD appeared to have intact approximate and exact 

magnitude comparison performance, in spite of failing the exact approximation component of 

a diagnostic test. On the other hand, a second child diagnosed with DD performed poorly on a 

non-symbolic measure of exact enumeration, as well as approximate addition and subtraction 

tasks. The authors suggested that a deficient link between non-symbolic and symbolic 
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processing was the cause of DD in the first case study, but deficient analogue representation 

may have been the cause of approximate and exact calculation difficulties in the second case 

study. Thus, these results suggest there may be a variety of domain-specific causes of DD. 

Nonetheless, similar to neuroscience studies, some behavioural studies have also failed to 

include non-numerical control tasks and have relied on magnitude comparison tasks which 

did not control for non-numerical parameters (Mazzocco, Feigenson, & Halberda, 2011; 

Mussolin, Mejias, & Noël, 2010; Piazza et al., 2010). Thus, it is difficult to draw number-

specific conclusions from some of these studies (Szűcs et al., 2013; Szűcs & Goswami, 

2013). 

On the other hand, behavioural research has provided stronger support for theories 

linking MLD to impairments in domain-general cognitive functions. For example, several 

studies have found that MLD children have poorer verbal and/ or visuo-spatial working 

memory (Bull, Espy, & Wiebe, 2008; Geary, 2004; Hitch & McAuley, 1991; Keeler & 

Swanson, 2001; Passolunghi & Siegel, 2001, 2004). Furthermore, the role of working 

memory in the development of mathematical skills has been confirmed by longitudinal 

studies (Bailey, Watts, Littlefield, & Geary, 2014; Geary, 2011; Passolunghi & Lanfranchi, 

2012; Swanson, 2011).  Other studies have linked mathematical development to spatial 

processing  (Rourke, 1993; Rourke & Conway, 1997), inhibitory function (Bull, Johnston, & 

Roy, 1999; Passolunghi, Cornoldi, & De Liberto, 1999), and attentional function (Askenazi 

& Henik, 2010; Hannula, Lepola, & Lehtinen, 2010; Swanson, 2011). However, it should be 

noted that some researchers distinguish between mathematical difficulties linked to domain-

general deficits and domain-specific deficits, and reserve the term DD only for domain-

specific deficits (e.g., Rubinsten & Henik, 2009, but also see Kaufmann et al., 2013). 

Nonetheless, impairments in one or more of the abovementioned domain-general functions 

could result in mathematical learning problems, and few DD studies have systematically 

controlled for all domain-general skills or systematically contrasted different theories of DD 

within the same sample (Szűcs et al., 2013). 

Although testing the different theories of DD is not the aim of this thesis, the 

abovementioned background is necessary to set the context for Chapter Four which describes 

the longitudinal findings of a project comparing different theories of DD (Szűcs et al., 2013). 

A summary of the results of this larger study is provided in the introduction to Chapter Four, 
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however, the data reported in Chapter Four itself focuses on longitudinal stability of DD and 

cognitive performance, rather than contrasting the theories of DD per se (also see section 1.4) 

1.2 Mathematics anxiety 

Importantly, not all mathematics problems stem from cognitive difficulties. Children 

and adults' mathematical development can also be hindered by negative attitudes and 

affective reactions to mathematics. Mathematics anxiety (MA) is one negative affective 

reaction to mathematics which has received a lot of attention in educational psychology 

research. 

1.2.1 Definitions. 

MA is broadly defined as a state of discomfort caused by performing mathematical 

tasks (Ma & Xu, 2004). MA can be manifested in many different ways, for example as 

feelings of apprehension, dislike, tension, worry, frustration, and fear (Ashcraft & Ridley, 

2005; Ma & Xu 2004; Wigfield & Meece, 1998). MA affects wellbeing and may have a 

detrimental effect on mathematics performance, as indicated by the moderate negative 

correlations (approximately r =-.30) that have been reported between MA and mathematics 

performance (Hembree, 1990; Ma, 1999). Importantly, children affected by MA throughout 

their school education may come to develop negative attitudes towards mathematics, avoid or 

drop out of mathematics classes, or stay away from careers involving quantitative skills 

(Ashcraft, 2002; Ma, 1999). 

Many different self-report questionnaires have been developed over the years to 

measure trait-like MA in children of different ages/ school levels and in adults. These 

questionnaires typically use numerical or pictorial rating scales to describe the level of 

anxiety experienced in different maths situations.  The most frequently used scale is the 

Mathematics Anxiety Rating Scale (MARS) which has 98 items (Richardson & Suinn, 1972). 

However, with such a large number of items, the administration of the MARS is long and 

several shorter questionnaires have been developed (Alexander & Martray, 1989; Fennema & 

Sherman, 1976; Hopko, Mahadevan, Bare, & Hunt, 2003; Plake & Parker, 1982; Suinn & 

Winston, 2003). Although these scales have generally proven to be reliable, the construct 

validity of some of these scales has been questioned (Hopko, 2003; Hopko et al., 2003). Most 

MA scales have been developed for use with secondary school and college students/adults. 

However, a few MA scales have been developed specifically for use with primary school 

children including: The MARS- Elementary Edition (Suinn, Taylor, & Edwards, 1988); The 
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Mathematics anxiety scale for elementary school students (Bindak, 2005; Yuskel-Sahin, 

2008);  The Mathematics Anxiety Scale for Children (Chiu & Henry, 1990); The 

Mathematics Attitude and Anxiety Questionnaire (Thomas & Dowker, 2000; Krinzinger et 

al., 2007, Dowker et al, 2012); the Children's Attitude in Math Scale (Jameson, 2013), and 

the Math Anxiety Scale for Young Children (MASYC) developed by Vukovic and colleagues 

(Harari, Vukovic, & Bailey, 2013; Vukovic, Kieffer, Bailey, & Harari, 2013) and the recent 

revision of the MASYC developed by Ganley and McGraw (2016). In work conducted in our 

lab previously, we modified Hopko and colleagues' 9-item Abbreviated Mathematics Anxiety 

Scale (AMAS; Hopko et al., 2003) for use with early secondary and primary school students. 

The modified AMAS (hereafter: mAMAS), has proven to be reliable and has good construct 

validity (Carey, Hill, Devine & Szűcs, 2017b; Zirk-Sadowski, Lamptey, Devine, Haggard, & 

Szűcs, 2014). Further details about the mAMAS are provided in Chapter Four. 

Studies have suggested that MA is multidimensional. For example, Wigfield and 

Meece (1988) identified two dimensions which correspond to those identified for a related 

type of academic anxiety: test anxiety (TA) (Liebert & Morris, 1967). These dimensions 

consist of a cognitive component (usually referred to as "worry") which concerns worries 

about performance/ failure, and an affective component ("emotionality"), which refers to 

nervousness/ tension and associated physiological reactions felt in evaluative settings 

(Dowker, Sarkar, & Looi, 2016). Some MA scales separate MA elicited by testing situations 

from other types of MA (e.g., manipulating numbers, doing arithmetic or using maths in 

everyday life; Pletzer, Wood, Scherndl, Kerschbaum, & Nuerk, 2016). The AMAS, for 

example, consists of two subscales measuring: MA felt when learning maths in the classroom 

("Learning MA"), and MA felt in testing situations ("Evaluation MA", Hopko et al., 2003). 

Although the majority of MA research has used trait measures (such as the scales 

described above), some researchers have recently focused on state measures of MA (Goetz, 

Bieg, Lüdtke, Pekrun, & Hall, 2013). Trait MA questionnaires are thought to measure 

"(mentally) generalised levels of anxiety across different time points in math-related 

situations. In contrast, reports of state math anxiety reflect levels of momentary anxiety in 

real-life math-related situations" (Bieg, Goetz, Wolter, & Hall, 2015, p2). State MA is 

normally also assessed by self-report rating scales which are administered during 

mathematics activities, and ask students how anxious they feel in the moment. Children 

typically report higher levels of trait MA than they do state MA (Bieg et al., 2015; Goetz et 
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al., 2013), and children's mathematical self-concept (i.e., representation of mathematical 

abilities and competencies) may contribute to the state-trait MA discrepancy (Bieg, Goetz, & 

Lipnevich, 2014). 

Some have questioned whether MA is distinct from other forms of anxiety. Another 

type of academic anxiety is test anxiety (TA) which refers to emotional discomfort elicited by 

evaluative settings (Brown et al., 2011). Some have stated that “mathematics anxiety can be 

viewed as a form of test anxiety” (Richardson & Woolfolk, 1980, p.271) and that TA “may 

be ‘‘hidden’’ under names related to more specific forms of test anxiety - [such as] maths 

anxiety” (Stöber and Pekrun, 2004, p.206).  Studies have reported moderate, positive 

correlations between MA and TA (Devine, Fawcett, Szűcs & Dowker, 2012; Dew & Galassi, 

1983; Hembree, 1990; Kazelskis et al., 2000). One study suggested that the correlations 

between TA and MA were nearly as high as those reported between different measures of 

MA (Kazelskis et al., 2000) which raises the question of whether these anxiety types can be 

differentiated.  

Nevertheless, it appears unlikely that MA is completely accounted for by TA. Whilst 

the correlations between MA and TA are notable (Hembree, 1990 = .52; Kazelskis et al., 

2000 =.50 for males, = .52 for females), they do indicate some degree of independence, at 

least in adults. Furthermore, our previous work emphasised the importance of controlling for 

TA when measuring the correlation between MA and performance (Devine et al., 2012). We 

found a negative correlation between MA and maths performance in both boys and girls, but 

once TA was controlled for, the negative relation remained for girls only and became only 

marginally significant for boys (and this difference in strength of correlation was significant 

according to a difference test).  When we controlled for MA, the previously significant 

relations between TA and maths performance became non-significant in both genders. These 

data strongly suggest some differentiation between MA and TA. 

General anxiety (GA) refers to an individual's general tendency to feel anxious about 

events, behaviours, and competence (Baloglu, 1999) and moderate positive correlations have 

also been found between MA and GA (Hembree, 1990, MA and GA = .35; MA and trait 

anxiety =.38). These correlations indicate that MA and GA are related, but the percent of 

shared variance between these two anxiety types is even less than the shared variance 

between MA and TA. One study which investigated the genetic variance of MA suggested 

that MA was influenced by genetic and non-shared environmental factors associated with 
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GA, therefore suggesting that GA may be implicated in the aetiology of MA (Wang et al., 

2014).  

Recent work in our lab has indicated that MA is distinct from both TA and GA in 

primary and secondary school children (Carey et al., 2017b). Using Exploratory and 

Confirmatory factor analysis, we found that the MA items on the mAMAS all loaded onto a 

unique MA factor indicating that MA has divergent validity from both TA and GA. Thus, 

MA, at least when measured using the mAMAS, does not appear to be explained by other 

anxiety forms. 

1.2.2 Prevalence. 

Although MA is present in younger school children (Aarnos & Perkkilä, 2012; Chiu 

& Henry, 1990; Newstead, 1998; Ramirez, Gunderson, Levine, & Beilock, 2013), negative 

attitudes towards mathematics and MA appear to increase at the secondary school level 

(Blatchford, 1996; Dowker, 2005) and persist into post-secondary education and adulthood 

(Betz, 1978; Jameson & Fusco, 2014).  

However, few researchers have systematically estimated the prevalence of MA. One 

possible reason for this may be because MA is typically measured by self-report scales, for 

which there exists no obvious cut-point to demarcate high MA from moderate or low levels 

of MA (Ashcraft & Ridley, 2005). Thus, similar to the variability in DD diagnostic criteria, 

MA researchers have used varying definitions of high MA. For example, Ashcraft and 

colleagues have used a statistical definition, defining high MA as scores falling above 1 SD 

above the mean MA level, which, if MA scores are normally distributed, would indicate that 

approximately 17% of the population would be diagnosed as being highly maths anxious 

(Ashcraft & Kirk, 2001; Ashcraft, Krause, & Hopko, 2007). However, this estimate is based 

on the assumption that MA scores are in fact normally distributed, yet studies rarely report 

evidence of normality (this issue is discussed further in Chapter Five). According to other 

definitions, the prevalence of high MA could be much lower than the 17% estimated by 

Ashcraft and colleagues. For example, Chinn defined high MA as scores at or above a score 

of 60 on Chinn’s mathematics anxiety survey which corresponded to 'often anxious' in maths 

situations and found that between 2 and 6% of secondary school students were affected by 

high anxiety (Chinn, 2009). Differences in the scales used to measure MA and the observed 

distribution of MA scores may contribute to this variation in prevalence estimates. 
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1.2.3 MA and performance/achievement. 

The relationship between MA and mathematics performance has been studied 

extensively. Past research has reported moderate negative correlations between mathematics 

performance and MA (average correlations of -.27. and -.34 in two meta-analyses)  (Ashcraft 

& Kirk, 2001; Bai, 2011; Hembree, 1990; Hopko et al., 2003; Khatoon & Mahmood, 2010; 

Ma, 1999; Miller & Bichsel, 2004) indicating that those with high MA show poorer 

mathematics achievement. Meta-analytic research also confirms this negative association 

exists across many nations and cultures (Lee, 2009). 

Although significant correlations between MA and performance /achievement have 

been consistently reported in adult and secondary school samples (Ashcraft & Kirk, 2001; 

Bai, 2010; Hembree, 1990; Hopko et al., 2003; Khatoon & Mahmood, 2010; Ma, 1999; 

Miller & Bichsel, 2004; Resnick, Viehe, & Segal, 1982; Richardson & Suinn, 1972; Wigfield 

& Meece, 1988) significant correlations in younger children have not always emerged. For 

example, Thomas and Dowker (2000), found no association between MA and performance in 

six- to nine-year-old children. Krinzinger and colleagues reported a null finding in their 

longitudinal study of young children too (Krinzinger, Kaufmann, & Willmes, 2009). 

However, some studies have found that an association between anxiety and mathematics 

performance exists at the primary school level, for example between worry ratings and 

mathematics problem-solving in nine-year-old children (Punaro & Reeve, 2012) and between 

MA and maths achievement in 2nd and 3rd grade students (Wu, Barth, Amin, Malcarne, & 

Menon, 2012). 

It is important to note that it has been argued that the strength of the MA/ performance 

relationship is probably exaggerated because mathematics achievement, when measured in 

test situations, is always confounded with MA (Ashcraft & Ridley, 2005; Hopko, McNeil, 

Zvolensky, & Eifert, 2001). That is, the “online emotional reaction to the testing situation”  

(Ashcraft & Ridley, 2005, p.320) leads to maths performance deficits in highly maths anxious 

individuals. Consequently, their performance may appear lower when measured using a test 

compared to when performance is measured using, for example, formative assessments. 

Therefore, the depressed performance associated with high MA and the reported negative 

correlations between MA and performance may be exaggerated because of the context in 

which mathematics performance is measured. Nonetheless, the effect of MA on ‘online’ 
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mathematics performance is still pertinent, as mathematics achievement is often measured 

using time-limited tests and formal examinations.  

The relationship between anxiety and performance is also likely to be mediated or 

moderated by other factors such as self-concept, self-efficacy, and mastery approach (Ahmed 

et al., 2012; Erturan & Jansen, 2015; Galla & Wood, 2012; Luo et al 2014).  

Further research has explored the direction of the MA and maths performance 

relationship.  Emotional and cognitive components of mathematical development are likely to 

interact over time, i.e., function as a dynamic system (Thelen & Smith, 1994). Although some 

researchers have recognised that MA and maths performance may relate this way, for 

example via a reciprocal relationship or vicious circle (reviewed in Carey, Hill, Devine, & 

Szucs, 2016), the MA literature has traditionally focussed on contrasting two  directional 

models: The Deficit Theory and the Debilitating Anxiety Model  (ibid). Thus, I will review 

the research supporting these competing models first, followed by the research providing 

support for the factors interacting in a dynamic system. The Deficit Theory claims that 

anxiety emerges a result of an awareness of poor mathematics performance in the past 

(Tobias, 1986). In contrast, the Debilitating Anxiety model posits that high levels of anxiety 

interfere with performance due to a disruption in pre-processing, processing and retrieval of 

information (Carey et al., 2016; Tobias, 1986; Wine, 1980). This model also argues that "MA 

may influence learning by disposing individuals to avoid mathematics-related situations" 

(Carey et al., 2016, p.2; Chinn, 2009; Hembree, 1990). 

The Deficit Theory is supported by research suggesting that children with MLD report 

higher levels of MA (Lai, Zhu, Chen, & Li, 2015; Passolunghi, 2011; Wu, Willcutt, Escovar, 

& Menon, 2014).  Furthermore, Birgin and colleagues found that the highest unique 

contribution to children’s MA was from the children’s mathematics performance (Birgin, 

Baloğlu, Çatlıoğlu, & Gürbüz, 2010). In one of the few longitudinal investigations, Ma and 

Xu (2004) found that correlations between maths performance in one year and MA in the 

following year were stronger than the correlations found between MA in one year and maths 

performance in the following year. The authors took these results to suggest that poor 

performance may cause high MA rather than the other way round. Thus, these results appear 

to support the Deficit Theory over the Debilitating Anxiety Model. However, as the effects of 

MA on performance proposed by the Debilitating Anxiety Model are likely to be more 

immediate than from one academic year to the next, this study cannot address whether this 
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model was also in operation (these ideas are discussed further in Carey et al., 2016). Other 

research has suggested that highly maths anxious adults have deficits in basic numerical 

processing (Maloney, Ansari, & Fugelsang, 2011; Maloney, Risko, Ansari, & Fugelsang, 

2010), however, it is unclear whether these deficits are a cause or are a consequence of MA. 

That is, highly maths anxious adults' basic numerical abilities may be impaired because they 

have avoided mathematical tasks throughout their education and adulthood due to their high 

levels of MA, which would be more in line with the Debilitating Anxiety Model. This idea is 

discussed further in section 1.2.4, and in Carey et al. (2016). 

Support for the Debilitating Anxiety Model comes from studies which have suggested 

that adults and adolescents with high MA tend to avoid maths-related situations, avoid 

enrolling in mathematics classes or taking up careers involving mathematics (Hembree, 

1990). Adults with high MA have been shown to have decreased reaction times and increased 

error rates (Ashcraft & Faust, 1994) and decreased cognitive reflection during mathematical 

problem solving (Morsanyi, Busdraghi, & Primi, 2014), suggesting that maths anxious adults 

tend to avoid processing mathematical problems. Further support for the Debilitating Anxiety 

model comes from studies indicating that processing resources used for mathematics problem 

solving are taxed by MA. For example, negative relationships have been found between MA 

and working memory span (Ashcraft & Kirk, 2001) and the effects of high MA on 

performance appear to be more marked for maths problems with a high working memory 

load (Ashcraft & Krause, 2007). The Debilitating Anxiety model is also supported by studies 

which have suggested that performance is affected when MA is manipulated. For example, 

performance has been shown to improve when maths anxious individuals are allowed the 

opportunity to offload their anxieties via a writing exercise before completing a test (Park, 

Ramirez, & Beilock, 2014) and the association between MA and performance is reduced 

when tests are administered in a more relaxed format (Faust, Ashcraft, & Fleck, 1996). The 

Debilitating Anxiety model is also supported by studies that have manipulated stereotype 

threat (thought to increase anxiety in girls and females) and found effects on performance, 

and neuroimaging studies also suggest links between MA, performance, and different brain 

regions involved in both numerical and emotional processing (see Carey et al. 2016 for a 

review and further discussion of these studies). 

Thus, the evidence supporting the two models is in conflict. The reason for this may 

be that, in some individuals, experiences of failure or negative evaluations in mathematics 
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lead to an increase in MA, possibly resulting in a vicious circle, which also leads to an ever- 

increasing MA/performance relationship (Carey et al., 2016; Devine, Fawcett, Szűcs, & 

Dowker, 2012; Jansen et al., 2013). This bidirectional relationship between MA and 

performance has been labelled the Reciprocal Theory (Carey et al., 2016). Indeed, 

longitudinal data suggest that the MA and maths performance relationship functions 

reciprocally. Luo and colleagues found that MA levels were linked to a student's prior 

achievement and that MA, in turn, was linked to future performance (Luo et al., 2014). 

Similarly, Cargnelutti and colleagues found similar evidence for a bidirectional relationship 

between MA and performance in young children (Cargnelutti, Tomasetto, & Passolunghi, 

2017).  

1.2.4 Theories of MA.  

Due to the paucity of research investigating the origins of MA, particularly the lack of 

longitudinal studies in the field, it is not currently clear what leads to the development of MA. 

Nevertheless, research has suggested that environmental factors (e.g., negative experiences in 

the classroom, teacher and parent characteristics), personality variables (e.g., attitude, 

confidence, learning style and self-esteem) and cognitive variables (e.g., spatial and 

mathematical abilities, working memory, and self-regulation) may play a role (Devine et al., 

2012; Eden, Heine, & Jacobs, 2013).  

A common assumption is that MA has its roots in early school experiences, however, 

there is little research that has directly investigated the experiences of MA in young children. 

Retrospective reports from maths anxious pre-service teachers suggested that their MA was 

linked to the instructional practices used by their own maths teachers during schooling. 

Examples of anxiety-inducing instructional practices cited by these teachers include: a focus 

on drill and practice, memorisation, wrote learning, emphasis on finding the correct solution, 

timed testing and rule application (Bekdemir, 2010; Harper & Daane, 1998, Jackson & 

Leffingwell, 1999; Reyes, 1984). Other research has suggested that unsupportive forms of 

instructional and motivational discourse used by maths teachers are associated with 

avoidance strategies in children (Turner et al., 2002), which may be indicative of anxiety 

towards mathematics. Some children's MA may stem from the social aspects of mathematics 

learning. Newstead (1998) found that social aspects of mathematics performance e.g., 

explaining a maths problem to the class or teacher, or having a peer watch while solving a 
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problem, were rated as highly anxiety inducing compared to other learning activities. Thus it 

is possible that the social aspects of mathematics learning may lead to MA in some cases. 

As well as potentially being triggered by unsupportive teaching practices, MA may 

also be influenced by teachers' attitudes and beliefs regarding mathematics. As mentioned 

above, studies have suggested that many pre-service school teachers suffer from high levels 

of MA, which can lead to the development of negative attitudes towards mathematics (Harper 

& Daane, 1998; Hembree, 1990; Kelly & Tomhave, 1985). Furthermore, MA in school 

teachers is negatively related to their confidence in teaching maths (Bursal & Paznokas, 

2006). It is possible that teachers may transmit their anxieties, negative attitudes, and lack of 

confidence about mathematics to their students. Indeed, research has suggested that children's 

maths attitudes and achievement are influenced by teachers' gender-stereotyped beliefs about 

boys' and girls' mathematics achievement (reviewed in Gunderson, Ramirez, Levine, & 

Beilock, 2012). Furthermore, female teachers' MA has been found to influence girls' 

mathematics achievement via the endorsement of gender-stereotyped beliefs about maths 

ability (Beilock, Gunderson, Ramirez, & Levine, 2010). However, there is no research 

suggesting the direct transmission of maths anxiety from teachers to students as yet. 

On the other hand, there is evidence to suggest that MA is directly transmitted to 

children from their parents. Maloney and colleagues found that children whose parents were 

highly maths anxious had lower maths achievement and higher MA at the end of the 

academic year, but only if their parents had been more involved in maths homework activities 

throughout the school year (Maloney, Ramirez, Gunderson, Levine, & Beilock, 2015). 

Although the processes of anxiety transmission were not measured in this study, the authors 

surmised that parents may convey MA to their children by expressing their own negative 

attitudes about mathematics or by showing frustration when helping children with their 

homework. The authors also thought that parents may induce MA in their children by 

introducing novel problem-solving strategies which conflict with those taught by the 

children's teachers, thus causing confusion. Indeed, prior research has suggested that parental 

attitudes and beliefs influence children's maths achievement and mathematics related 

attitudes (reviewed in Eccles, 1994). However, further research is needed to establish whether 

the instructional practices used by maths anxious parents when helping with children's maths 

homework could be triggers of MA in children. 
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Personality variables are also thought to play a role in the development of MA. In 

particular, a lack of confidence in mathematics is thought to contribute to MA in some cases 

(Stuart, 2000). Mathematics competence beliefs such as self-concept and self-efficacy are 

also related to MA. Self-efficacy concerns context-specific beliefs about one's ability to 

execute a course of action, whereas self-concept is not context-specific and "includes beliefs 

of self-worth associated with one's perceived competence" (Pajares & Miller, 1994, p.194). 

Moderate to strong negative correlations have been reported between MA and both maths 

self-concept and maths self-efficacy (Hembree, 1990; Meece, Wigfield, & Eccles, 1990; 

Pajares & Miller, 1994). In a structural equation modelling study, Jain and Dowson found 

that self-efficacy beliefs mediated the link between cognitive self-regulation abilities and 

MA, which suggests a complex interplay between personality/motivational variables and 

cognitive variables in the development of MA (Jain & Dowson, 2009).  

MA appears to be only weakly negatively correlated with general intelligence (e.g., r 

= -.17,  Hembree, 1990) and the relationship between MA and performance remains when 

controlling for IQ (Wu et al., 2012), thus differences in general cognitive ability do not 

appear to account for MA or its relationship with maths performance. However, MA has been 

linked to performance in several other cognitive abilities such as spatial skills and, as 

described above, mathematics ability and working memory/attention. Most studies that have 

indicated a link between MA and deficits in WM or attentional processing have interpreted 

these results as demonstrating the debilitating effect of MA on performance; nonetheless, 

some explanations also suggest that WM deficits may lead to MA, although this pathway has 

yet to be determined (e.g., Ashcraft, Krause & Hopko, 2007, and see Figure 3 below).  

Maloney and colleagues suggested that adults with high MA have numerical 

processing deficits compared to adults with low MA (Maloney, et al., 2010; 2011). 

Specifically, the authors found that adults with high MA were slower in comparing numerical 

magnitudes and showed greater numerical distance effects than adults with low MA. 

Furthermore, adults with high MA were slower at enumerating sets of objects within the 

counting range than those with low MA. These tasks are thought to gauge magnitude 

representation abilities (see section 1.1.3). The authors tentatively stated that the findings 

from these studies indicate that “MA may result from a basic low-level deficit in numerical 

processing that compromises the development of higher level mathematical skills” (Maloney 

et al., 2011, p. 14).  
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Subsequent research found that non-symbolic number comparison processes were 

intact in high MA adults, yet impairments in symbolic comparison processes were seen in 

high MA adults compared to low MA adults (Dietrich, Huber, Moeller & Klein, 2015). The 

authors suggested that these results may reflect impairments in the link between the 

magnitude representation and symbols rather than problems with magnitude representation 

per se. 

However, as these studies did not follow the developmental trajectory of MA or the 

acquisition of mathematics skills in their participants, the authors could not determine 

whether deficits in magnitude representation preceded the development of MA or whether 

these differences in basic numerical processing are the consequence of having had MA for a 

number of years. Importantly, these results do not preclude the possibility that highly maths 

anxious adults’ basic numerical abilities were impaired because they have avoided 

mathematical tasks throughout their education and in adulthood due to their high levels of 

MA. Indeed, Dietrich and colleagues suggested that the impairments in symbolic number 

comparison in high MA adults suggested by their findings could reflect that “the connection 

between the representation and the “which numeral is larger” response might be weaker due 

to less training of this connection, for example, when math anxious children are not 

motivated to operate with numbers or avoid working with numbers” (Dietrich et al., 2015, p. 

8). 

Similarly, perceived or actual spatial ability is predictive of MA in adults (Ferguson, 

Maloney, Fugelsang, & Risko, 2015). More specifically, Ferguson et al found that a 

participants' self-rated sense of direction and spatial anxiety predicted their levels of MA 

above and beyond the effects of general anxiety and gender. In two other experiments, these 

authors found that small-scale spatial ability was predictive of MA as well and that spatial 

ability mediated the relationship between gender and MA. These results were taken to 

suggest that spatial deficits may underlie MA. However, the same limitations raised about the 

studies of basic numerical ability also apply to these investigations. The causal direction of 

the link between (perceived or actual) spatial abilities and MA cannot be determined, again, 

because the participants in these studies were not followed longitudinally. Spatial skills are 

thought to precede the development of numerical abilities, and thus, it is likely that spatial 

skills come prior to MA in the causal chain (Gunderson, Ramirez, Beilock & Levine, 2012). 

Nonetheless, it is also possible that the association between spatial performance and MA is 
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bidirectional or functions as a vicious circle in the same manner that has been suggested for 

the MA and maths performance relationship.  Furthermore, two of the experiments in 

Ferguson and colleagues' study used self-reports rather than actual measures of the 

participants' spatial ability, thus the association between MA and these self-report scales may 

simply reflect some academic anxieties or gender-stereotype effects rather than spatial ability 

per se (this is discussed further in section 7.1.6). Although the authors controlled for general 

anxiety, they did not measure test anxiety or other academic anxieties. Other research has 

suggested a link between children's spatial anxiety and mathematics performance 

(Gunderson, Ramirez, Beilock et al. 2012), but it is unclear whether spatial anxieties or 

spatial performance relates to MA in children. 

In summary, research to date has indicated the factors that are likely implicated in the 

development of MA, although no study can say definitively that one factor or the other 

certainly causes it. Further longitudinal research, with appropriate control measures, is 

necessary to shed light on which variables are the strongest predictors of MA, yet, it seems 

probable that MA develops as a result of a combination of interacting variables.  

Indeed, Ashcraft, Krause, and Hopko (2007) have proposed a theoretical framework 

which places MA in the context of etiological, developmental and educational factors such as 

the ones described above. This framework is depicted in Figure 3. This theoretical framework 

predicts that MA can develop from non-performance factors such as biological 

predisposition, learning history, and cognitive biases, or from performance-related factors 

such as deficits in working memory, mathematical skill, or lack of motivation. The model 

also depicts the complex interrelationship of MA and performance, predicting that 

mathematics performance deficits may be related to anxiety interference (akin to the 

Debilitating Anxiety model described in section 1.2.3), or cognitive impairments may 

increase the likelihood of developing MA via cognitive biases, leading to further performance 

deficits and avoidance (similar to the Reciprocal theory described in section 1.2.3). The 

model also predicts that inadequate mathematical skill can lead to further performance 

deficits independent of MA. Finally, the model predicts that those with adequate 

mathematical skill, motivation, and working memory would be less likely to be affected by 

cognitive biases or anxiety, and performance would remain unaffected (Ashcraft et al., 2007). 
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Figure 3. Ashcraft, Krause & Hopko’s (2007) proposed framework situating mathematics 

anxiety amongst etiological, developmental and educational factors. Permissions granted for 

reproduction of this figure in print version of thesis only.   
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thesis only. 
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Although testing the various theories of MA is outside the scope of the current thesis, 

Chapter Five evaluates some of the predictions of Ashcraft and colleagues' abovementioned 

MA model. For example, by measuring MA and mathematics performance in large 

representative samples of primary and secondary school children, the current thesis 

investigates whether MA is closely linked to maths performance deficits, whether some 

children have maths performance deficits in the absence of MA and whether children with 

adequate mathematical skills are unaffected by MA as predicted by the above model. 

1.3 Gender differences 

An abundance of research has investigated gender differences in virtually all areas of 

psychology (Halpern, 1997; Hyde, 2014). For the purposes of this review, in the following 

section, I will summarise research within the domains most relevant to this thesis: maths and 

reading performance, DD and MA. 

1.3.1 Mathematics and reading performance. 

Research conducted in the 1970s and 1980s suggested that girls and boys have 

comparable mathematics performance at the primary school level, but by secondary school, 

boys begin to outperform girls in mathematics (e.g., Halpern 1986). Benbow and Stanley 

(1980) generated a lot of attention when they reported a large advantage for boys on the 

mathematics portion of the Scholastic Aptitude Test. They found that boys were 

overrepresented among the highest performing children (upper 2-5% of the distribution). 

Furthermore, this trend was stronger towards the higher end of the distribution. This finding, 

along with other research, suggested that males may show greater performance variability 

than females across a range of cognitive skills including IQ, spatial abilities, non-verbal 

reasoning and mathematics (reviewed in Hedges & Nowell, 1996). 

Subsequent meta-analyses have suggested that average gender differences in maths 

performance may be quite small. In Hyde and colleagues' meta-analysis of gender differences 

across 100 different studies, the average gender difference in mathematics performance was 

actually negligible (e.g., Cohen's d = -0.05, Hyde, Fennema, & Lamon, 1990), yet boys 

outperformed girls in complex mathematical problem-solving at the secondary school level (d 

= 0.29). A later meta-analysis confirmed that the average gender difference was small (d = 
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0.05) but that the gender difference in complex problem solving had also decreased (d = 

0.16), at least in US samples (Lindberg, Hyde, Petersen, & Linn, 2010). 

Cross-national meta-analytic work has also established that average gender 

differences in mathematics performance are fairly negligible in many countries. Else-Quest 

and colleagues' study analysing national gender differences in mathematics in the 2003 PISA 

and TIMSS data sets (involving over 40 countries and 200,000 students in each data set) 

found that mean effect sizes were d < 0.15 (Else-Quest, Hyde, & Linn, 2010). However, the 

study revealed a large amount of variance in the magnitude and direction of the mathematics 

performance gender difference across nations. This study also indicated a link between the 

magnitude of the gender difference and indicators of gender equality of the countries. The 

authors posited that gender differences in mathematics are diminishing or have disappeared 

altogether in more gender equal countries, which has been supported by others analysing the 

PISA 2003 data set (e.g., Guiso, Monte, & Sapienza, 2008). However, this hypothesis has 

been challenged recently. 

Stoet and Geary (2013) conducted a more up-to-date analysis of the PISA data 

collected over four assessments (1.5 million students) and confirmed that the average gender 

difference in maths is small (but some larger differences emerged in non-OECD countries). 

They also found that although the gender difference at the lower end of the mathematics 

performance distribution was negligible, the gender difference at the top end of the 

distribution was actually quite large. For example, the ratio of male to female students 

performing above the 95th percentile in mathematics was 1.7 – 1.9:1 and the ratio for 

students performing above the 99th percentile was 2.3 –2.7:1. The authors suggested these 

results offer a potential explanation for the underrepresentation of women in most STEM1

                                                 

 

1 It should be noted that whilst females are generally underrepresented in technology, engineering and 
mathematics courses, in several scientific disciplines, particularly those involving the study of people or living 
things, females are over-represented in university courses or industries (WISE, 2015). 

 

courses, as students entering such courses are likely to be within the top performing students. 

Stoet and Geary also found, in contrast to the earlier studies by Else-Quest et al. (2010) and 

Guiso et al., (2008), that gender differences in mathematics (and reading) were not 

consistently related to indices of gender equality over the four PISA assessments, which they 

confirmed in subsequent work (Stoet & Geary, 2015). Furthermore, they found that the size 
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of the gender difference in maths was inversely related to the gender difference in reading, 

that is, the countries with the largest gender difference in mathematics had the smallest 

gender difference in reading and vice versa. Thus, these findings were interpreted as showing 

that gender differences were not related to a nation's gender equality and no nation had 

successfully reduced gender differences in both mathematics and reading performance (Stoet 

& Geary, 2013).  However, it should be noted that Stoet and Geary analysed a smaller sample 

of nations in these studies compared to the previous meta-analyses (Else-Quest et al., 2010; 

Guiso et al., 2008). Moreover, the authors specifically excluded several Nordic countries 

from the analyses which they believed to be driving the correlation between gender 

differences and gender equality reported in the previous meta-analyses. Thus, further research 

across a wider sample of nations is needed in order to confirm whether a relationship between 

gender differences and gender equality indices exists.  

In terms of mathematics performance in the UK, the Department for Education (DfE) 

reported that for children in Key Stage 2 (KS2: Years 3 – 6 in English primary schools), a 

higher percentage of boys than girls achieved Level 5 and above in mathematics 

(corresponding to the upper end of the mathematics performance distribution, DfE, 2014). In 

secondary students, the UK Department for Education and Skills (DfES) reported that more 

females gained A*–C grade in GSCE in England and that there was a small female advantage 

in GCSE mathematics (DfES, 2006). A more recent study of gender differences in GCSEs 

indicated that boys outnumbered girls in GCSE mathematics entries, but that gender 

differences in performance depended on the precise mathematics GCSE examination 

(Bramley, Vidal Rodeiro & Vitello, 2015). Girls tended to do better than boys on most STEM 

subject examinations, with the exception of an applied mathematics GCSE specification. 

Girls were overrepresented at the top end of the distribution compared to boys in most STEM 

specifications, with the exception of 'Maths B, 'Physics B', 'Applications of maths' and 

'Methods in Maths'. However, girls were overrepresented at the top end of the distribution in 

alternative specifications offered for maths and physics ('Maths A' and 'Physics A'). In 

contrast, boys were consistently overrepresented in the bottom 5% of the distribution for all 

STEM specifications. 

In contrast to the controversies surrounding gender differences in mathematics, 

gender differences in reading abilities are more consistent. Myriad studies, including 

international meta-analyses, have shown that girls outperform boys in reading at both the 
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primary and secondary school level (Logan & Johnson, 2010, Stoet & Geary, 2013). Stoet 

and Geary suggested in their recent analysis of four years of PISA data that the gender 

difference in reading performance is much larger than the gender difference in mathematics 

performance, and may have increased over time (Stoet & Geary, 2013). Moreover, girls are 

overrepresented at the top end of the reading performance distribution, whereas boys are 

overrepresented at the lower end of the distribution (ibid). Similar findings have emerged in 

UK primary school samples (DfE, 2014). At the secondary level Sammons, Sylva and 

Melhuish (2014) found the difference between males' and females' attainment in GCSE 

English was, on average, approximately half a grade level. 

1.3.2 Developmental Dyscalculia. 

Similar to the conflicting gender differences that have been reported in studies 

measuring mathematics performance, DD studies also show no consistency in terms of 

gender ratio. The prevalence studies described earlier in section 1.2.2 reported widely varying 

gender ratios which I summarise here.  

Several studies found that the prevalence of DD was higher in girls than in boys 

(Dirks, et al., 2008; Hein et al., 2000; Lander & Moll, 2010).  In contrast, Reigosa-Crespo 

and colleagues (2011) and Barahmand (2008) found the opposite pattern, reporting male to 

female gender ratios of 4:1 and 1.75:1.0 respectively. Barbaresi et al. (2005) found that the 

cumulative incidence of DD was higher for boys than girls regardless of the age of the 

children or how DD was defined (see Table 1 for the three definitions they compared). 

Badian (1983; 1999) found that when DD was defined using performance below the 20th or 

25th percentile on the SAT maths, the gender ratio was equal for children in lower 

elementary grades, but the prevalence of DD was higher in boys than girls in Grade 4 and 

above. Similarly, Mazzocco and Myers (2003) found an equal prevalence of girls and boys 

with DD in young children (kindergarten to second grade). Desoete and colleagues (2004) 

also reported similar percentages of Flemish boys and girls meeting criteria for DD in Grades 

two to four.  

Other studies reported an equal prevalence of girls and boys with DD in older 

elementary school children (e.g., Gross-Tsur et al.,1996; Koumoula et al., 2004; Lewis et al., 

1994; see Table 1 for definitions used).  
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Exceptionally, Ramaa and Gowramma (2002) found that the gender ratio of DD 

depended on the diagnostic criteria. When a diagnostic test was administered, the prevalence 

of DD was higher in boys than girls. On the other hand, when teachers were asked to identify 

children with DD the prevalence was higher in girls than in boys. When exclusionary criteria 

were applied, DD was equally prevalent in girls and boys.  

Collectively, these results suggest that the gender ratio of DD does not systematically 

relate to the age of the sample, although it is important to note that several studies did not 

report/ measure separate gender ratios for different age groups. Importantly, these findings 

also suggest that, for the most part, the gender ratio does not appear to relate to how DD is 

diagnosed, however, several studies did not report/ measure separate gender ratios for 

different diagnostic criteria. 

Chapters Three and Six of the current thesis examine gender differences in DD. In 

particular, Chapter Three investigates the effects of different diagnostic criteria on the gender 

ratio of DD. Chapter Six focuses on the gender ratio of DD and co-occuring MA. 

1.3.3 MA.  

Boys report higher levels of mathematics self-confidence, mathematics self-efficacy, 

and self-concept than do girls (Else-Quest et al., 2010; Huang, 2013; OECD 2015). 

Furthermore, boys are more motivated in mathematics than girls (Middleton & Spanias, 

1999). However, gender differences in MA are not as clear cut. 

Although adult studies have suggested that women tend to report higher MA levels 

than men (Ashcraft & Faust, 1994; Betz, 1978; Chang & Cho, 2013; Ferguson et al., 2015; 

Miller & Bichsel, 2004), MA gender differences in childhood and adolescence are not as 

consistent. Recently, attention has turned towards investigating MA in primary samples (e.g. 

Aarnos & Perkkila, 2012; Galla & Wood, 2012; Karasel & Ayda, 2010; Vukovic, et al., 

2013; Wu et al., 2012), however, these studies rarely report gender differences. In addition, 

due to the lack of consistency relating to the measure of MA used, meaningful gender 

patterns have been difficult to extract.  

Several studies measuring MA in primary samples have found no difference between 

girls’ and boys’ MA levels (Gierl & Bisanz, 1995; Newstead, 1998; Young, Wu & Menon, 

2012). Similar null findings have even been reported in 1st and 2nd graders (Harari et al., 
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2013; Ramirez et al., 2013). Likewise, Punaro and Reeve (2012) found no relationship 

between maths worry and gender in a cohort of 9-year-olds. 

Conversely, some studies have reported MA gender differences in primary samples. 

Griggs and colleagues, for instance, found that 5th-grade girls reported higher MA compared 

to boys (Griggs Rimm-Kaufman, Merritt & Patton, 2013) and Yuksel-Sahin (2008) reported 

an equivalent finding in a cohort of 4th and 5th-grade students. Similarly, Krinzinger and 

colleagues found that boys had more positive attitudes towards maths compared to girls from 

the end of the 1st grade through to the end of the 2nd grade (Krinzinger, Wood & Willmes, 

2012). Further, Satake and Amato (1995) reported higher levels of ‘maths test anxiety’ in 

girls than boys in 5th and 6th Grade. Recently, Hill, Mammarella, Devine, Caviola, 

Passolunghi and Szűcs (2016) found that Italian girls reported higher MA than boys at both 

primary and secondary school levels. Thus, although sparse, there is some evidence to 

support the existence of a MA gender difference in primary education and more specifically, 

girls appear to experience higher levels of MA compared to boys. In general, the studies 

reporting null findings tend to involve younger primary students whereas the studies 

reporting higher MA in girls than boys tend to involve older primary students. Thus, 

collectively these studies suggest that gender differences in students’ MA levels may only 

begin to emerge during the later stages of primary education, however, further research 

investigating gender differences in MA in primary students is necessary to evaluate this 

possibility. 

Similar to the primary level findings, several studies of MA in adolescents have found 

no gender differences in girls’ and boys’ MA levels. For example, studies conducted in 

Finland (Kyttälä & Björn, 2014), New Zealand (Sepie & Keeling, 1978), Turkey (Birgin et 

al., 2010; Dede, 2008) and the US (Chiu & Henry, 1990; Hadfield, Martin, & Wooden, 1992; 

Joannon-Bellows, 1992) have found no differences in the mean level of MA reported by boys 

and girls across all secondary school grades. However, many more studies have found MA 

gender differences in secondary school participants. 

Gender differences in relationship between MA and mathematics performance were 

investigated in two studies of data collected longitudinally from students in the US in the 

1980s: the Longitudinal Study of American Youth (LSAY; Ma & Cartwright, 2003; Ma & 

Xu, 2004) and Childhood and Beyond study (CAB) (Eccles & Jacobs, 1986; Meece et al., 

1990; Wigfield & Meece, 1988). Both studies followed children from middle school until the 
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senior high school grades. The LSAY reported mixed results with respect to gender 

differences in MA: while they found no overall gender difference in MA, girls’ MA grew 

faster and remained more stable than boys’ MA. Furthermore, whilst boys’ prior low maths 

achievement predicted later high MA at all grade levels, girls’ prior low maths achievement 

only predicted later high MA at critical transition points during schooling (for example, 

transferring from middle school to secondary school; Ma & Cartwright; 2003; Ma & Xu, 

2004). On the other hand, the CAB study found that girls reported higher MA than boys, 

particularly for the subscale of MA measuring negative affective reactions, however, they 

found the relationship between MA and maths performance was the same for both genders 

(Meece et al., 1990; Wigfield & Meece, 1988).  

Cross-sectional studies of American high school students have found differing 

patterns of gender differences. Bernstein, Reilly, and Cote-Bonnano (1992) found that mean 

MA was not significantly different for girls and boys up to age 13, but that from age 14 to 19, 

girls were more anxious about mathematics than boys. Similarly, a Canadian study found that 

MA was higher in girls than boys in a co-educational school (Shapka & Keating, 2003). 

The gender differences reported in studies conducted in Europe appear to be more 

consistent, with the majority of studies finding that girls have higher MA than boys. This was 

found in German (Frenzel, Pekrun & Goetz, 2007; Goetz et al., 2013);  Italian (Primi, 

Busdraghi, Tomasetto, Morsanyi, & Chiesi, 2014); Latvian (Kvedere, 2012); and English 

secondary school students (Chinn, 2009; NB: MA tended to be higher in girls than boys 

although statistical comparisons were not run; Devine et al., 2012). Goetz and colleagues 

found that only trait MA was higher in girls than boys in their sample, but there were no 

gender differences in state anxiety (Goetz, Bieg, Lüdtke, Pekrun, & Hall, 2013). Although 

Kyttälä and Björn found no gender difference in mean level of MA in their study of Finnish 

students, they found that the relationship between MA and math word problem solving was 

significant for girls but not for boys, however this difference in the strength of the correlation 

in girls and boys was not statistically tested (Kyttälä & Björn, 2014). Similarly, as mentioned 

earlier, we found that when the effects of test anxiety were controlled, the negative 

correlation between MA and maths performance remained significant for girls but not for 

boys, and a difference test confirmed the difference in correlation strength between genders 

(Devine et al., 2012). 
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In Asian countries, secondary school girls have also been found to have higher MA 

than boys (Baya’a, 1990; Saigh & Khouri, 1983), however, another study has suggested the 

opposite result (Abed & Alkhateeb, 2001). More recently, Keshavarzi and Ahmad (2013) 

found no overall gender difference in the MA of 12- to 14-year-old Iranian students but found 

gender differences emerged when they conducted separate comparisons for the different 

subscales of the MA scale they used (the Mathematics Anxiety Scale for Children, Chiu & 

Henry, 1990). More specifically, girls reported higher MA than boys on the problem solving 

and evaluation anxiety subscales whereas boys reported higher anxiety than girls on the 

teacher anxiety subscale. Conversely, no gender difference emerged for the learning math 

anxiety subscale. These findings highlight the importance of analysing gender differences 

separately by subscale for multidimensional MA scales, as reporting overall levels may 

average out any gender differences. 

Ho et al. (2000) found no gender difference in cognitive or affective dimensions of 

MA in Chinese students using a translation of  Wigfield and Meece’s (1988) Math Anxiety 

Questionnaire (MAQ), however, they also found that girls from Taiwan had higher affective 

and cognitive MA than boys. More recent findings have reported gender differences in 

Chinese students with Luo, Wang, and Luo (2009) reporting higher MA for girls than boys 

on both the affective and cognitive dimensions of the MAQ. Two studies conducted in India 

also reported higher levels of MA in secondary school girls than in boys (Jain & Dowson, 

2009; Khatoon & Mahmood, 2010); furthermore, the latter study found that gender interacted 

with school type, wherein females’ MA was especially high in particular types of managed 

schools. 

Although there are a few exceptions, there appears to be more evidence that, cross-

nationally, secondary school girls have higher levels of MA than secondary school boys. Two 

major meta-analyses of cross-national data also support this. The meta-analysis of 151 studies 

by Hembree (1990) reported that girls reported higher MA than boys across all high school 

grades. The more recent analysis of PISA data reported that 94.9% of the countries included 

in the 2003 assessment reported higher MA in girls than boys, with the remaining 5.1% 

countries reporting negligible effect sizes  (Else-Quest et al., 2010). 

Collectively these results suggest that MA is higher in secondary school girls than 

boys. Furthermore, MA appears to be more stable in secondary school girls than boys (Ma & 

Xu, 2004) and, given that girls appear to have higher MA across a range of anxiety subtypes, 



41 
 

MA also appears to be more pervasive in secondary school girls. However gender differences 

in the relationship between MA and maths performance seem mixed with some studies 

reporting that this relationship is stronger in girls than in boys (e.g., Devine et al., 2012); 

others suggesting that performance may be more predictive of MA in boys than girls (Ma & 

Xu, 2004) or finding no gender difference in the relationship between MA and maths 

performance (Meece et al., 1990; Wigfield & Meece, 1988). 

The current thesis examines gender differences in MA in primary and secondary 

school samples to address some of the abovementioned research gaps. In particular, the 

current thesis examines whether gender differences in MA exist at the primary school level 

and whether any gender difference exists in the relationship between mathematics 

performance and MA. Further, the current thesis tests whether a gender difference exists in 

the gender ratio of co-occurring MA and DD. 

1.3.4 Theories of gender differences. 

Many theoretical models have been proposed to attempt to explain gender differences 

in various psychological and performance variables, for instance: biological theories, 

evolutionary theories, and social cognitive and socio-cultural theories (Halpern, 1997; Hyde, 

2014). In short, evolutionary theories hypothesise that different psychological mechanisms 

have evolved in males in females (Buss & Schmitt, 1993). On the other hand, Cognitive 

Social Learning Theory posits that gender effects are the result of behaviour shaped by 

rewards and punishments, or learnt via imitation and modelling of others (Bussey & Bandura, 

1999). Socio-Cultural Theory postulates that society's gendered division of labour is 

responsible for the formation of social roles which leads to sex-differentiated behaviour and 

psychological gender differences (Eagly & Wood, 1999). While there is mixed support for 

evolutionary theories, there is more evidence to support the mechanisms proposed by 

Cognitive Social learning theory and mounting evidence to support Socio-Cultural Theory 

(Hyde, 2014). Other theories have been more explicitly linked to gender differences in 

mathematics performance. 

Benbow and Stanley (1980), in their famous study suggesting a male advantage in 

performance on the SAT mathematics, gave a (partly) biological explanation of their 

findings. They stated that “male superiority [in mathematics] is probably an expression of a 

combination of both endogenous and exogenous variables” (p. 1264). Benbow and Stanley 

did not go so far as to suggest precisely what these endogenous variables were, but possible 
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genetic explanations of MLD/ gender differences have been suggested by studies linking 

specific genetic disorders to MLD. For example, Fragile X syndrome and Turner Syndrome 

are more frequent in girls than in boys (see Gross-Tsur et al., 1996). 

Sex hormones have also been suggested as biological sources of cognitive gender 

differences, as hormones influence prenatal brain development and organisation (Collins & 

Kimura, 1997). However, the evidence supporting the role of prenatal sex hormones in later 

cognitive gender differences (such as mental rotation ability and verbal fluency) is 

inconclusive, particularly due to lack of replication and the limited reliability of different 

measures of prenatal hormone levels (Hines, 2011, Hines, Constantinescu & Spencer, 2015). 

Similarly, research linking prenatal sex hormone exposure to gender differences in 

mathematics ability has revealed inconsistencies (Hines, 2011). Recent work has focussed on 

the role of early postnatal testosterone levels on the development of cognitive and 

behavioural gender differences. Although a link between postnatal testosterone and 

expressive vocabulary (at ages 18 – 30 months) has been found by one study, this finding has 

not been replicated (reviewed in Hines, et al., 2016). As yet, no studies appear to have 

investigated the influence of postnatal testosterone on gender differences in mathematics 

(ibid). Similarly, although sex differences in brain volume and function have been identified 

(reviewed in Halpern et al., 2007), research attempting to link these neural differences to 

cognitive gender differences has also not yielded many conclusive findings (Hines, 2011). 

Some have recognised that neither biological nor social factors alone can explain 

gender differences, particularly as biological and environmental influences are thought to 

function reciprocally (Halpern, et al., 2007, Wood & Eagly, 2013). Halpern's, 

biopsychosocial model of sex differences conceptualises nature and nurture as elements of a 

continuous loop. This model portrays the influence of biological factors such as genes and 

hormones on brain development and their reciprocal relation with environments/ experiences. 

Importantly, a more specific theory may contribute to gender differences in 

mathematics performance, affect, and subsequent subject choice, namely, Expectancy-Value 

theory (Eccles, 1994). This theory links two sets of beliefs to academic choices: an 

individual's expectancies (e.g., expectations for success) and their subjective task values (e.g., 

interest in a task, perceived usefulness). However, an individual's beliefs are influenced by 

various other factors including the cultural milieu (e.g., gender role stereotypes), the 

individual's aptitude and previous educational experiences, their interpretation of these 
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experiences including affective memories, the individual's goals and self-schemata (e.g., self-

concept), as well as socialisers' beliefs and expectations. Primarily, this model has been used 

to understand gender differences in STEM course uptake (Eccles, 1994); but it may also 

contribute to gender differences in many of the abovementioned mathematics learning related 

variables.  For example, gender differences in mathematics self-concept/ self-efficacy, 

motivation, and MA could be included in this model. Furthermore, gender differences in 

performance under stereotype threat (Huguet & Regner, 2007) and the differential effects of 

parents' and teachers' beliefs and expectations on girls' and boys' maths performance (Eccles, 

1994; Gunderson, Ramirez, Levine et al., 2012) may also be predicted by this model. 

Testing different theories of gender differences in mathematics performance and 

affect is, again, outside of the scope of the current thesis. However, an understanding of the 

possible cultural, personal, and social factors involved in psychological gender differences is 

relevant as the current thesis investigates gender differences in reading and mathematics 

performance, DD, and mathematics affect. 

1.4 Current study and outline of thesis 

The overarching aim of this thesis is to examine the link between cognitive and 

emotional mathematics learning problems. This dissertation focuses on DD, a specific 

learning difficulty of mathematics, and MA, a negative emotional reaction to mathematics 

tasks. The current thesis examines the link between MA and DD by measuring the prevalence 

of each of these maths learning problems individually, and as co-occurring conditions. The 

stability of DD diagnosis and its associated cognitive deficits is also investigated. Further, 

gender differences will also be inspected in DD and MA. The data analysed in this 

dissertation was collected during two funded research projects. Chapters Two to Four include 

data from the ‘Cognitive neuroscience of Developmental Dyscalculia’ project (Medical 

Research Council, UK), and Chapters Five and Six include data from the ‘Understanding 

Mathematics Anxiety’ project (Nuffield Foundation). Hereafter, these projects shall be 

referred to as Project 1 and Project 2 respectively. 

In spite of a growing research base, there is currently no agreed upon functional 

definition of DD and diagnostic criteria have varied widely, particularly in experimental 

studies. Prevalence studies tend to use more conservative thresholds to define poor 

mathematics performance, however, even the diagnostic criteria employed in prevalence 

studies have varied widely. Furthermore, past studies have used various tests of mathematical 
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skills and some issues have arisen from the use of non-standardised tests or tests with 

outdated norms. Researchers have also differed on their use of discrepancy definitions, which 

define DD as a certain discrepancy (e.g., 1 or 1.5 SD) between maths performance and IQ or 

language abilities. The use of a control variable in DD diagnosis is also not consistent, 

however, a control variable is necessary in order to determine the specificity of the 

mathematics learning problem. The study described in Chapter Two uses reading 

performance as a control variable and will investigate the impact of varying DD diagnostic 

criteria and performance thresholds on the prevalence of DD in a sample of 1004 primary 

school children. Age-standardised tests linked to the National Curriculum are used to 

measure mathematics and reading performance and the correlation between these two 

variables is investigated. 

Inspection of the previous literature also revealed inconsistencies in terms of gender 

differences in mathematics performance and DD. Classic studies reported a male advantage 

in mathematics, however, more recent work suggests that the gender gap in mathematics is 

decreasing (Else-Quest et al., 2010). Boys may still outnumber girls at the upper end of the 

mathematics performance distribution (Stoet & Geary, 2013). DD prevalence studies have 

also reported different gender ratios, however, the last UK study reported an equal prevalence 

of girls and boys with DD (Lewis et al., 1993). Gender differences in reading performance 

are more consistent, with girls typically outperforming boys, and girls are over-represented at 

the top end of the reading performance distribution, whilst boys are overrepresented at the 

lower end of the distribution (Stoet & Geary, 2013). Chapter Three examines gender 

differences in the same sample described in Chapter Two. More specifically, gender 

differences are inspected in mathematics and reading performance, and in the prevalence of 

DD, contrasting the diagnostic criteria explored in Chapter Two. 

Chapter Four reports the longitudinal measurements (taken over three time points) of 

a subsample of the children tested in Chapters Two and Three. More specifically, subgroups 

of children with DD, high mathematics performance, and a control group were tested in 

several sessions on a wide range of cognitive skills, including IQ measures, working memory, 

spatial skills and MA. In order to set the context for the longitudinal analysis, the introduction 

to Chapter Four describes the outcome of our previously published study (Szűcs et al., 2013) 

which tested different theories of DD in the same sample tested in Chapter Four. Our 

previous work contrasted the deficient number module theory of DD against alternative 
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theories of deficits in working memory, attention and inhibitory function (reviewed in section 

1.1.3). Chapter Four continues this work by investigating the stability of the associated 

performance deficits in DD, and the stability of the performance advantages in control 

children and gifted mathematicians. Chapter Four also explores the link between DD and 

MA. 

Chapter Five investigates this link further by examining the prevalence of MA and the 

relationship between MA and performance in a large sample of children. Similar to DD 

research, MA researchers have also disagreed on how to define high MA, because the point at 

which moderate levels of MA becomes high MA is difficult to pinpoint when using self-

report scales. Some have estimated the prevalence of MA statistically (e.g., using a mean+ 1 

SD threshold, Ashcraft et al., 2007), however, this definition assumes that the distribution of 

MA scores is normal, and normality of MA scores is rarely reported. Thus, in Chapter Five, 

the prevalence of high MA is estimated by inspecting the MA performance distribution in a 

sample of 1757 primary and secondary students. The relationship between MA and 

performance is also measured in this large sample and also in a subsample of children with 

DD. Finally, the prevalence of co-occurring MA and DD is also measured, to explore 

whether MA and DD are one and the same or whether they are dissociable mathematics 

learning problems. 

Prior research has also indicated inconsistencies in MA gender differences. While 

studies employing adult populations have consistently found that MA is higher in females 

than in males, MA gender differences in school children are not as straightforward. In sum, 

evidence suggests that secondary school girls have higher MA than boys, a pattern which is 

also seen in older primary school children. Chapter Six investigates gender differences in 

maths and reading performance, and DD and MA and in comorbid DD and MA in both 

primary and secondary school samples.  

Finally, Chapter Seven discusses the implications of the findings for research and 

education as well as the limitations of the current research and directions for future study. 
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2. Chapter Two. Prevalence of DD in the United Kingdom2

The majority of DD research involves experimental studies, which test causal 

theories of DD or measure the characteristics of DD in a controlled environment. In 

general, experimental studies have used broad selection criteria, for example, defining 

DD using performance cut-offs ranging from the 10th to the 45th percentile (Murphy 

et al. 2007). These cut-offs are illustrated in Figure 1. These broad selection criteria 

likely substantially inflate DD prevalence estimates. Prevalence studies, that is, 

studies that measure the number of cases of DD in a particular (sufficiently large), 

population at a particular point in time, are likely to reveal more accurate prevalence 

estimates. In general, prevalence studies tend to use more conservative diagnostic 

criteria than experimental studies. My review of prior research revealed that the 

prevalence estimates provided by different demographic studies vary between 1.3% 

and 10.3% (the mean estimate is about 5.6%). These prevalence estimates are shown 

in Table 1. 

 

 There are some obvious reasons for this broad range of estimates. First, some 

prevalence studies defined DD using an IQ-achievement discrepancy (e.g., 

Barahmand, 2008; Barbaresi et al, 2005; Lewis et al., 1994; Mazzocco & Myers, 

2003), that is, mathematics performance that is substantially below what would be 

expected given general intelligence. Similarly, Barbaresi et al. (2005) estimated the 

prevalence of DD using a regression-based discrepancy definition, in which maths 

performance scores were predicted by a sum of a constant (i.e. a ‘discrepancy’ value) 

and a weighted sum of the IQ score. Second, others defined DD by the severity of the 

mathematics impairment using performance cut-offs on standardised tests; the range 

of cut-offs used in the prevalence studies is represented in Figure 2. These cut-offs 

varied broadly, from performance below the 3rd percentile to performance below the 

25th percentile (2 SD to 0.68 SD below the mean). Third, DD has also been defined 

using a two-year achievement delay as a diagnostic criterion, that is, DD was defined 

                                                 

2 This chapter is an expanded version of data presented in Devine et al. (2013). 
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as mathematics performance equal to or below the average level of children two years 

younger (e.g., Barahmand, 2008; Gross-Tsur et al., 1996; Ramaa & Gowramma.) 

Some demographic studies use control variables in their definitions of DD, 

such as IQ and/or language abilities. A control variable is necessary to determine 

whether disability is general to several domains (e.g., it is a general learning 

disability), or whether it is specific only to mathematics. The use of an IQ- 

achievement discrepancy definition has been questioned in dyslexia research (Francis 

et al., 2005) and also represents an important disagreement in DD research. Research 

has suggested that some children with DD may not show an IQ-achievement 

discrepancy (e.g., Mazzocco & Myers, 2003). Some definitions of DD used in 

previous studies specified average performance in a control measure (Desoete et al., 

2004; Dirks et al., 2008; Hein et al., 2000; Koumoula et al., 2004; Lewis et al., 1994; 

Ramaa & Gowramma, 2002). Some prevalence studies measured abilities in other 

domains but included children with comorbid learning disorders in the DD groups 

(e.g., Gross-Tsur et al., 1996; Mazzocco & Myers, 2003; Ramaa & Gowramma, 

2002). Others reported separate prevalence estimates for children with MD only and 

those with co-occurring reading difficulties (e.g., Badian, 1983, 1999; Landerl & 

Moll, 2010; Lewis et al., 1994). Several prevalence studies did not include a control 

variable at all in their definitions of DD, that is, they just defined DD/MLD on the 

basis of low mathematics scores and thus did not differentiate between specific and 

comorbid learning disabilities (e.g., Barbaresi et al., 2005; Geary, 2010; Kosc, 1974; 

Reigosa-Crespo et al., 2012).  

It is important to note that empirical prevalence studies are important because 

prevalence estimates based on control variables do not simply identify the tail of the 

normal distribution along a single variable. Rather, because a population is defined on 

the basis of multiple variables, prevalence values depend on the strength of the inter-

correlation of the variable of interest (e.g., mathematics in the case of DD) and the 

control variable(s) (i.e. on the distribution of two or more variables). For example, if 

DD is defined not only on the basis of mathematics scores but simultaneously on the 

basis of a control variable like reading achievement, the correlation between 

mathematics performance and reading achievement must be determined empirically. 
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2.1.1 The current study. 

Given that the last prevalence study in the UK was 22 years ago (Lewis et al., 

1994), and that the prevalence estimates reported in that study were based on scores 

from outdated standardised tests, there is a need for a more recent epidemiological 

investigation in the UK. The current chapter reports findings from Project 1 and 

investigates the prevalence of DD in the UK (published in Devine, Soltész, Nobes, 

Goswami & Szűcs, 2013). The study involved 1,004 children from 22 schools located 

in the east of England. Age-standardised tests of mathematics and reading (the control 

measure), were administered to all children in the cohort. The tests used in the current 

chapter were developed and normed only a few years prior to test administration. 

The aim of the current chapter was to estimate the prevalence of DD, to 

describe features of the distribution of scores and to demonstrate the effects of using 

the different performance cut-offs on the prevalence estimate. My research questions 

were the following: (1) how is the prevalence of DD affected by the inclusion of a 

control variable? (2) How is the prevalence of DD affected by varying the 

mathematics and reading performance cut-offs? Because previous demographic 

studies have found different prevalence estimates we did not have specific hypotheses 

about the prevalence of DD.  

2.2 Method 

2.2.1 Participants. 

The sample comprised 1,004 children (526 boys and 478 girls) ages 7 years 4 

months to 10 years 1 month attending Year 3 (N = 806 mean age = 8:1) and Year 4 (N 

= 198, mean age = 9:1) of primary school. The participating schools were state 

primary schools located in Cambridgeshire (12 schools), Hertfordshire (8 schools) and 

Essex (2 schools), England. The schools comprised a mix of urban schools and 

outlying rural schools and the catchment populations of the schools were 

predominantly lower-middle class. Year groups ranged in size from 9 pupils to 79 

pupils.  Table 2 shows the age and gender distribution for the two year groups. The 

study received ethical permission from the Psychology Research Ethics Committee of 

the University of Cambridge. The information sheet and consent form can be found in 

Appendix A.  
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Table 2.  

Demographic features of the sample. 1,004 children were tested in total. 

 Year 3 Year 4 

 N Mean age 

(in months) 

SD N Mean age 

(in months) 

SD 

Females 413 97.47 3.89 113 109.47 4.48 

Males 393 97.60 3.80 85 109.18 4.02 

Total 806 97.53 3.84 198 109.34 4.28 
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2.2.2 Measures.  

Mathematics test. The mathematics tests used were the Mathematics 

Assessment for Learning and Teaching tests (MaLT) (Williams, 2005). The MaLT 

tests are group-administered written tests. The MaLT tests were developed in 

accordance with the National Curriculum and National Numeracy Strategy for 

England and Wales. Test items cover the following mathematics topics: counting and 

understanding number; knowing and using number facts; calculating; understanding 

shape; and measuring and handling data. The MaLT tests were standardised in 2005 

with children from 120 schools throughout England and Wales (MaLT 8: N = 1,358 

children, standardised for children aged 7:0 to 9:5, α= 0.91; MaLT 9: N = 1,238, 

standardised for children aged 8:0 to 10:5, α=0.93). Both MaLT tests allow a 

maximum of 45 minutes for completion and scores are calculated out of a total of 45 

points. Raw scores can be converted to standardised scores and national curriculum 

levels. 

Reading test. The reading test used was the Hodder Group Reading Test II 

(HGRT-II) (Vincent & Crumpler, 2007). The HGRT II level 1 was used for Year 3 

pupils, and the HGRT II level 2 was used for Year 4 pupils. These multi-choice tests 

assess children’s comprehension of words, sentences and passages. The tests were 

standardised in 2005 with children from 111 schools throughout England and Wales 

(HGRT II level 1 is standardised for children aged 5:0 to 9:0, α = 0.96; HGRT II level 

2 is standardised for children aged 7:0 to 12:0, α = 0.95). Each test has two parallel 

forms which were used in the present study to minimise copying. Both HGRTII tests 

allow a maximum of 30 minutes for completion, with the exception of children who 

would normally require additional time on National Curriculum assessments. For 

these children, the HRGT level 1 allows for an additional 5 minutes for completion. 

The raw score (out of 40 points for the level 1 test and 53 points for the level 2 test) 

can be converted to standardised scores, reading ages and national curriculum levels. 

2.2.3 Procedure. 

The tests were administered to the children between March and December 

2010. The tests were administered to whole classes. Classes typically completed both 
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tests in one day, with a break between the two tests. Usually, the break coincided with 

morning or lunch break or other school activities (e.g., school assembly). As far as 

was possible, the order of test administration was counterbalanced across the different 

classes. 

All children completed the tests under test-like conditions: the children’s 

tables were separated and children were discouraged from speaking or colluding with 

neighbouring children. At the beginning of the reading test, the researchers explained 

the test instructions and ran through two practice questions with the class before the 

test began. The children worked through the reading test without any input from the 

researchers or teachers except for explaining the test instructions again where 

required.  

The mathematics assessments do not include practice questions, however, the 

tests allow for invigilators to read the questions to the children if required because the 

test items require a fair amount of reading and test performance should reflect 

mathematics ability rather than reading proficiency. Reading questions is also the 

convention for the administration of National Curriculum mathematics assessments in 

England and Wales. The test instructions were explained to the children before the 

test began and children were asked to raise their hands if they required help with 

reading, in which case the researchers or supervising teachers read the MaLT 

questions to the children. Some schools preferred to separate low ability readers from 

the rest of the class and have a teaching assistant read the MaLT to the group in a 

separate room or another part of the classroom. In other cases, teaching assistants 

worked one-on-one with children with low reading abilities or other special 

educational needs. Two children with special education needs were excluded from 

testing because their teachers believed that the tests would cause the children distress. 

2.2.4 Data analysis. 

Maths and reading raw scores were converted to age-standardised scores for 

analysis. The relationship of mathematics and reading performance was tested by 

correlational analysis (Pearsons’s r). The distributions of maths and reading scores, 

for all children, were tested for normality using the Kolmogorov-Smirnov test.  
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The distribution of reading and maths scores was cut into two halves in the 

following way. Children with maths scores from 70 to 104 composed the lower half of 

the distribution. Children with maths scores from 105 to 140 belonged to the upper 

half of the distribution. The correlation between maths and reading scores were 

computed for both halves, separately. The strength of the correlations between the two 

halves was compared by the difference test for r values. Furthermore, five bins were 

also created (70-84, 85-98, 99-112, 113-126, 127-140) from the distribution in order 

to ensure that any changes in the strength between the two halves of the distribution 

are due to gradual changes and not to one or two bins of the distribution having outlier 

r values. 

2.3 Results 

2.3.1 Analysis of distributions. 

As can be seen in Figure 4, mathematics scores were positively correlated with 

reading scores (r = .626, p < .001). Figure 4 shows the correlation of mathematics and 

reading scores across the sample. Figure 5 also shows the individual distributions of 

mathematics and reading scores.  Neither distribution differed from normal (p > .1 for 

all).  
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Figure 4. Correlation of mathematics and reading performance.  

Figure 5. Distributions of mathematics and reading performance. Neither of these 

distributions was significantly different from normal.  
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2.3.2 The effect of criterion levels on the identified prevalence of DD. 

The relationship of reading and math abilities is clear from their significant 

correlation. However, the strength of this correlation changes across the distribution. 

The correlation between reading and maths is r = .57 (N = 544) in the lower half of 

the distribution and it is r =.21 (N = 440) in the upper half of the distribution, which is 

a significant difference in correlation strength according to the difference test (p 

<.001). The gradual weakening of the correlation is also reflected by the decaying r 

values when the distribution is divided into 5 bins (in steps of 14 scores): .27, .20, .18, 

.14, -.15, from the lowest bin to the highest bin, respectively.  

In order to gain further understanding of the relationship between reading and 

maths abilities with regard to defining DD, we investigated the effects of using 

different mathematics and reading cut-offs to define DD. Figure 6 shows the number 

of children defined as having DD using different reading and mathematics 

performance cut-offs.  
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Figure 6: The effect of different reading and maths cut-offs on the number of children 

diagnosed with DD.  
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As can be seen in Figure 6, the number of children defined as having DD at a 

particular mathematics cut-off score also depends on the cut-off score used to define 

good reading performance. Several different arbitrary thresholds could be defined. 

The most likely ones are illustrated in Figure 7A. A potential scenario would be to not 

control for an impairment in another domain or for a potential domain general 

problem and include all children regardless of their reading ability when diagnosing 

DD. This scenario is represented by the continuous line in Figure 6 (‘no reading cut-

off’). For example, if DD is defined using a mathematics score cut-off of <1 SD below 

the mean (a standardised score of 85) then 131 children (13.04% of the cohort) can be 

categorised as having DD. If a more conservative cut-off of <1.5 SD below the mean 

(a standardised score of 78) is used, the number of children categorised as having DD 

more than halves and drops to 53 children (5.3% of the cohort). An alternative 

scenario is to exclude all children with a reading score worse than 1.5 SD below the 

mean (i.e., standardised reading scores below 78) from the DD diagnosis. This 

scenario is shown by the dashed line in Figure 6. If we again define DD by using a 

mathematics score cut-off of <1.5 SD below the mean we can categorise 24 children 

(2.4% of the cohort) as having DD. If, in a third, more conservative scenario, we 

introduce a stricter reading cut-off at <1 SD below the mean (standardised reading 

scores below 85) and still use a <1.5 SD cut-off on maths scores to diagnose DD, the 

number of children with DD reduces further to 9 (0.89%). If we define poor 

mathematics performance using a less conservative cut-off (<1 SD below the mean), 

with a reading cut-off of <1.5 SD below the mean, 85 children are defined as having 

DD (8.86%); with a reading cut-off of <1 SD below the mean, 56 children are defined 

as having DD (5.58%).  

The frequencies of children for different combinations of maths and reading 

thresholds are also illustrated in Figure 7A. 
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Figure 7. The percentage and number of children in given cut-off cells (A) and the 

percentage and number of children in given discrepancy score (mathematics – 

reading) cut-off cells (B). The x-axis shows the combined mathematics and reading 

cut-off cells (A) and mathematics – reading discrepancy cut-off cells (B) (the 

corresponding standard deviation values are in brackets). A: *No reading cut-off.  
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Figure 7B shows the distribution of the sample as a function of discrepancy 

scores (maths minus reading scores). The two leftmost bars represent higher reading 

performance than maths and the two rightmost bars represent higher maths 

performance than reading. Most children fell within ±1 SD difference between maths 

and reading scores (see also Figure 7A). The prevalence of DD using these 

discrepancy definitions ranged from 7.47% (1.5 SD between maths and reading 

performance) and 17.23 % (1 SD between maths and reading performance). 

2.4 Discussion 

2.4.1 Mathematics and Reading performance. 

The current study found that mathematics and reading performance was 

positively correlated and that the correlation was stronger in the lower half of the 

distribution than in the upper half. The stronger relationship between maths and 

reading performance at the lower end of the distribution could be interpreted to 

suggest that perhaps domain general factors (e.g., IQ) influence performance more at 

the low than at the high end and domain-specific differences are more evident at the 

higher end. However, we cannot conclude about the causes of DD from this 

observation because such potential causes were not measured here. For example, it 

may be that maths performance is related to several different causal factors in 

different children at the lower end of the distribution and these causal factors also 

have a variable impact on reading performance (because r <1). Similarly, we cannot 

conclude clearly about the reasons for specificity at the higher end because 

outstanding performance in maths and reading can, for example, be strongly 

influenced by motivational factors and competence beliefs. Hence, it is not clear 

whether increased specificity at the high end can be attributed to specific cognitive 

variables. However, the change in the strength of the correlation across the 

distribution has implications for defining DD if good reading performance is to be 

included in the definition alongside poor mathematics performance. 
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2.4.2 Prevalence of DD. 

The empirically measured prevalence of DD depends on both a mathematical 

criterion variable and on a control variable used to assess the specificity of the 

weakness. Here reading performance served as a control variable. We found that DD 

prevalence is seriously affected by the cut-off score used to define good reading 

performance. In summary, even when shifting cut-off scores in reading and maths 

between <1 SD and <1.5 SD there is considerable variation in the number of children 

diagnosed with DD, the frequency of diagnosis ranges from 9–131 (0.89% - 13.04%) 

in a sample of 1004 children (illustrated in Figure 6 and Figure 7A). If we use a <1.5 

SD cut-off for both reading and maths then 2.39% of the sample (24 out of 1004 

children) can be diagnosed to have DD. If both cut-offs are <1 SD, the prevalence of 

DD is 5.58% (56 out of 1004).  

If discrepancy thresholds are used to define DD (1 SD or 1.5 SD between 

reading and maths performance) then 7.6 to 17.23% of the sample (79 to 188 out of 

1004 children) can be diagnosed with DD (See Figure 7B). However, some of the 

children who would be defined as having DD using a discrepancy of 1 – 1.5 SD 

between mathematics and reading performance, in fact, had mathematics performance 

which fell within the average range and high reading performance. This profile does 

not fit a severe impairment of mathematics skills. Rather, these children would be 

typically regarded as gifted readers rather than weak in mathematics. Furthermore, 

such discrepancy definitions exclude children who show a discrepancy between their 

mathematics and reading performance but who do not quite reach the discrepancy 

threshold of 1 or 1.5 SD. Inspecting the frequency of children with low mathematics 

performance and average (e.g., 0.5 SD discrepancy between reading and maths) or 

high reading performance (e.g., 1.0 to 1.5 SD discrepancy between reading and maths) 

are more sensible discrepancy definitions of DD. These relative discrepancy 

definitions are compared in Chapter Three. 

Although the current study has suggested different ways of defining DD using 

different maths and reading performance cut-offs and discrepancy definitions, it has 

not necessarily resolved how DD should be defined. In the current study performance 

on the standardised tests was normally distributed, thus, no natural breaking point 
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existed to differentiate individuals with DD/ MLD from children with typical 

mathematics performance. Therefore, the mathematics and control variable 

performance cut-offs used by DD researchers may be chosen somewhat arbitrarily. If 

broad cut-offs are used, like those used in many experimental studies of DD, this 

increases the risk of identifying false positives. However, using a more conservative 

performance cut-off runs the risk of missing some cases of DD. Indeed, twin studies 

have suggested that the genetic (and environmental) factors that are associated with 

mathematical learning disabilities are the same genetic (and environmental) factors 

that are responsible for normal variation in abilities, that is, mathematical learning 

disabilities are “just the low end of the normal distribution of ability” (Plomin and 

Kovas, 2005 p. 592; Kovas, Haworth, Petrill & Plomin, 2007).  

One potential solution may be to use several different tests to diagnose DD, 

which has been recommended by other researchers (Desoete & Roeyers, 2000; 

Mazzocco & Myers, 2003; Silver, Pennett, Black, Fair & Balise, 1999) and is 

typically recommended for clinical diagnoses of LDs (American Psychiatric 

Association, 2016). As noted in the introduction, Mazzocco and Myers (2003) found 

that measuring mathematics performance using different tests identified different 

groups of children with DD. Similarly, Desoete and colleagues reported that three 

different mathematics assessments (tests of number knowledge and mental arithmetic, 

mathematics word problems, and number facts) were needed to identify all 85 

children in their DD group (Desoete & Roeyers, 2000). Measuring mathematics 

performance across several time points also helps control for factors other than poor 

mathematics ability that could result in a child underperforming on a test (e.g., 

situational factors, test anxiety). Although using different measures of maths 

performance was not possible here, this study reports the first phase of a multi-step 

screening procedure for identifying a sample of children with DD for detailed 

investigation. The identification of DD children and the stability of DD using multiple 

mathematics and control measures is described in Chapter Four of this thesis. 

It is important to note that it is possible that the prevalence of DD may have 

been different if we had used different control measures. For example, the Hodder 

Group Reading Test is a test of reading comprehension and does not assess decoding 
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ability. Prior work has reported that these reading abilities are differentially related to 

components of mathematics (e.g., word problem solving or arithmetical fluency, 

reviewed in Dowker, 2016). Thus, including a measure of decoding ability may have 

had an impact on the prevalence of DD. However, due to time and cost constraints 

related to the large sample size, we could not include additional language measures or 

include additional control measures such as IQ during the screening phase. However, 

the majority of DD demographic studies used only one control variable (eight studies) 

and several did not include performance on a control variable in their diagnostic 

criteria (five studies). Only one study determined DD prevalence using two control 

variables (Lewis et al., 1994). In addition, of the DD demographic studies with large 

sample sizes in which IQ was measured, several only administered individual IQ 

assessments to a subset of their original samples (e.g., Barahmand, 2008; Gross-Tsur 

et al, 1996; Ramaa & Gowramma, 2002), whereas others accessed IQ information 

from educational records (Barbaresi, et al., 2005) or used a group-administered IQ 

test. For example, Lewis et al. (1994) used the Raven’s coloured progressive matrices 

(Raven, Court & Raven, 1984) which were group administered. However, the updated 

version of Raven’s coloured progressive matrices (Raven, 2008) is now administered 

individually or in smaller groups, however, this was not possible with our large 

sample. Ethical guidelines prevented us from accessing educational records, so we 

could not access further information about the children’s general abilities or other 

language skills such as spelling. As this was a prevalence study, rather than a detailed 

assessment of DD characteristics or an investigation of the causal theories of DD, we 

believe that reading ability served as a sufficient control measure in our study 

according to the procedures adopted by past prevalence studies.  

It should also be noted that the tests used in the current study may not be 

considered sufficient to diagnose DD according to recent conceptualisations of DD 

(reviewed in Kaufmann et al., 2013). Those authors distinguished between primary 

and secondary forms of DD; primary DD is thought to be characterised by numerical 

or arithmetic deficits at the behavioural, cognitive/neuropsychological and neuronal 

levels, whereas secondary DD is hypothesised to have non-numerical/domain-general 

causes (ibid). National-curriculum based assessments are not thought to assess core 

mathematical abilities in detail and are thus not considered sufficient for DD 
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diagnosis (Kaufmann et al., 2013).  However, it should be emphasised that this study 

functioned as a screening phase of a larger project which investigated the causal 

theories of DD and included additional assessments of basic numerical abilities, as 

well as several additional control measures in later phases of the project (described in 

Chapter Four). Moreover, we used an operational definition of DD for screening for 

research purposes and defined DD as a specific learning disorder of mathematics.  

Finally, it is important to note that because the age of our sample was 

restricted to children between 7 and 10 years of age, our results may not generalise to 

other age groups.  The prevalence of DD in secondary school children is also 

inspected in Chapters Five and Six. 

2.5 Summary 

The current study investigated the prevalence of DD in a sample of 1004 (7- to 

10-year-old) primary school children. Prevalence estimates for DD are strongly 

affected by the inter-correlation between mathematics and the control variable used to 

determine the specificity of the mathematics impairment. We used reading 

performance as a control variable and found that the prevalence of DD ranged 

between 0.89% and 17.23% of the sample depending on the definition used. Absolute 

threshold and discrepancy definitions were compared, as were mathematics and 

reading performance cut-offs of 1 SD and 1.5 SD below the mean. Absolute threshold 

definitions proved to be more meaningful to diagnose DD than discrepancy thresholds 

as the latter did not discriminate between children with specific mathematics 

performance deficits (DD) and children with relatively high reading compared to 

average mathematics performance. Using an absolute threshold definition of 

mathematics performance below 1 SD below the mean and reading performance 

above 1 SD below the mean resulted in 5.6% of the sample being diagnosed with DD. 
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3. Chapter Three. Gender differences in mathematics and reading performance and the 

prevalence of DD3

 

 

Classic research suggested that boys outperform girls in mathematics and that boys 

outnumber girls at the high end of the mathematics performance distribution, suggesting that 

boys show greater performance variability than girls (Benbow & Stanley, 1980; Halpern 

1986; Hedges & Nowell, 1996). Subsequent meta-analytic research suggested that average 

gender differences in mathematics performance are quite small (Hyde, 1990; Lindberg et al., 

2010), but also vary across nations (Else-Quest et al., 2010; Stoet & Geary, 2013). However, 

a recent meta-analysis of four PISA assessments suggested that boys are overrepresented at 

the top end of the mathematics performance distribution compared to girls by a ratio of 1.7 - 

2.7:1 (Stoet & Geary, 2013). In the UK, primary school boys are more likely to achieve the 

top levels in maths than are girls (DfE, 2014).  

The gender gap in reading performance appears to be more consistent, with many 

studies, including international meta-analyses, reporting that girls outperform boys in reading 

at both the primary and secondary school level (Logan & Johnson, 2010, Stoet & Geary, 

2013). Furthermore, the gender difference in reading performance is much larger than the 

gender difference in mathematics performance and this gender gap may have increased over 

time (Stoet & Geary, 2013). In addition, girls are overrepresented at the top end of the 

reading performance distribution, whereas boys are overrepresented at the lower end (ibid). 

UK primary school children also show this pattern of gender differences in reading 

performance (DfE, 2014).  

Similarly, the gender ratio of DD has also varied across demographic studies. Some 

have reported a greater prevalence in girls than in boys (Hein et al., 2000; Lander & Moll, 

2010), and Dirks et al. (2008) found that more girls met the criteria for DD than boys 

regardless of whether a strict or more lenient maths performance criterion was used. Others 

reported that DD was more prevalent in boys than girls (Barahmand, 2008; Reigosa-Crespo et 

al., 2012). Barbaresi et al (2005) found that boys outnumbered girls with DD regardless of 

whether DD was diagnosed using discrepancy formulas or a low achievement criterion. 

                                                 
3This chapter is an expanded version of data presented in Devine et al. (2013). 
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Badian's studies found no gender difference in younger elementary school children but that 

more boys than girls were diagnosed with DD in the higher elementary school grades 

(Badian, 1983; 1999). Several other studies reported an equal prevalence of girls and boys 

with DD (Desoete et al., 2004; Gross-Tsur et al., 1996; Koumoula et al., 2004; Lewis et al., 

1994; Mazzocco & Myers, 2003). Ramaa and Gowramma (2002) found that the gender ratio 

depended on whether DD was identified using a diagnostic test (prevalence higher in boys 

than girls), teacher identification (higher prevalence in girls than boys); or if exclusionary 

criteria were applied (equal prevalence). Some of the studies that varied DD diagnostic 

criteria did not report the gender ratio separately for each DD definition used (e.g., 

Barahmand, 2008; Lander & Moll, 2010) or comparisons were not possible due to small 

sample sizes (e.g., Mazzocco & Myers, 2003; Desoete et al., 2004) or other methodological 

issues (e.g., Hein et al., 2000, varied diagnostic criteria but these were for two separate 

samples and used different assessments).  

Thus, although it is apparent that the gender ratio of DD varies across different 

studies, it is not clear whether the gender ratio systematically varies depending on the 

diagnostic criteria used because only a few previous studies have reported this. The current 

study aims to investigate whether the gender ratio of DD does systematically vary depending 

on the diagnostic criteria applied. Absolute thresholds and discrepancy definitions of DD are 

compared. Given that prior research has suggested a potential male advantage in mathematics 

at the top end of the performance distribution, and a female advantage at the top end of the 

reading distribution, it is plausible that varying maths and reading performance thresholds/ 

discrepancies may have an effect on the gender ratio of DD.  

3.1.1 The current study. 

The current chapter analyses gender differences in the same sample described in 

Chapter Two (i.e., the screening data from Project 1). The research questions of this analysis 

are: (1) Are there gender differences in mathematics and reading performance? (2) Does the 

gender ratio of DD vary according to the diagnostic criteria used? 

With regard to research question (1) we predicted that, in line with earlier research 

(Benbow & Stanley, 1980; Halpern 1986; Hedges & Nowell, 1996), and the results of recent 

reports from the Department for Education (DfE, 2014), boys may outperform girls in 

mathematics. Specifically, we predicted that boys may be over- represented at the upper end 

of the mathematics performance distribution compared to girls (Hypothesis 1). In line with an 
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abundance of research showing that girls consistently outperform boys in reading (e.g., DfE, 

2014; Logan & Johnston, 2010), we predicted that girls’ reading performance would be 

greater than boys’ reading performance. Specifically, girls would be overrepresented at the 

upper end of the reading performance distribution compared to boys, who would be 

overrepresented at the lower end of the reading performance distribution (Hypothesis 2). 

With regard to research question 2, we hypothesised that, in accordance with previous 

UK research (Lewis et al., 1994), the prevalence of DD would be the same for girls and boys, 

when absolute performance thresholds are used for diagnosis (Hypothesis 3). Following from 

the gender differences predicted in hypotheses 1 and 2, we predicted that more girls would be 

categorised as having DD using a discrepancy definition specifying higher performance in 

reading than in mathematics (Hypothesis 4).  

3.2 Method 

3.2.1 Participants. 

The sample comprised the 1,004 children (526 boys and 478 girls) analysed in 

Chapter Two. These children were aged 7 years 4 months to 10 years 1 month and attended 

Year 3 (N =806 mean age = 8:1) and Year 4 (N = 198, mean age = 9:1) of primary school 

(see section 2.2.1 for further details).  

3.2.2 Measures. 

Mathematics test. The mathematics tests used were the Mathematics Assessment for 

Learning and Teaching tests (MaLT) (Williams, 2005).  

Reading test. The reading test used was the Hodder Group Reading Test II (HGRT-II) 

(Vincent & Crumpler, 2007). The HGRT II level 1 was used for Year 3 pupils, and the 

HGRT II level 2 was used for Year 4 pupils.  

3.2.3 Procedure. 

For details of the procedure see section 2.2.3. 

3.2.4 Data analysis. 

The relationship of mathematics and reading performance was tested by correlational 

analysis (Pearsons’s r). Gender was controlled for in two separate tests in order to ensure that 

the correlation of mathematics and reading scores were not due to gender. The distribution of 

reading and maths scores was cut into two halves in the following way. Children with maths 
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scores from 70 to 104 composed the lower half of the distribution. Children with maths 

scores from 105 to 140 belonged to the upper half of the distribution. The correlation between 

maths and reading scores were computed for both halves, separately. The strength of the 

correlations between the two halves was compared by the difference test for r values. 

Furthermore, five bins were also created (70-84, 85-98, 99-112, 113-126, 127-140) from the 

distribution in order to ensure that any changes in the strength between the two halves of the 

distribution are due to gradual changes and not to one or two bins of the distribution having 

outlier r values. 

The distributions of maths and reading scores, for boys and girls, were tested against 

normality using the Kolmogorov-Smirnov test. The distributions of maths and reading scores 

were also compared to each other by the Mann-Whitney U test. If distributions differed, 

detailed comparisons of the distributions were also performed in the following way. Scores 

along the distributions were sorted into seven bins, and then the bin counts were compared by 

two-sample chi-square tests. The tests were adjusted for unequal sample sizes between boys 

and girls. 

The two-dimensional (maths × reading) distributions of scores were also compared 

between the two genders. In this analysis, 7×7 bins (with all the combinations of the bins 

along math and reading distributions) were compared between boys and girls. The 

discrepancy between reading and maths was also tested, within each gender. Discrepancy 

scores were calculated by subtracting maths scores from reading scores. 

Mathematics and reading scores as dependent variables were entered into a repeated 

measures analysis of variance (ANOVA) with gender (boy or girl), as the between-subject 

factor and with domain (maths and reading) as the within-subject factor. Significant 

interactions were followed up by Tukey-Cramer post hoc tests. To compare the discrepancy 

scores between genders the discrepancy scores (maths–reading) were entered into an 

ANOVA with gender as the between-subject factor. 

3.3 Results 

3.3.1 Analysis of distributions. 

As reported in Chapter Two (see section 2.3), mathematics scores were positively 

correlated with reading scores (r = .63, p <.001) and this correlation remained when 

controlling for gender (r = .63, p <.001). Figure 8 shows the correlations by gender. 
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Figure 8. The correlation of mathematics and reading standardised scores by gender. 
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The correlation between reading and maths was r =.57 (n = 544) in the lower half of 

the distribution and it was r =.21 (n = 440) in the upper half of the distribution, which is a 

significant difference in correlation strength according to the difference test (p <.001). The 

weakening correlation was found in both genders separately, as well (boys: r =.59 [n =304]; r 

=.16 [n = 211], p <.001; girls: r =.55 [n = 240], and r = .28 [n = 229], p <.001). 

The distributions of maths and reading scores tested separately for boys (n = 526) and 

for girls (n = 468) were also not different from normal (p = .21 for both). However, the 

distribution of reading scores differed significantly between boys and girls (Z= -3.31, p 

<.001), and the distribution of maths scores differed marginally significantly between boys 

and girls (Z = 1.95, p =.05; the test was adjusted for unequal sample sizes between boys and 

girls) (Figure 9). According to the follow-up comparisons, the lower and upper extreme bins 

in girls and boys were significantly different for the reading scores: there were more boys 

than girls at the lower end of the reading distribution and more girls than boys at the upper 

end of the reading distribution (χ2 = 5.6, p = .036 and χ2 = 5, p = .051).  None of the bins 

differed significantly between boys and girls in mathematics performance. 

Figure 10 shows the outcome of the two-dimensional distribution comparisons 

between genders: there was a trend for more girls with average mathematics (90-100, 100-

110) and with high reading scores (130-140) (χ2 = 4.7, p = 0.06; χ2 = 7.6 p = 0.002) and there 

was a trend for more boys with slightly higher than average (110-120) reading and high 

mathematics scores (130-140) (χ2 = 4.5; p = .068)  
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Figure 9. Frequency (%) histograms for maths and reading, separately. Frequency bins with 

significant gender differences are marked (*: p < .05). 

 

 

Figure 10. Reading and maths score distributions separately for boys and for girls. The colour 

scale represents % of boys and girls (% of children within boys and girls, separately). 

Frequency bins with significant gender differences are marked (p < .05) and the percentage of 

boys and of girls (relative to the maximum of boys and girls, separately) are indicated within 

these bins. 
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The maths – reading discrepancy scores did not differ from the normal distribution 

(Figure 11A, p= .20 for both). However, the distribution of discrepancy scores differed 

significantly between boys and girls (Z = 5.71, p <.001). According to the follow-up tests, 

girls’ distribution is shifted to the left, and boys’ distribution is shifted to the right which 

means that more girls have higher reading than maths scores while more boys have higher 

maths scores than reading scores) (χ2 = 6.81 and 6.82; p = .018 for both). 
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Figure 11. The distribution of discrepancy scores (maths minus reading scores) (A). The 

interaction of gender and domain (B). Bars represent standard error. 
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3.3.2 Comparisons of means. 

As depicted in Figure 11B, the domain × gender interaction was significant (F (1, 

998) = 25.2, p <.001).  

Girls’ reading score differed significantly from all other domain × gender cells (p = 

0.005, p = 0.002 and p = <0.001 for boys’ maths, boys’ reading and girls’ maths 

respectively), including that girls showed a significant difference between maths and reading 

abilities. In contrast, boys’ reading and maths scores were not different from each other. 

Furthermore, there was no significant difference in girls’ and boys’ mathematics 

performance. The effect size of the gender difference in reading performance was small (d = -

.22). 

The analysis of the maths minus reading discrepancy scores support the above results. 

The mean of maths-reading discrepancy between girls and boys differed significantly (girls: -

4.98(0.7), boys: 0.29(0.7); F (1, 998) = 25.2, p <.001; see 11A). 

Gender differences in the scores for the different subtests of the MaLT tests were also 

tested using independent samples t-tests. There were no significant gender differences in 

performance on any of the subtests. 

3.3.3. The effect of criterion levels on the gender ratio of DD. 

As described in Chapter Two and shown again in Figure 12A the number of children 

defined as having DD at a particular mathematics cut-off score also depends on the cut-off 

score used to define good reading performance. Several different arbitrary thresholds could 

be defined, and likely ones are shown Figure 12A with frequencies for each illustrated for 

each gender separately. Although it appears that girls outnumber boys using several of these 

combinations of cut-offs, none of the comparisons between genders was significant when 

adjusting for the uneven sample size of the genders (p >.05 for all χ2 comparisons).  
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Figure 12. The percentage and number of children in given cut-off cells (A) and the 

percentage and number of children in given discrepancy score (mathematics – reading) cut-

off cells (B). X-axis shows the combined mathematics and reading cut-off cells (A) and 

mathematics – reading discrepancy cut-off cells (B) (the corresponding standard deviation 

values are in brackets). M= Mathematics; R= Reading. 5A: * no reading cut-off. 5B: **p 

<.01; and *p <.05. 
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Figure 12B shows the distribution of the sample as a function of discrepancy scores 

(maths minus reading scores). Most children fell within ±1 SD difference between maths and 

reading scores. As can be seen in Figure 12B, comparisons between genders were significant 

for all cut-off combinations of the discrepancy scores (χ2: 11.7, p = .0012; 4.8, p = .046; 24.6, 

p < .001) except for a discrepancy of maths-reading of 1.5 SD which approached significance 

(χ2: 4.2, p= .081). These findings suggest that there are more girls with better reading than 

maths performance than boys, while there are more boys who have better scores in maths 

than in reading, than girls (see also Figure 11A).   However, as explained in Chapter Two, if 

we were to define DD as reading performance 1 or 1.5 SD higher than mathematics 

performance (corresponding to the right two bars in Figure 12B) these definitions would also 

include children with average maths performance and high reading performance which does 

not fit the typical profile of DD. Thus, other discrepancy definitions were inspected instead. 

Table 3 shows the frequency of girls and boys defined as having DD using different 

discrepancies between mathematics performance (maths performance < 1 vs. < 1.5 SD below 

the mean) and reading performance (reading performance ± 0.5 SD of the mean vs. > 1 SD 

above the mean). As can be seen in Table 3, the frequency of girls and boys showing 

particular discrepancies between reading and maths performance was similar. Chi-square 

analyses confirmed that there were no significant differences between the number of girls and 

boys identified as having DD using these different discrepancy definitions. Using these 

discrepancy definitions, the overall prevalence of DD ranged between 0 and 5.3%. 
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Table 3.  

Number of children with DD using a certain discrepancy definition, per gender.  

 Girls Boys 

Reading criteria Maths < 1 SD Maths < 1.5 SD Maths < 1 SD Maths < 1.5 SD 

Average readers 

(within 0.5 SD mean) 
30 4 24 8 

High readers (> 1 SD 

above mean) 
2 0 0 0 
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3.4. Discussion 

3.4.1. Gender ratio of DD: The impact of mathematics and control variable cut-

offs. 

If DD is a learning difficulty specific to mathematics, then the control variables used 

to establish the presence of DD should not affect the gender ratio. Here reading performance 

served as a control variable. Chapter Two suggested that DD prevalence is affected by the 

cut-off score used to define good reading performance. This chapter suggests that the 

prevalence of DD using absolute thresholds was the same for girls and boys, regardless of the 

cut-off criteria used (illustrated in Figure 12A). Chi-square analyses suggested no significant 

difference in the frequency of girls and boys for the different absolute threshold definitions 

(supporting Hypothesis 3 which predicted that the gender ratio would be 1:1). 

On the other hand, when discrepancy thresholds were used to define DD (as 

illustrated in Figure 12B) gender differences were evident; significantly more girls than boys 

were defined as having DD using a discrepancy threshold of 1 SD (55 girls vs. 24 boys)  or 

1.5 SD (110 girls vs. 78 boys). These frequencies correspond to a gender ratio of 1.4 – 2.3 

girls to every boy. However, some of the children who would be defined as having DD using 

a discrepancy of 1 - 1.5 SD between mathematics and reading performance, in fact, had 

mathematics performance which fell within the average range and high reading performance. 

This profile does not fit a severe impairment of mathematics skills. Rather, these children 

would be typically regarded as gifted readers rather than weak in mathematics. Furthermore, 

such discrepancy definitions exclude children who show a discrepancy between their 

mathematics and reading performance but who do not quite reach the discrepancy threshold 

of 1 or 1.5 SD. Therefore we assessed discrepancy in relative terms, that is, we assessed the 

number of children who had average or above average reading performance and mathematics 

performance below 1 SD or 1.5 SD below the mean (frequencies illustrated in Table 3). 

Regardless of the relative discrepancy criteria used, there were no significant differences in 

the frequency of girls and boys defined as having DD, which shows no support for 

Hypothesis 4 which predicted that more girls would be categorised as having DD using a 

discrepancy definition specifying higher performance in reading than in mathematics 

Collectively, these findings suggest that there is no gender difference in the 

prevalence of DD; we found an equal gender ratio when DD was defined using absolute 



77 
 

thresholds and relative discrepancy definitions. These findings contrast with other studies 

which reported that the prevalence of DD was slightly higher for girls than boys (e.g., Dirks 

et al. 2008; Gross-Tsur et al. 1996) or that the prevalence of DD was higher for boys than 

girls (e.g., Badian 1983; 1999; Barbaresi et al., 2005; Ramaa & Gowramma, 2002). However, 

our findings are in line with other studies that reported an equal prevalence of girls and boys 

with DD (e.g., Koumoula et al., 2010; Lewis, et al., 1994; Mazzocco & Myers, 2003). It is 

unclear why some studies have shown gender differences and others, including the current 

study, have not, but it is possible that the factors contributing to differences in prevalence 

estimates, (e.g., different diagnostic criteria and measurements), may also contribute to the 

inconsistencies in gender differences. 

Boys are overrepresented in other learning disabilities (e.g., reading disability, 

dyslexia, ADHD and autistic spectrum disorders; Bauermeister, et al., 2007; Rutter et al., 

2004; Scott, Baron-Cohen, Bolton & Brayne, 2002), however, our data suggest that boys are 

not under- nor over-represented in DD. The lack of gender difference in DD is problematic 

for some current genetic theories of DD which suggest a possible role for x-linked genes. 

However, most of these proposals rely on studies of highly atypical individuals with Fragile 

X syndrome and Turner syndrome (Kemper et al., 1986; also see Gross-Tsur, Manor, & 

Shalev, 1993). In fact, a large-scale study of mathematical skill in 10-year-old children which 

using twin data also observed no gender differences (Kovas, Haworth, Petrill, & Plomin, 

2007). Hence, we suggest that there is a good chance that gender-related observations from 

highly special populations are not valid for more typically developing children. 

3.4.2. Mathematics/ reading performance and gender. 

The strength of the correlation of reading and mathematics abilities varied across the 

distribution. The correlation between reading and mathematics was stronger in the lower half 

of the mathematics distribution than in the upper half of the mathematics distribution and the 

change in correlation strength was present in both genders (illustrated in Figure 8).  

The distributions of mathematics scores were the same for girls and boys. Similarly, 

mean mathematics scores and maths subtest scores did not differ between boys and girls 

(showing no support for Hypothesis 1, which predicted that boys would be over-represented 

at the upper end of the maths performance distribution).  These findings also contrast with 

Benbow and Stanley’s (1980) findings that boys were overrepresented at the higher end of 

the mathematics performance distribution and recent reports from the DfE which reported 
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that for children in Key Stage 2 (KS2: Years 3 – 6 in English primary schools), more boys 

than girls achieved the highest levels in mathematics (corresponding to the upper end of the 

mathematics performance distribution, DfE, 2014). However, it is not possible to compare 

national curriculum statistics directly with the data from the current study because the 

children tested here were younger than the age at which KS2 assessments are administered 

(Year 6). It is possible that a gender difference in the upper end of the mathematics 

performance distribution is not evident at Years 3 and 4 but emerges at some point between 

Year 4 and Year 6. 

There are several possibilities for why we did not find a gender difference in 

mathematics performance here. First, our findings are in line with other research showing that 

average gender differences in mathematics performance are declining (Else-Quest, Hyde, & 

Linn, 2010; Stoet & Geary, 2013). Second, the content of the mathematics test used in our 

study may have differed from the tests used in other studies. However, the mathematics tests 

used in past DD studies varied widely due to the fact that the studies were carried out in 

different countries and in different decades. The maths tests used included standardised 

assessments (e.g., Stanford Achievement Test-Mathematics, Woodcock-Johnson, Wide 

Range Achievement Test, Young’s Group Mathematics test, Key Math- Revised, Test of 

Early Math Ability-second edition, the NUCALC, and the Cito Rekenene Wiskunde test) as 

well as customised test batteries (e.g., those used by Kosc, 1974; Ramaa & Gowramma, 

2002). These tests included assessment of numerical operations, conceptual understanding, 

mathematical reasoning as well as basic number processing. The MaLT mathematics tests 

include items assessing all of these different areas, therefore the content of the MaLT appears 

to be similar to the content of tests used in previous studies. Furthermore, the test is also 

matched to the National Curriculum for England, meaning that the test scores are meaningful 

in the UK educational context. Third, as suggested above, it is possible that a gender 

difference in the upper end of the mathematics performance distribution is not evident in 

Years 3 and 4 (tested here) but emerges at some point between Year 4 and Year 6 (DfE, 

2014), that is, gender differences in maths performance may emerge towards the end of 

primary school. 

Significant gender differences in the distribution of reading scores emerged: there 

were more girls at the upper end of the distribution than boys, and more boys in the lower end 

of the distribution than girls. Moreover, girls’ mean reading score was significantly higher 

than boys’ mean reading score. These findings support Hypothesis 2 (which predicted girls 
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would outperform boys in mathematics) and are in line with the results of national 

assessments, which show that girls are overrepresented at the upper end of the reading 

distribution whereas boys are overrepresented at the lower end of the distribution in Key 

Stages 1 – 3 (Key Stage 1: Years 1 and 2 in English primary schools; Key Stage 3: Years 7 – 

9 in English secondary schools; DfE 2014).  

There were also gender differences in the distributions of discrepancy scores; that is, 

the difference between the children’s mathematics and reading scores (mathematics minus 

reading). Girls' discrepancy distribution was shifted into the negative direction, reflecting that 

girls’ performance was better in reading than in mathematics, whereas boys’ discrepancy 

distribution was shifted into the positive direction, reflecting that boys’ performance was 

better in mathematics than reading. These results reinforce the abovementioned gender 

differences in the reading performance distribution. Although boys' performance was better 

in mathematics than in reading, the performance advantage in mathematics did not result in 

boys outperforming girls in mathematics. 

3.5 Summary. 

The current chapter investigated gender differences in the prevalence of DD in a 

sample of 1004 (7- to 10-year-old) primary school children. Absolute threshold and 

discrepancy definitions were compared, as were mathematics and reading performance cut-

offs between 1 SD and 1.5 SD below the mean. When absolute thresholds were used to define 

DD, no gender difference emerged in the prevalence of DD. However, when DD was defined 

as a discrepancy between reading performance and mathematics performance of 1 or 1.5 SD, 

more girls than boys met the criteria for DD diagnosis. Absolute threshold definitions proved 

to be more meaningful to diagnose DD than discrepancy thresholds as the latter did not 

discriminate between children with specific mathematics performance deficits (DD) and 

children with relatively high reading compared to average mathematics performance. Thus 

relative discrepancy definitions were compared which used different combinations of low 

maths performance (e.g., <1 or <1.5 SD below the mean) and adequate reading performance 

(e.g., either within or above the average range). Using these types of discrepancy definitions 

to define DD suggested no significant gender differences in DD prevalence. Collectively, 

these results suggest that there was no gender difference in the prevalence of DD regardless 

of the diagnostic criteria used. Similarly, the current chapter suggested that boys and girls had 

equal performance in mathematics. Girls did outperform boys in reading and were 
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overrepresented at the upper end of the performance distribution, whereas boys were 

overrepresented at the lower tail of the distribution. 
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4. Chapter Four. Persistence of developmental dyscalculia and associated cognitive 

deficits. 

The previous chapters demonstrate the variability in DD prevalence estimates when 

using different diagnostic criteria. However, as noted there, the choice of mathematics 

performance cut-off for defining poor performance in DD is essentially arbitrary. Broad 

mathematics performance thresholds, like those used in many experimental studies of DD, 

likely increase the chance of identifying false positives. Yet, using more conservative criteria 

may result in missing some cases of DD. Longitudinal studies, which measure mathematics 

performance with different maths tests over several time points offer a potential solution to 

this problem because longitudinal assessment makes it possible to distinguish between 

children who have transient poor maths performance from those with persistent low 

performance. 

4.1.1. Longitudinal studies of DD stability. 

Longitudinal investigations of MLD have slightly nuanced and overlapping research 

foci, for example, identifying potential precursors of DD/ predictors of mathematics 

performance (e.g., Desoete, Cuelemans, DeWeerdt, & Pieters, 2012, Mazzocco & Thompson, 

2005), modelling mathematics performance over time (e.g., Kohli, Sullivan, Sadeh, & 

Zopluoglu, 2015), or examining the cognitive profile of different achievement groups 

(including DD) at different stages of educational development (e.g., Geary et al., 2012; 

Mazzocco & Räsänen, 2013). Despite a mounting body of longitudinal research into MLD, 

only a few studies have investigated the stability of DD diagnosis over time (Mazzocco & 

Räsänen, 2013).  

Four longitudinal studies conducted in the US, one study conducted in Israel and 

another in Flanders, Belgium, have examined the prevalence of persistent DD. Some of these 

studies were reviewed in Chapter One, but I will revisit these studies in the following review.  

In a large US study, Badian followed 1075 children who began kindergarten between 

1976-1989 until Grade 7/ 8 and estimated the prevalence and persistence of DD, reading 

disability and combined reading and arithmetic disability (Badian, 1999). Children were 

assessed with the Reading Comprehension, Mathematics Computation and Concepts of 

Number, Spelling, and Listening Comprehension components of the Stanford Achievement 

Test (Gardner et al., 1982) each year of the study. The criterion for DD diagnosis was 
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arithmetic performance below the 20th percentile and reading performance above the 20th 

percentile. 3.9% of the children were diagnosed with DD. Children whose mean arithmetic 

performance score across the years of the study fell below the 25th percentile were diagnosed 

with persistent DD. 25 children (2.3%) from the sample of 1075 met the criterion for 

persistent DD diagnosis. 

Mazzocco and Myers’ (2003) study, also conducted in the US, compared different DD 

diagnostic criteria in 209 children followed from Kindergarten to Grade 3. The children were 

tested individually with standardised tests of intelligence, mathematics, visual spatial/ 

perceptual performance and reading, however, all tests other than the mathematics tests were 

included to dissociate potential DD subtypes rather than to form part of the diagnostic 

criteria. Mazzocco and Myers compared several different mathematics performance cut-offs 

(absolute thresholds and discrepancy definitions - further details can be found in section 

1.1.2). The percentage of children meeting these different criteria over the years of the study 

ranged from 0 to 45% of the sample. Importantly, they found that children who met DD 

diagnostic criteria in one year did not necessarily meet the DD diagnostic criteria in other 

years of the study, even when the same test was used for diagnosis. Persistent DD was 

defined as a TEMA-2 score falling below the 10th percentile for the study sample for two or 

more school years and 9.6% of the sample met this criterion. Children with low reading 

ability or low IQ were not excluded from the persistent DD group which may explain why 

this prevalence estimate is greater than the estimates provided by other studies. 

Another study conducted in the US examined the persistence of different 

mathematical disability subtypes in a cohort of 80 American children over a 19 month period 

(Silver et al., 1999). Children were identified for the study from an initial review of 1650 files 

available at a learning disability clinic. Eligibility criteria for the study included: full-scale IQ 

score above 90; arithmetic score on the Wide Range Achievement Test-Revised or 

Woodcock Johnson-R below 90 and a discrepancy of 15 or more standard score points 

between IQ and arithmetic performance. Of the 80 children whose families provided consent 

for participation in the longitudinal study, 26 children met the criteria for DD (i.e., specific 

mathematics difficulty), with the other 54 children falling into other mathematical disability 

groups (arithmetic disability with disability in reading, spelling or both). Only 8 (30%) of the 

children in the initial DD group met the criteria for isolated mathematics disability at retest 

19 months later; 7 children had an additional learning disability at retest and 11 children no 

longer met the criteria for any learning disability. 
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Morgan and colleagues modelled mathematics growth trajectories of more than 7,000 

American children with and without DD from Kindergarten to 5th Grade (Morgan, Farkas, & 

Wu, 2009). Children were categorised into four groups based on the presence of DD at 

different stages during Kindergarten (DD at Fall, DD at Spring, DD at both Fall and Spring 

and DD at neither time point). DD was defined as scores on the Early Childhood 

Longitudinal Study–Kindergarten Cohort (ECLS-K) maths test within the lowest 10% of the 

sample. Reading skill was also measured but reading was not included as a control variable 

for DD diagnosis. Children who showed signs of DD during both Fall and Spring of 

Kindergarten were identified as having persistent DD. About 70% of the persistent DD group 

also showed DD during 1st, 3rd or 5th Grade and 65% of the children with persistent DD had 

DD at 5th Grade (NB. Percentages are of the children remaining in the persistent DD group at 

Grade 5 not of the original sample assessed at Kindergarten). Furthermore, in 5th Grade, the 

maths performance of the persistent DD group was more than 2 SD lower than children who 

did not have DD during Kindergarten. 

Shalev and colleagues followed children with DD in Israel from 5th to 11th Grade 

(Shalev, Manor, Auerbach, & Gross-Tsur, 1998; Shalev, Manor, & Gross-Tsur, 2005). 

Children were initially screened for DD via a city-wide assessment of mathematics ability 

(described in section 1.1.2). More than 3,000 children completed a group administered 

mathematics achievement test and those scoring in the lowest 20% of each class were 

selected for further assessment of arithmetic, reading, writing and intelligence. 140 children 

were diagnosed as having DD in 5th grade using a threshold of arithmetic performance below 

the 5th percentile. 123 of these children were assessed again at 8th grade and 104 at 11th 

grade. At 8th grade, 57 (47%) children diagnosed with DD at 5th grade continued to meet the 

diagnostic criterion. Of the 104 children followed until 11th grade, 42 children (40%) 

remained in the DD group. Of the children whose arithmetic performance was above the cut-

off criterion, 92% had arithmetic performance within the lowest quartile. In comparison to a 

control group, the children who remained in the DD group at 11th grade had significantly 

lower language abilities and general cognitive abilities. 

Stock, Desoete & Roeyers (2010) investigated the Kindergarten predictors of MLD 

status at second grade in 471 Flemish children. This study identified groups of children with 

persistent DD, persistent low achievement (LA) in maths, as well as inconsistent DD and LA, 

and typical performance in mathematics. Several measures of preparatory arithmetic skills 

were taken at Kindergarten, and two standardised tests of arithmetic ability were measured in 
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first and second grade (KRT-R, Baudonck et al., 2006 and TTR, De Vos, 1992). Children’s 

IQ was measured using a short form of the Wechsler Intelligence Scale for Children – Third 

Edition (WISC-III; Wechsler, 1991), and children with lower than average general abilities 

were excluded from the study, resulting in 319 children remaining in the analysis. Persistent 

DD was defined as scores ≤ 10th percentile on at least one of the arithmetic tests both in first 

and second grade and 16 children (5% of the sample) met these criteria. 65 children (20.4% 

of the sample) met the criteria for DD at one school year but not the other. The authors 

emphasised the importance of defining DD using more restrictive cut-off criteria and 

fulfilling the resistance-to-intervention criterion (discussed previously in section 1.1.2) by 

measuring mathematics/arithmetic performance at several time points. 

In summary, studies investigating the stability of DD report a wide range of 

prevalence estimates for persistent DD. Of the studies that reported the prevalence of 

persistent DD in relation to a screening sample, the prevalence rates range from 2.3% to 9.6% 

(Badian, 1999; Stock et al., 2010; Mazzocco & Myers, 2003). In studies that instead focused 

on the relative proportion of DD children with persistent deficits, 30 to 65% of children 

initially diagnosed with DD had persistent DD at follow-up (Morgan et al., 2009; Shalev et 

al., 1998; 2005; Silver et al., 1999). Again, these differing results are likely due to studies 

using different measures and different definitions of DD which included various performance 

thresholds and exclusion criteria/ control measures. The current study follows a subsample of 

children diagnosed with DD in the screening phase described in Chapters Two and Three and 

aims to measure the proportion of these children with mathematics deficits approximately 

two and a half years after the first diagnosis. 

4.1.2. Cognitive skills associated with mathematical processing. 

As described in section 1.1.3, the underlying cause of DD is a highly contentious 

issue. Several neuroscience and behavioural studies have pointed towards magnitude 

representation as being the core deficit of DD. However, evidence for the deficient number 

module theory is weak due to inconsistent results and methodological problems (Szűcs et al., 

2013; Szűcs & Goswami, 2013). Moreover, behavioural DD research has provided much 

stronger evidence for deficits in several general cognitive abilities such as working memory, 

spatial abilities, inhibition and attentional function. Furthermore, until recently, no study had 

systematically contrasted the deficient number module theory against other theories of DD. 
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Project 1 was one of the first studies to test several theories of DD in the same sample 

(Szűcs et al., 2013; 2014). In our previously published research, a subsample of 

approximately 100 children from the screening sample described in Chapters Two and Three, 

completed 16 tests and nine experiments which assessed magnitude representation, working 

memory, inhibition, attention and spatial processing abilities among other skills. In one 

analysis, 12 children with DD were matched to 12 control children on measures of verbal and 

non-verbal IQ, age, socio-economic status and general processing speed (Szűcs et al., 2013). 

DD children had significantly lower mathematics performance than controls on two measures 

of mathematics performance (the MaLT [Williams, 2007] described in Chapter Two, and the 

Numerical Operations subtest of the Wechsler Individual Achievement Test- UK edition 

[WIAT-II UK; Wechsler, 2005b]). The DD and control group did not differ significantly on 

two measures of reading performance (the HGRT [Vincent & Crumpler, 2007], described in 

Chapter Two, and the vocabulary subtest of the WIAT-II UK, [Wechsler, 2005b]). Reading 

performance was within the average range in both groups. Thus, this study controlled for a 

large number of variables: reading, verbal and non-verbal IQ, SES, age and processing speed. 

DD children showed significantly lower visuo-spatial short-term and working memory 

performance than the control group, but both groups showed similar performance on verbal 

short-term and verbal working memory measures. Furthermore, DD children showed 

impairments in inhibition skills (as evidenced by larger congruency effects in numerical and 

non-numerical comparison tasks, and lower accuracy in correctly-rejecting incorrect trials of 

a stop-signal task) as well as slower spatial skills (slower solution times for a trail making 

task and a mental rotation task). However, DD children showed no differences from controls 

on measures of magnitude representation; the expected ratio and congruency effects in 

symbolic and non-symbolic magnitude comparison tasks emerged in both groups. These 

results are described in more detail in Szűcs et al, (2013).  

In another analysis of data from Project 1, we used correlational and regression 

analyses to explore the relationships between mathematics performance and other cognitive 

skills in 98 children with varying mathematics abilities and normal reading abilities (Szűcs, 

Devine, Soltész, Nobes & Gabriel,2014). These children completed the above-mentioned 

tests among other measures. This analysis confirmed the roles of visuo-spatial short-term and 

working memory, and spatial abilities, in mathematical processing. However, other important 

skills included phonological processing, verbal knowledge and general executive functioning 

(ibid). Collectively, the findings from our previous research indicate strong links between 
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mathematical skills and visuo-spatial short-term and working memory, spatial skills, and 

executive functioning, which mirrors the findings of other studies (e.g., Bailey et al.,2014; 

Bull et al., 2008; Geary, 2011; Passolunghi & Lanfranchi, 2012; Rourke & Conway, 1997; 

Rourke, 1993; Swanson, 2011; Van der Ven, Kroesbergen, Boom & Leseman, 2012). 

4.1.3. Overview of the current study. 

The current chapter reports the longitudinal follow-up of the DD and control children 

assessed in Project 1 (Szűcs et al., 2013), and aims to examine the stability of DD diagnosis, 

as well as the stability of cognitive performance exhibited by DD and control children. 

Children were tested on a subset of tests approximately 20 months after the individual 

assessment described in Szűcs et al (2013). See Table 4 for the design of the longitudinal 

study and the timings of the different measures. The test battery included measures of 

mathematics, reading, verbal IQ, verbal short-term and working memory, visuo-spatial short-

term and working memory, and spatial skills.  In addition to comparing the cognitive skills of 

children with DD and intact mathematics performance, we were also interested in the 

cognitive profile of children with high mathematics performance. Mathematical excellence 

has been linked to superior visuo-spatial working memory, general cognitive ability and 

spatial skills (M. Leikin, Paz-Baruch & Leikin, 2013; R. Leikin, Paz-Baruch & Leikin, 2014; 

Ruthsatz, Ruthsatz-Stephens & Ruthsatz, 2014; van Garderen, 2006). Thus, it was expected 

that a group of children who excel in mathematics would show superior performance 

compared to control children and DD children in these domains, but it is unknown whether 

these advantages would remain stable over time. Thus, the current chapter aimed to compare 

the cognitive profiles of DD, control children and mathematically high performing students 

longitudinally. Finally, the current chapter aimed to measure the link between DD/ maths 

performance and emotional reactions to mathematics (MA). Thus, MA was measured in the 

three groups, however, MA levels were only measured at the final assessment and were not 

followed longitudinally. 

The current chapter had the following research questions: (1).What proportion of the 

DD sample have persistent DD? (2). More generally, what is the stability of group 

membership over time? (3). How is mathematical performance related to different cognitive 

skills over time? (4). Is DD related to impairments in visuo-spatial memory and spatial 

performance in late primary school? (5). Is mathematical excellence associated with superior 

performance in any other cognitive domain(s) and if so, are these advantages stable over 

time? (6). Is DD associated with MA? 
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Because previous studies have reported varying prevalence estimates for persistent 

DD, we did not have any specific hypotheses with respect to the precise prevalence of 

persistent DD (research question 1). As previous research has also shown that MLD status 

can change over time (e.g., Mazzocco & Myers, 2003) it was predicted that some children 

might move between achievement groups over time, e.g., some children who initially met the 

diagnostic criteria for DD may later have performance within the average range or vice versa 

(Hypothesis 1). Our previous research indicated that DD children showed impairments in 

visuo-spatial short-term and working memory and spatial skills compared to control children 

(Szűcs et al., 2013). Longitudinal research has confirmed the importance of these skills to 

mathematics development (Geary et al., 2012; LeFevre et al., 2010). Thus, it was predicted 

that relationships between these skills and mathematics would remain over time (Hypothesis 

2) and impairments in these skills would still be seen in DD children approximately 20 

months later (Hypothesis 3). As our own research has shown that visuo-spatial short-term and 

working memory, and spatial abilities are associated with mathematical processing (Szűcs et 

al 2013; 2014), it was predicted mathematically high-performing students would show 

superior performance in these domains (Hypothesis 4). Finally, research has shown that 

children with MLD show higher levels of MA than children without MLD (e.g., Lai et al, 

2015; Passolunghi, 2011; Wu et al., 2014) and that MA is moderately negatively correlated 

with mathematic performance (e.g., Hembree, 1990), thus, it was predicted that the DD group 

would have higher levels of MA than the other two groups (Hypothesis 5) and that MA 

would have a significant negative correlation with maths performance across the three groups 

(Hypothesis 6). 

4.2 Method 

Due to the complexity of the longitudinal design, it is necessary to describe the 

different phases of the study and measures used to select the participants prior to describing 

the participants. 

4.2.1 Screening.  

In a first step, which took place in 2010 (hereafter: Time 1), 1004 children were 

screened for DD with age-standardised English National Curriculum-based maths and 

reading tests: the MaLT (Williams, 2005), and the HGRT-II, levels 1 and 2 (Vincent and 

Crumpler, 2007), which were administered to whole classes. The full description of the 

screening procedure is described in section 2.2.  
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In a second step, all children were invited to participate in the follow-up assessments. 

Approximately 250 children consented and a subgroup of 115 children representing the 

distribution of mathematics and reading scores took part in further individual assessment and 

testing over several sessions (described in detail in Szűcs et al., 2014). The children's SES 

was estimated from parental occupations and education levels which were obtained via a 

questionnaire included with the consent form and information pack which was sent out at 

invite (details of this questionnaire are provided below).  

4.2.2 Individual assessment. 

In the first individual testing session, which took place approximately 10 months after 

screening (Time 2: Dec 2010- March 2011), children were administered an additional 

standardised measure of mathematical ability (the Numerical Operations subtest of WIAT-II, 

Wechsler, 2005b), two additional standardised measures of reading ability (WIAT-II Word 

Reading and Pseudoword Decoding subtests), a measure of verbal IQ (the Vocabulary subtest 

of the WISC-III, Wechsler, 1991) and non-verbal IQ (Raven's Coloured progressive matrices, 

Raven, 2008). Furthermore, children completed four subtests of the Automated Working 

Memory Assessment (AWMA; Alloway, 2007), which included two measures of verbal 

short-term memory (STM): Digit Span and Word Recall; one measure of visuo-spatial STM: 

Dot Matrix; and one measure of visuo-spatial working memory: Odd One Out (OOO). 

Children also completed a spatial orientation measure. Except for the Raven's CPM, all of 

these tests were administered a second time, approximately 20 months later (Time 3: Oct - 

Nov 2012) with 41 children from the sample of 115 children. At Time 3 children also 

completed a modified version of the Abbreviated Mathematics Anxiety Scale (mAMAS). 

Details of these measures are provided below. 

4.2.2.1 Measures. 

SES. The children's SES was estimated from parental occupations and education 

levels which were obtained via a questionnaire included with the consent form and 

information pack. The questionnaire asked parents for the highest level of education 

completed. Education levels were classified on a 7 point scale: 1. Doctorate Degree, 2. 

Master's Degree, 3. Bachelor's Degree, 4. Some University, 5. A Level or equivalent, 6. 

GCSE or equivalent and 7. Less than secondary school. Professional diplomas were also 

coded as 4. and postgraduate qualifications other than Master's degrees were coded as 3. 
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Parents' occupations were scored according to the Standard Occupational 

Classification (Office for National Statistics, 2010). Occupations were coded according to 

this classification scheme: 1. Managers, Directors and Senior Officials, 2. Professional 

Occupations, 3. Associate Professional and Technical Occupations, 4. Administrative and 

Secretarial Occupations, 5. Skilled Trades Occupations, 6. Caring, Leisure and Other Service 

Occupations, 7. Sales and Customer Service Occupations, 8. Process, Plant and Machine 

Operatives, 9. Elementary Occupations. We included an additional category (0) to classify 

parents that were unemployed. The SES questionnaire is provided in Appendix B. 

IQ. In order to estimate IQ, we administered the Vocabulary subtest of the WISC-III 

(Wechsler, 1991). We also measured children’s non-verbal IQ using Raven’s Coloured 

Progressive Matrices (Raven’s – Educational: CPM, Raven, 2008). 

Mathematics and Reading. Mathematics and reading achievement was measured 

using the standardised group tests described in Chapters Two and Three and well as the 

Numerical Operations, Word Reading and Pseudoword Decoding subtests of the WIAT-II 

UK (Wechsler, 2005). The Numerical Operations subtest includes assessment of counting, 

one to one correspondence, numerical identification and writing, calculation (addition, 

subtraction, multiplication, division) fractions, decimals and algebra. The Word Reading 

subtest assesses letter identification, phonological awareness, letter-sound awareness and the 

accuracy and automaticity of word recognition. Pseudoword decoding assesses phonological 

awareness and accuracy of word attack. 

Working memory. We assessed working memory using five subtests from the AWMA 

(Alloway, 2007). The AWMA is a computer-administered battery of tests which assess verbal 

short-term memory (STM) and visuo-spatial STM and working memory (corresponding to 

the phonological loop, visuo-spatial sketch pad and central executive components of 

Baddeley and Hitch’s [1974] model of working memory, respectively).  

Verbal working memory. Short-term memory (STM): Phonological Loop: The Digit 

Recall subtest requires children to listen to a sequence of digits and recall them. Because we 

did not want to confound STM performance with a general difficulty with mathematical 

information in our weaker maths group we also measured verbal STM using the Word Recall 

subtest. This subtest requires children to listen to a series of real words and to recall them.  In 

both verbal STM subtests, the item is scored as correct if the child recalls the series in the 

correct order. 
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Visual spatial working memory. Short-term memory (STM; Visuo-spatial sketchpad): 

The Dot Matrix subtest requires children to view the position of a red dot in a series of four 

by four matrices and to repeat the sequence by tapping on the computer screen. An item is 

scored as correct if the child recalls the sequence in the correct order. 

Central executive: Odd-one-out (OOO). In the OOO task, three abstract shapes are 

presented on the computer screen. One of the shapes differs from the other two shapes and 

children must identify the odd shape by tapping it on a computer screen. The shapes then 

disappear and the child must recall where the odd shape was located by tapping one of three 

empty boxes on the computer screen. Where two or more sets of shapes occur in the same 

trial, the children must identify the odd shape in the first set, then in the subsequent set(s). At 

the end of the final set of shapes, the shapes disappear and the children must recall the 

locations of the odd shapes in the same order as presented. An item is scored as being 

correctly processed if the child correctly identifies the odd shape. A set is scored as being 

correctly recalled if the child recalls the locations of the odd shapes in the correct order. A set 

is also scored as being correctly recalled if the child misidentifies the odd shape but correctly 

recalls the location of the misidentified shape during recall. 

Standardised recall scores were measured for all subtests ('Digit Recall', 'Word 

Recall', 'Dot Matrix', and 'OOO Recall' in Analysis) and standardised processing scores were 

measured for OOO and Listening Recall ('OOO Processing' in Analysis). Raw scores were 

also measured for OOO processing/ recall and Dot Matrix. 

Maths anxiety. MA was measured using a modified version of the AMAS ( Hopko et 

al., 2003); a self-report questionnaire with a total of 9 items. Although it is a short scale, 

research indicates that the AMAS is as effective as the longer MARS ( Hopko, 2003) (e.g. 

internal consistency: Cronbach’s α = .90; two-week test-retest reliability: r = .85; convergent 

validity of AMAS and MARS-R: r = .85). Participants use a 5-point Likert scale to indicate 

how anxious they would feel during certain situations involving maths (e.g. 1 = low anxiety; 

5 = high anxiety). The maximum score is 45. 

The modified version used in the current study, (hereafter: mAMAS), was used 

previously with a large sample of British primary school children (Zirk-Sadowski et al., 

2014). The modifications involved minor adjustments to British English and terminology and 

the replacement of items as some of the AMAS items referred to advanced topics which 

would not be meaningful to primary or lower secondary school children (Ashcraft & Moore, 
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2009). For example, “Checking the tables in the back of a textbook” was changed to 

“Completing a worksheet by yourself”. The mAMAS can be found in Appendix C. The 

mAMAS has been found to have good reliability and validity (Carey et al., 2017b). 

Spatial Orientation Task. We used six items from the Object Perspective Test 

(Kozhevnikov & Hegarty, 2001). In this task, children were presented with a map containing 

different items such as a tree, car, cat and traffic light. Children were required to imagine 

themselves in this space, and to imagine they were standing next to one object, and facing 

another object. The children were then required to estimate the direction of a third object 

(e.g., "Imagine you are standing next to the cat and facing the house. Point to the traffic 

light"). Children were given a page containing a circle which was blank except for a line 

oriented north indicating the location of the object the child was to imagine facing. The centre 

point of the circle indicated the object that the children were to imagine standing next to. 

Children were required to indicate the direction of the third object by drawing a line from the 

centre of the circle to its edge. Children completed a practice question before six 

experimental questions. Responses were measured using a protractor and responses were 

recorded as correct if they fell within ±20 degrees of the correct location. We used this range 

because the location at which the child imagined they were next to the object was subjective, 

for example, children may have imagined themselves standing to the left or right of the object 

or at the centre of the object, which consequently affects the angle at which they would have 

located the third object. Correct responses received a score of 1, with a maximum of 6 points 

available. An example problem from this task and the accompanying map is presented in 

Appendix D. 

Table 4 summarises the measures that were taken at each time point. 
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Table 4.  

The design of the longitudinal study. 

 
Screening 

(Time 1) 

Individual 

Assessment 1  

(Time 2) 

Individual Assessment 

2  

(Time 3) 

Measure Mar- Oct 2010 Dec 2010 - Mar 2011 Oct- Dec 2012 

Mathematics X X X 

Reading X X X 

SES  X  

Nonverbal IQ  X  

Verbal IQ  X X 

Verbal STM  X X 

Visuo-spatial 

STM/WM 
 X X 

Spatial 

Orientation 
 X X 

Maths Anxiety   X 
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4.2.3 Participants. 

As described previously (Szűcs et al., 2013) children were defined to have DD if their 

mean performance on the Time 1 and 2 mathematics tests was worse than mean-1SD (<16th 

percentile) and their performance on the Time 1 and 2 reading and IQ tests, was in the 

mean±1SD range. The performance of children in a control group (CON) was within the 

mean±1SD range for all measures at Time 1 and 2. The high mathematics performing group 

(HM) had mathematics performance greater than mean+1SD on at least one of the 

mathematics tests administered at Time 1 or 2 (NB. mean performance for the Time 1 and 2 

mathematics tests was better than mean+1 SD for all but two HM children. The mean 

performance of these two children fell just on the mean+1SD cut off). There was no IQ or 

reading criterion for the HM group as scores were within the mean range or above for all 

measures. Together, these criteria resulted in the selection of 12 children in each group at 

Time 2. Ten DD (2 girls), 10 CON (6 girls), and 11 HM (2 girls) children remained in the 

study at Time 3. These 31 children composed the current sample. 

4.2.4 Data Analysis. 

First, one-way ANOVAs were used to test for differences in the mean age of each 

group at the different time points (Time 1, Time 2 and Time 3). A one-way ANOVA was also 

used to test for group differences in IQ at Time 2. ANOVAs were followed up with Tukey 

post-hoc tests. Pearson chi-square analyses were used to test for relationships between group 

and the SES measures (parent occupation and education levels).Participants' mathematics and 

reading scores were inspected at each time point to determine changes in achievement group 

membership across time. 

Pearson correlations were calculated between the measures taken at all time points. 

The subtests measuring the same construct at Time 2 or Time 3 (e.g., reading, VSWM, 

Verbal WM) were highly correlated.  Word reading and pseudoword decoding revealed 

correlations of r =.76/ .71 for time 2 and time 3 respectively; Digit recall and Word recall r 

=.58/ .68 for time 2 and time 3 respectively; and Dot Matrix and OOO r = .60/.59 for time 2 

and time 3 respectively, p <.001 for all correlations). Thus, these measures were averaged to 

create composite scores at each time point. WIAT-II word reading and pseudoword decoding 

scores within each time point were averaged to create two composite reading scores: Reading 

Time 2 and Reading Time 3. Digit recall and Word recall scores of the AWMA within each 

time point were averaged to create composite verbal STM scores: Verbal STM Time 2 and 

Verbal STM Time 3. The Dot Matrix recall and OOO recall scores at each time point were 
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averaged to create composite visuo-spatial working memory scores: VSWM Time 2 and 

VSWM Time 3. 

Mathematics measures included: MaLT (Maths Time 1), Numerical Operations at 

Time 2 (Maths Time 2), and Numerical Operations at Time 3 (Maths Time 3). Reading 

measures included: HGRT (Reading Time 1), and the abovementioned composite scores 

(Reading Time 2 and Reading Time 3). Working memory measures included the 

abovementioned composite scores: Verbal STM Time 2, Verbal STM Time 3, VSWM Time 

2 and VSWM Time 3. Spatial Orientation included the measures: Spatial Orientation at Time 

2 (SpatialO Time 2) and Time 3 (SpatialO Time 3). MA included the mAMAS score taken at 

Time 3 (MA Time 3). Verbal IQ included the vocabulary score at Time 2 (Vocab Time 2) 

and Time 3 (Vocab Time 3). Non-verbal IQ included Raven's CPM at Time 2 only (Raven 

Time 2). P-values were corrected for multiple comparisons using Bonferroni correction (p-

value divided by the total number of comparisons- this is described in each correlation 

matrix). 

As the total sample was not large enough to carry out regression analysis, repeated 

measures ANOVAs were conducted on the variables measured at more than one time point, 

with time point as the within-subjects variable and group (DD, CON, HM) as the between-

subjects variable.  Mathematics and reading measures were analysed across three time points, 

and vocabulary, working memory, and spatial orientation scores were analysed across two 

time points (see Table 4).  Finally, a one-way ANOVA was used to test for group differences 

in MA at Time 3. ANOVAs were followed up with Tukey post-hoc tests. 

4.3 Results 

4.3.1 Age, SES and IQ. 

As there was some variation in the timing of the assessments for children within and 

possibly between groups, it was possible that there may have been differences in the ages of 

the three groups at the different assessment points. However, the one-way ANOVA indicated 

there were no significant differences in the mean age of the three groups at any of the 

assessment points (p > .05 for all, see Table 5). 

Chi-square analysis revealed no significant relationship between group and SES 

measures (p > .05 for both). 
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One-way ANOVAs of Raven's CPM and WISC vocabulary scores at Time 2 found 

significant effects of group (Raven's: F (2, 28) = 19.27,  p <.001; Vocabulary: F (2, 28) = 

4.71, p=.017). Table 6 shows the means and standard errors for these measures for the three 

groups. Tukey post-hoc tests confirmed that IQ was matched for DD and CON (p >.05 for 

all), but HM had significantly higher Raven's CPM and WISC vocabulary scores than DD 

(Raven's CPM: p < .001; WISC vocabulary: p =.018). HM had significantly higher Raven's 

CPM scores than CON (p <.001).   



96 
 

Table 5.  

Mean age and ranges (in months) of the groups at the different assessment points.  

 Time 1 Time 2 Time 3 

Group M Min Max M Min Max M Min Max 

DD 102.5 93.0 115.0 112.0 103.0 125.0 132.5 123.0 145.0 

CON 99.2 92.0 113.0 109.3 103.0 123.0 129.0 123.0 143.0 

HM 98.8 91.0 106.0 108.9 101.0 116.0 128.6 122.0 136.0 

 

 

 

Table 6.  

Means and standard errors for the IQ measures taken at Time 2. 

 DD CON HM 

 M SE M SE M SE 

Raven's CPM Time 

2 
103.0 2.9 98.0 2.9 121.8 2.8 

Vocabulary Time 2 9.3 0.8 10.1 0.8 12.6 0.8 
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4.3.2 Group membership over time. 

Figure 13A depicts the maths scores for each individual over time. At Time 3, several 

participants' maths scores no longer met the maths performance criterion used for group 

selection. Specifically, two participants in the DD group had maths performance within 1 SD 

of the mean, one CON participant had performance below 1 SD below the mean, one CON 

participant had performance above 1 SD above the mean, and two HM participants had maths 

performance within 1 SD of the mean. Figure 13B shows the reading scores for each 

individual over time. Every participant had reading scores within or above the average range 

at Time 3. The lower half of Figure 13 shows the mean maths performance (C) and reading 

performance (D) for each of the groups at each time point. Bars represent standard errors. 

Figure 14 shows the movement of the means for each group across the three time 

points, with vertical bars representing standard errors for mathematics and horizontal bars 

representing standard errors for reading. This figure illustrates that at all three time points, 

DD children were at the bottom of the maths performance distribution and within the average 

reading performance range. CON children consistently fell within the average range for 

mathematics and reading, but it is important to note that there was a moderate amount of 

variability in reading scores in this group. The HM children remained above average in 

mathematics performance across the three time points, and their reading performance was 

also slightly above the average range. 
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Figure 13. Individuals' performance across the three time points in mathematics (A) and reading (B). Mean performance in mathematics (C) and 

reading (D) for the three groups. Bars in C and D represent standard errors.  
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Figure 14. Mean mathematics and reading performance for DD, CON and HM children over the three time points. Vertical bars represent 

mathematics standard errors and horizontal bars represent reading standard errors.  
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4.3.3 Correlations 

The zero-order correlations between all the variables are presented in Table 7. Not 

surprisingly, measurements of the same construct taken at different time points were highly 

correlated with one another. Mathematics scores measured at the different time points were 

highly correlated. Time 2 and Time 3 reading scores were also highly correlated. Time 2 and 

Time 3 Verbal STM scores were also highly correlated, as were Time 2 and Time 3 VSWM 

scores. Verbal STM at Time 3 also correlated with VSWM at Times 2 and 3. Vocabulary 

scores at Time 2 and Time 3 were also highly correlated. Raven's Time 2 also correlated with 

the other IQ measures and SpatialO at Time 3. SpatialO Time 3 was also correlated with 

Vocabulary at Time 3 and VSWM at Time 2 and Time 3. 

We were particularly interested in which variables correlated with mathematics 

performance at the different time points. Maths Time 1 and Reading Time 1 were correlated 

which approximates the correlation reported between these measures in Chapter Two in the 

larger screening sample. IQ measures were strongly correlated with mathematics 

performance: Raven’s CPM correlated with Maths at Time 1 and Time 3, whereas Vocab 

Time 3 was correlated with Maths at Time 1.Verbal STM correlated with Maths at Times 2 

and 3 only, however, VSWM at Time 2 correlated with all three maths measures and VSWM 

Time 3 correlated with Maths at Time 1 and Time 3. SpatialO Time 3 correlated only with 

Maths Time 1. Finally, MA was strongly negatively correlated with maths performance at 

every time point. No other correlations were significant after correction for multiple 

comparisons. Power for all significant correlations was high and ranged between 0.98 and 

0.99.   

As IQ was strongly correlated with the maths measures, correlations were also run 

between the maths measures and the other variables while controlling for IQ. These 

correlations are reported in Appendix E and show a reduction in the correlation coefficients 

between maths and VSWM measures. However, statistically controlling for IQ is not 

necessarily appropriate in cognitive studies of developmental disorders, particularly when 

there is an overlap between IQ and the variables of interest (Dennis et al., 2009). Intelligence 

develops in concert with working memory and other skills such as processing speed (Fry & 

Hale, 2000). Moreover, many IQ tests assess WM skills. Indeed, the Raven’s CPM correlated 

with VSWM Time 3 score, and Spatial Time 3. Thus, the correlations in Appendix E are 

difficult to interpret as the reduction in correlation strength also reflects the removal of the 
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shared variance between IQ and WM (and between IQ and the other variables which 

presumably develop together with IQ). 
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Table 7.  

Pearson’s correlations between the variables at different time points. P-values were corrected for multiple comparisons using Bonferroni 

correction (p-value divided by the number of correlations: 120). Significant correlations are shown in bold (p <.001 in all cases). 

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. Maths Time 1  - 0.79 0.87 0.62 0.41 0.36 0.36 0.52 0.76 0.73 -0.72 0.57 0.67 0.59 0.63 0.66 

2. Maths Time 2  - 0.85 0.46 0.54 0.49 0.62 0.65 0.73 0.58 -0.60 0.53 0.43 0.44 0.45 0.49 

3. Maths Time 3   - 0.45 0.55 0.50 0.46 0.60 0.70 0.67 -0.77 0.50 0.59 0.57 0.51 0.64 

4. Reading Time 1    - 0.42 0.47 0.33 0.45 0.59 0.49 -0.37 0.46 0.53 0.54 0.56 0.56 

5. Reading Time 2     - 0.83 0.54 0.48 0.29 0.37 -0.33 0.15 0.28 0.39 0.26 0.41 

6. Reading Time 3      - 0.52 0.51 0.28 0.41 -0.28 0.08 0.31 0.48 0.34 0.41 

7. Verbal STM Time 2       - 0.74 0.41 0.41 -0.23 0.50 0.32 0.20 0.12 0.35 

8. Verbal STM Time 3        - 0.60 0.61 -0.51 0.33 0.42 0.28 0.28 0.48 

9. VSWM Time 2         - 0.81 -0.55 0.40 0.60 0.33 0.49 0.51 

10. VSWM Time 3          - -0.54 0.37 0.78 0.43 0.43 0.64 

11. MA Time 3           - -0.46 -0.46 -0.48 -0.42 -0.37 

12. SpatialO Time 2            - 0.47 0.26 0.12 0.29 

13. SpatialO Time 3             - 0.57 0.61 0.75 

14. Vocab Time 2              - 0.74 0.65 

15. Vocab Time 3               - 0.61 

16. Raven's Time 2                - 
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4.3.4 Repeated measures ANOVAs. 

Mathematics. 

The ANOVA revealed a significant main effect of Group (F (2, 28) = 79.69, p < 

.001), and post-hoc tests confirmed that DD had significantly lower maths scores than CON 

and HM (p <.001 for both), and CON had significantly lower maths scores than HM (p 

<.001). There was no main effect of time point and there was no interaction of group by time 

point, meaning that the group differences in mathematics performance remained stable over 

time (see Figure 13C). 

Reading. 

The ANOVA revealed a significant main effect of Group (F (2, 28) = 9.52 p < .001), 

and post-hoc tests confirmed that HM had significantly higher reading scores than DD 

(p=.005) and CON (p = .001).  An effect of time point emerged (F (2, 56) = 8.84, p < .001) 

and post-hoc tests revealed that Reading Time 3 was higher than Reading Time 1 (p =.016) 

and Reading Time 2 (p < .001).  Similar to the mathematics scores, there was no interaction 

of group by time point, in this case meaning that all groups had average reading performance 

at all time points (see Figure 13D). 

Verbal STM. 

The ANOVA revealed a significant effect of Group (F (2, 28) = 5.25, p = .011) and 

post-hoc tests revealed that HM had significantly higher verbal STM than DD (p = .012). The 

difference between HM and CON was non-significant. No main effect of time point or 

interaction of group by time point emerged. Verbal STM scores are shown in Figure 15A. 

VSWM. 

The ANOVA revealed a significant effect of Group (F (2, 28) = 15.12, p < .001) and 

post-hoc tests revealed that HM had significantly higher VSWM than DD (p< .001) and CON 

(p = .008). There was no main effect of time point but there was a strong trend for an 

interaction of group by time point (F (2, 28) = 2.77, p = .08). VSWM scores are shown in 

Figure 15B. 

There was no significant difference between the VSWM performance of CON and 

DD in this analysis which appears to contradict the findings of our previous analysis reported 

in Szűcs et al. (2013) (also described in the introduction to this chapter) which tested the 
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same sample as reported here. However, there are several ways in which the current analysis 

differs to that reported in the previously published study which may contribute to the 

differing results. Firstly, in the analysis reported in Szűcs et al. (2013), there were 12 

participants in each of the DD and CON groups but some participants dropped out of the 

longitudinal follow-up, thus, only 10 participants in each group with complete data were 

analysed in the current analysis. The smaller sample size contributed to a loss of statistical 

power. Secondly, the previous study compared the VSWM of DD and CON at time 2 using 

non-parametric permutation testing and an independent samples t-test, whereas the current 

analysis used a repeated measures ANOVA, analysed VSWM performance over two time 

points, and included an additional group of participants (HM) which were not included in the 

previously published analysis.  Thus, these different analyses are not directly comparable. 

However, it was possible to inspect the post-hoc tests for the trend for the interaction between 

Group and Time in VSWM performance and this revealed that the (uncorrected) comparison 

between DD and CON at Time 2 (equivalent to the independent samples t-test used in the 

Szűcs et al., 2013 analysis) was, in fact, significant (p = .008). Therefore, the current results 

do not contradict the results reported in Szűcs et al (2013), but the results of this study shall, 

nonetheless, be interpreted cautiously. 
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Figure 15. Mean scores in verbal working memory (A) and visuo-spatial working memory 

(B) for the three groups. Bars represent standard errors. 
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Spatial Orientation. 

A main effect of Group emerged (F (2, 28) = 11.04 p < .001), and post-hoc tests 

confirmed that HM had significantly higher mean Spatial Orientation scores than DD (p 

<.001) and CON (p = .005). The ANOVA revealed a significant effect of time point (F (1, 

28) = 11.20, p = .002) and post-hoc tests revealed that SpatialO Time 3 was higher than 

SpatialO Time 2 (p = .002). The interaction of time point and group was marginally 

significant (F (2, 28) = 3.32, p = .05) and post-hoc tests revealed that Spatial Orientation 

score was higher at Time 3 than Time 2 for the HM group (p = .006), and the SpatialO Time 

3 score for HM was also higher than the Spatial Orientation scores for the other groups at all 

time points (DD Time 2: p <.001; DD Time 3: p <.001; CON Time 2 p <.001; CON Time 3: 

p =.0012). Spatial orientation scores are depicted in Figure 16A. 

Vocabulary. 

The ANOVA revealed a significant effect of Group only (F (2, 28) = 7.41, p = .003) 

and post-hoc tests revealed that HM had significantly higher Vocabulary scores than DD (p = 

.003) and CON (p = .02). No main effect of time point or interaction of time point by group 

emerged.  

4.3.5 Maths Anxiety. 

The one-way ANOVA revealed a significant effect of group (F (2, 28) = 13.02, p 

<.001). Post-hoc tests revealed that MA was significantly higher in the DD group than the 

CON group (p = .007) and the HM group (p <.001) but CON and HM were not significantly 

different. The mean MA score for each group is shown in Figure 16B. The relationship of 

mathematics performance and MA scores is shown in Figure 17. Inspection of Figure 16B 

and Figure 17 shows that although the mean MA level may be higher for DD than the other 

groups, the DD group have a wide range of MA scores, that is, they are not all clustered at the 

high end of the MA distribution. 
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Figure 16. Mean spatial orientation (A) and maths anxiety (B) scores for the three groups. 

Bars represent standard errors.
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Figure 17. The relationship between maths anxiety and mathematics performance at the three time points, shown by group. 
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4.3.6 Alternative analyses. 

Additional analyses were conducted to check that certain individuals' scores were not 

affecting the findings. Firstly, as one participant in the HM group had maximum scores on all 

the mathematics assessments, I re-ran all repeated-measures ANOVAs and the one-way 

ANOVA on MA scores excluding this outlier. Secondly, because six participants no longer 

met the mathematics performance criterion used for their original groupings at Time 3, I re-

ran all repeated-measures ANOVAs and the one-way ANOVA on MA scores excluding these 

participants. 

Table 8 shows a comparison of the effects, interactions and post-hoc test outcomes for 

the ANOVAs described in section 4.3.4 (column 1) and the analyses excluding the HM 

outlier (column 2) and the those excluding the six participants who no longer met the maths 

performance criterion at Time 3 (column 3). As can be seen in Table 8, these alternative 

analyses revealed very similar results to the analyses described in section 4.3.4. The only 

major difference was that in the ANOVAs with the HM outlier removed, there was a main 

effect of Time point for maths performance (revealing higher maths performance at Time 1 

compared to Time 2 across all groups) and verbal STM (revealing higher verbal STM scores 

at Time 3 compared to Time 2 across all groups).  As these additional effects were not 

particularly strong (significant at p < .05 only), and were not of particular relevance to the 

research questions of this chapter, I did not consider that the inclusion of the HM outlier to 

have altered the results markedly and thus favoured the original ANOVAs. 
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Table 8.  

Summary of the alternative ANOVAs excluding different participants. Effects emerging 

which did not emerge in the original analyses are marked in bold.  

 Analysis - All children Analysis -removing HM 
outlier 

Analysis- removing six 
children who no longer met 
grouping criterion at Time 
3 

Variable Effect Post-hoc Effect Post-hoc Effect Post-hoc 
Maths Group*** HM>CON>DD 

*** 
Group*** HM>CON>DD 

*** 
Group*** HM>CON>DD 

*** 
   Time* Time 1> Time 

2* 
  

Reading Time*** Time3>Time2 
*** 
Time3> Time1 
** 

Time*** Time3>Time2 
*** 
Time3> Time1 
* 

Time** Time3>Time2 
** 
Time3> Time1 
* 

 Group*** HM>CON**; 
HM>DD ** 

Group*** HM>CON**; 
HM>DD * 

Group*** HM>CON**; 
HM>DD ** 

Verbal STM Group* HM>DD* Group* HM>DD* Group* HM>DD* 
   Time* Time 3>Time 

2* 
  

VSWM Group*** HM>CON**; 
HM>DD*** 
(DD vs. CON 
NS) 

Group*** HM>CON*; 
HM>DD*** 
(DD vs. CON 
NS) 

Group*** HM>DD*** 
 

 Group x 
Time 
Trend 
p=.08 

 Group x 
Time 
Trend 
p=.08 

   

Spatial 
orientation 

Time** Time 3>Time 
2** 

Time** Time 3>Time 
2** 

Time* Time 3>Time 
2** 

 Group*** HM>CON**; 
HM>DD*** 

Group*** HM>CON*; 
HM>DD*** 

Group*** HM>CON*; 
HM>DD*** 

 Group x 
Time 
p=.05 

HM Time 3 
greater than all 
other 
measures/ 
groups** 

Group x 
Time* 

HM Time 3 
greater than all 
other 
measures/ 
groups** 

  

Vocabulary Group** HM>CON* 
HM>DD** 

Group** HM>CON* 
HM>DD** 

Group*** HM>DD** 

Maths anxiety Group*** DD>CON** 
DD>HM*** 

Group*** DD>CON** 
DD>HM*** 

Group*** DD>CON*** 
DD>HM*** 

Note that significance is summarised by following: * = p <.05; ** = p <.01; *** = p <.001. 

  



111 
 

4.4 Discussion 

The current chapter describes the longitudinal follow-up of a subsample of 

participants from the screening sample explored in the preceding chapters. The aims of the 

current chapter were to investigate the prevalence of persistent DD and to examine the 

stability of cognitive performance exhibited by DD and control children in comparison to a 

group of children who perform highly in mathematics. These children underwent detailed 

assessment in previously published studies (Szűcs et al., 2013; 2014) and the current chapter 

reports their performance approximately 20 months later on a selection of cognitive tasks. 

The current chapter also aimed to measure the link between DD/ maths performance and 

mathematics anxiety.  

With regard to the prevalence of persistent DD (research question 1), all but two 

participants diagnosed with DD at Time 1 and Time 2 met the maths performance criterion 

for DD diagnosis at Time 3, meaning that eight (80%) of the DD children followed in this 

study had persistent DD. It is important to note, however, that two DD children who 

participated in our previously published study (Szűcs et al., 2013) were unavailable at Time 

3, thus it is unknown what proportion of the total DD sample had persistent DD at Time 3. As 

a conservative estimate, if these two children no longer met the diagnostic criteria, the 

percentage of children with persistent DD would still be 66% (eight out of the 12 original 

children). These estimates (66/80%) are slightly higher than the prevalence rates for 

persistent DD reported by other studies, which ranged from 30 to 65% (Morgan et al., 2009; 

Shalev et al., 1998; 2005; Silver et al., 1999). The reason for the higher prevalence of 

persistent DD in the current study may be because we had a relatively small sample size 

compared to previous studies. However, we also used several control criteria to ensure the 

specificity of the mathematical deficit at diagnosis: average reading performance across two 

tests, and average verbal and non-verbal IQ. Thus, it seems that using a large number of 

control variables to ensure specificity of the mathematical learning problem indeed identifies 

a sample of children with a specific and persistent deficit. Another reason for the stability of 

DD diagnosis in the majority of the DD sample may be because two different tests of maths 

performance were used for DD diagnosis, and measurement took place at different time 

points and in different contexts (group vs. individual assessment). Several other MLD 

researchers have recommended diagnosing MLD using different measures at different time 

points to reduce the risk of identifying false positive cases (Mazzocco & Myers, 2003; 

Mazzocco & Räsänen, 2013; Stock et al., 2010).  
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It was predicted that some children might move between achievement groups over 

time (Hypothesis 1). At Time 3, several participants' maths scores no longer met the maths 

performance criterion used for group selection, supporting this hypothesis. Specifically, two 

participants in the DD group had maths performance within 1 SD of the mean, one CON 

participant had performance below 1SD below the mean, one CON participant had 

performance above 1SD above the mean, and two HM participants had maths performance 

within 1 SD of the mean. These movements reflect a natural fluctuation of performance 

above and below performance cut-offs. Closer inspection of the performance of these 

children shows that four of these children also had inconsistent mathematics performance 

across the Time 1 and Time 2 measures (as average performance on Time 1 and Time 2 

measures was used to form the achievement groups). It is therefore not particularly surprising 

that these children's performance changed again at Time 3. Mazzocco & Myers (2003) also 

found that children who met DD diagnostic criteria at one assessment did not necessarily 

meet the criteria in following assessments. Thus, these findings lend further support to the 

suggestion that at least two assessments are needed to come to a diagnosis of DD (or 

categorisation into other achievement groups). 

Nonetheless, inspection of Figure 14 reveals that over time, the groups more or less 

stayed within the performance ranges expected. That is, Figure 14 shows that DD children's 

performance fell within the lower mathematics performance range (and average reading 

performance range). CON children, on the other hand, had performance within the average 

performance range on both mathematics and reading measures. Finally, the HM group's 

performance was consistently higher than the average performance range for mathematics 

and slightly higher than average for reading. 

It was predicted that relationships between VSWM and spatial skills and mathematics 

would remain over time (Hypothesis 2). Mathematics performance was correlated with 

VSWM at several time points and SpatialO Time 3 was correlated with Maths Time 1, 

however, after correction for multiple comparisons, some of the correlations between VSWM 

or SpatialO and maths were not significant. In our previous study, spatial orientation was 

correlated with and was a significant predictor of maths performance (Szűcs, et al., 2014) 

however, this was not the case for all time points in the current study. As the content and 

level of mathematics taught varies across schooling, it is possible that the type of spatial skills 

tapped by our spatial orientation task may relate more to the mathematics taught in the first 

half of Key Stage 2 (Time 1) but were not as strongly related to mathematics by the end of 
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primary school (Time 2 and Time 3).  In addition, maths performance correlated with reading 

performance, verbal WM and IQ measures. Unfortunately, due to the small sample size, it 

was not possible to run regression analysis to look at the relative contribution of these 

different skills to mathematical performance, as in our previous study (Szűcs et al., 2014). 

It was predicted that impairments in VSWM and spatial skills would still be seen in 

DD children late primary school (Hypothesis 3). The ANOVA of VSWM skills over time 

revealed a main effect of group, but post-hoc tests revealed that superior performance of HM 

was driving this effect and CON and DD had similar performance. Although DD had lower 

VSWM performance than CON at Time 2 (published by Szűcs et al., 2013; and confirmed in 

the uncorrected post-hoc tests, and shown in Figure 15), DD and CON children had similar 

performance at Time 3. The ANOVA of spatial skills also revealed a main effect of group, 

and post-hoc tests revealed no significant differences between DD and CON on this measure. 

Thus, the current study found no support for Hypothesis 3. 

This longitudinal analysis indicated that VSWM impairment exhibited in DD children 

at 8 years of age is not stable over time and is no longer shown almost two years later. This 

finding may suggest that DD children's VSWM skills were simply delayed compared to CON 

children. However, inspection of Figure 15 reveals that both DD and CON children show 

some fluctuation of working memory performance over time in both verbal and VSWM. In 

terms of VSWM performance, CON children showed a slight drop in performance (of 

approximately 4 standard score points) from Time 2 to Time 3, whereas DD showed a slight 

improvement (of approximately 5 standard score points). This resulted in a change from a 

significant to a non-significant difference in VSWM performance between these groups over 

time. In terms of verbal WM performance, these groups show the opposite pattern, that is, 

DD show a slight decrease in verbal WM performance from Time 2 to Time 3, whereas CON 

children show a slight improvement, however, these differences were not significant at either 

time point. Indeed, other studies have reported differing relationships between maths and the 

components of working memory in older and younger children. For example, some have 

found that VSWM is more closely related to mathematics in younger children (e.g., Bull, 

Espy & Wiebe, 2008), yet others have found that verbal working memory is a significant 

predictor of mathematics performance in older children (e.g., Swanson & Sachse-Lee, 2001). 

Thus, the current results may reflect these developmental changes. 
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It was predicted that mathematically high-performing students would show superior 

performance in VSWM and Spatial skills (Hypothesis 4). Indeed, HM had significantly 

higher VSWM performance than CON and DD participants at all time points. Furthermore, 

HM children had significantly higher performance on the spatial orientation task than DD and 

CON, particularly at Time 3, for which HM had superior performance to the other groups at 

all time points. While these results indicate that mathematically high performing children 

may have advantages in spatial processing compared to children with average or low 

performance in mathematics, it is important to note that the HM children also had 

significantly higher verbal STM, verbal IQ and non-verbal IQ than the other two groups. 

Thus, this group of children appear to be high performing across a range of cognitive skills, 

rather than showing academic excellence specifically in mathematics. Four children in our 

HM group also had reading performance above the average range at Time 3, indicating that 

the HM group indeed included gifted students (that is, children who have significantly higher 

than average IQ and excel academically across the board), and included specifically 

mathematically high performing students. Nonetheless, the current findings are in line with 

previous research showing that gifted children have superior working memory skills (verbal 

and central executive), and children who excel in mathematics have high VSWM skills in 

particular (Leikin et al., 2013). It is also important to note that because the spatial orientation 

task was highly correlated with both non-verbal and verbal IQ measures at various time 

points, as well as with VSWM, there is a possibility that the spatial orientation task measured 

general cognitive abilities as well as spatial processing. Therefore, the elevated spatial 

orientation performance in the HM group compared to the other two groups may partly 

reflect their higher general cognitive ability as well as superior spatial abilities. 

It was predicted that the DD group would have higher levels of MA than the other two 

groups (Hypothesis 5) and that MA would have a significant negative correlation with maths 

performance across the three groups (Hypothesis 6). Indeed, the study revealed that MA was 

significantly higher in the DD group than in the CON and HM children (shown in Figure 

16B). These findings support Hypothesis 5 and prior research showing that MA is higher in 

children with MLD (e.g., Lai et al, 2015; Passolunghi, 2011; Wu et al., 2014). Furthermore, 

significant associations emerged between MA measured at Time 3 and mathematics 

performance at every time point (see Figure 17). Although these findings are notable, they 

must be interpreted with two caveats in mind. Firstly, as the sample was made up of groups 

of children selected on the basis of maths performance within discrete ranges, the sample is 
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not representative of the normal population. Hence, the correlations between MA and maths 

performance may be stronger than they would be in a representative sample which would 

include children across the entire mathematics performance distribution. Secondly, it is also 

important to highlight that although MA was higher in DD than in CON and HM children, 

the distribution of MA scores shown in Figure 17 reveal that DD children had a wide range of 

MA scores (e.g., ranging from 14 to 33 out of 45), thus the DD group were not all clustered at 

the upper end of the MA score range. Exploration of the correlation between maths 

performance and MA in a larger sample would likely enable stronger conclusions to be 

drawn.  

A couple of additional findings emerged which were not predicted, namely the main 

effect of time point for both Reading and Spatial Orientation. As the reading tests were all 

age-standardised, it was not expected that there would be an increase in reading standard 

scores over time. It is interesting that the children in the current sample apparently improved 

in reading performance above and beyond what would be expected for their age. A likely 

explanation is that the current sample was very small and highly selected (e.g., all children 

were required to have average reading performance for selection), thus the sample was not 

representative of the much larger samples for which the standard norms of the tests were 

based. On the other hand, the improvement with time on the Spatial Orientation was less 

surprising as this task was not age-standardised and also tapped skills that could plausibly 

improve with age (e.g., spatial skills and interpreting the task instructions). 

There are a few limitations to the study described in this chapter. Firstly, matching the 

DD and control groups on several variables (e.g., average performance on verbal, nonverbal 

IQ and reading performance, similar SES) resulted in only 12 children being selected into 

each group at the beginning of the study. Similarly, only 12 children met the criteria for high 

maths performance. As several children dropped out of the study prior to the final 

measurement, only ten children in the DD and CON groups and 11 children in the HM group 

were followed longitudinally. However, the focus of the linked Project 1 (reported in Szűcs et 

al., 2013) was to contrast several theories of DD; thus, importance was placed on matching 

the groups on a large number of variables which were not always controlled in previous 

studies, rather than on maximising the sample size. It should also be noted that gender was 

not matched between the groups because it was not possible to match on gender as well as the 

other variables and obtain sufficient sample sizes. Thus, the DD group and HM groups had 

very few girls compared to boys, and it is possible that the differing gender ratios in the 
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groups may have had an impact on the results. Finally, it should be mentioned that 

mathematics was studied as a single entity in this study when evidence suggests that 

mathematics performance is made up of many dissociable arithmetical abilities (Dowker, 

2005). Indeed, the MaLT assesses factual, procedural and conceptual knowledge of several 

content areas linked to the national curriculum and includes words problems and pictorial 

information. Similarly, the WIAT Numerical Operations subtest assesses many different 

arithmetical abilities depending on the age/ ability of the child, which range from number 

identification to arithmetic calculations, and knowledge of decimals and fractions. However, 

the Numerical Operations subtest does not contain any written instructions, word problems or 

diagrams. Studies have suggested that verbal working memory is important for arithmetic 

fact retrieval and solving word problems, whereas visuo-spatial processing is important for a 

broader range of arithmetical abilities including number line performance and converting 

word problems to mathematical equations (Geary, 2011). Thus, the relationships between the 

components of WM and mathematics may have differed if mathematics was subdivided into 

different abilities assessed by each of the mathematics tests. 

4.5 Summary 

The current chapter investigated the longitudinal performance of a group of children 

with DD in comparison to children with average mathematics performance and children with 

relatively high mathematics performance. Mathematics, reading, verbal and non-verbal IQ, 

verbal working memory, and VSWM were measured across two or three time points and 

relationships were measured between these variables. MA was also measured at the final time 

point. Whilst our earlier study revealed VSWM deficits in DD compared to control children, 

the current study revealed that DD children's VSWM performance appeared to have caught 

up with control children's performance almost two years later. HM children showed superior 

VSWM and spatial orientation performance compared to the other two groups. Furthermore, 

DD children had significantly higher levels of MA than the other two groups and MA was 

strongly negatively correlated with maths performance across the whole sample. However, as 

the children in this sample were not representative of the normal population, inspection of 

this correlation in a larger, more representative sample is necessary. Chapter Five investigates 

the association between DD/maths performance and MA in representative samples of primary 

and secondary school children. 
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5. Chapter Five. The relationship between developmental dyscalculia and 

mathematics anxiety4

Anxiety has been linked to poorer academic achievement but the direction of this 

association is not well understood. Evidence suggests that depressive symptoms and anxiety 

are predictive of later school achievement (e.g., Riglin, Frederickson, Shelton, & Rice, 2013; 

Rothon et al., 2009). At the same time, poor academic achievement appears to lead to poorer 

mental health outcomes (e.g., Herman, Lambert, Reinke, & Ialongo, 2008). Meta-analytic 

findings suggest that levels of trait and general anxiety are higher in students with than 

without learning disabilities (Nelson & Harwood, 2011). Similarly, there is a higher 

prevalence of test anxiety in students with learning disabilities (Bryan, Sonnefeld, & 

Grabowski, 1983; Strumpf & Fodor, 1993; Wachelka & Katz, 1999). 

. 

As outlined in Chapter One, the relationship between MA and maths performance 

across the ability spectrum has also received a lot of attention in the field. Moderate negative 

correlations have been found between MA and performance (r ~ -.30, Hembree, 1990; Lee, 

2009; Ma, 1999) indicating that as MA levels increase, performance tends to decrease. Much 

research has focussed on the direction of the relationship, with the aim of determining 

whether MA has debilitating effects on performance or whether prior poor performance leads 

to the development of MA. The former direction has been labelled the Debilitating Anxiety 

model, whereas the latter is referred to as the Deficit Model (Carey et al., 2016). Although 

both models have received support, collectively the prior research suggests that the MA-

performance relationship functions reciprocally and/or as a vicious circle (ibid; Cargnelutti et 

al., 2017). 

There may be a common assumption that MA may only be present in children who 

struggle with maths, i.e., maths anxiety is just another name for low maths performance 

(Beilock & Willingham, 2009). Indeed, there is evidence to suggest that MA (or subtypes of 

MA) may be more likely in children with mathematical learning disabilities. Children with 

                                                 

4 This chapter is an extended version of a material published previously. Copyright © 2017 by the 
American Psychological Association. Reproduced with permission. The official citation that should be used in 
referencing this material is Devine, A., Hill, F., Carey, E., & Szűcs, D. Cognitive and emotional math problems 
largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety, Journal of Educational 
Psychology. Advance online publication. doi: http://dx.doi.org/10.1037/edu0000222. The use of APA 
information does not imply endorsement by APA. No further reproduction or distribution is permitted without 
written permission from the American Psychological Association. 
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DD, non-specific mathematics learning disabilities, or who are low achieving in maths (but 

do not meet the severity criteria for maths disability diagnosis), all show higher levels of MA 

compared to typically achieving children (Lai et al., 2015; Passolunghi, 2011; Wu et al., 

2014). Furthermore, in a study which employed an affective priming task as an implicit 

measure of MA, Rubinsten and Tannock (2010) found that children with DD were more 

affected than a control group by negative affective primes and maths related primes during 

arithmetic problem-solving. The authors suggested that these findings show a greater link 

between MA and arithmetic problem-solving in DD (Rubinsten & Tannock, 2010). Studies of 

adults with high MA have also suggested that deficits in basic numerical processing may 

underlie MA (Maloney et al., 2010; 2011). However, it is not clear from these studies 

whether these deficits are a cause or a consequence of MA in these maths anxious adults.  

Chapter Four suggested that the mean MA level was higher for children with DD than 

children with average or above average mathematics performance. However, children with 

DD had a wide range of MA scores, suggesting that not all children with DD have high levels 

of MA. Additionally, Figure 17 illustrated that a couple of CON and HM children had 

moderate to high levels of MA which were on a par with the MA levels of some of the DD 

children. Thus, these results suggest that there may not be a complete overlap between DD 

and high MA levels and that some children with typical mathematics performance may be 

affected by high MA as well. However, to investigate this fully, it is necessary to measure the 

association between MA and DD in a larger sample of children. Although MA has certainly 

been investigated in DD in the past, crucially no prior research has investigated the 

prevalence of comorbidity of these two mathematics learning problems in a large sample, 

thus, the assumption that MA is just another label for low maths performance is currently 

unfounded. Furthermore, research investigating the link between MA and performance in 

children with DD is sparse.  

5.1.1 The current study. 

The current chapter aims to investigate the link between MA and DD in a very large 

sample of primary and secondary school children (the screening sample from Project 2). I 

used the absolute threshold definition of DD (used in Chapter Two) and, thus expected to 

replicate the prevalence rate of 5.58% reported there (Hypothesis 1). Others have used 

various definitions of high MA, for example, Ashcraft and colleagues (2007) defined high 

MA as scores 1 SD above the mean, which would suggest around 17% of the population are 

affected, whereas Chinn (2009) defined high MA as all scores above a certain raw score on 
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his scale, and found only 4% of this sample had high MA. Thus, I had no a priori definition 

of high MA and derived the estimate of high MA prevalence from observation of the MA 

score distribution. I used the resultant definition of high MA to establish the prevalence of 

comorbid DD and high MA in the sample. Furthermore, I compared the proportion of high 

MA children falling in different mathematics performance groups (those with typical 

mathematics performance, DD, and comorbid mathematics and reading difficulties). 

Informed by previous research (Lai et al, 2015; Passolunghi, 2011; Wu et al., 2014) I 

hypothesised that children with DD would be more likely to have high MA than children with 

typical mathematics performance (Hypothesis 2).  

I also measured the correlation between MA and performance in the total sample, in 

each year group separately, and in children with DD. I predicted that a negative correlation 

would emerge in the total sample (Hypothesis 3). Prior studies have reported mixed findings 

regarding the existence of the MA-performance relationship in primary students, thus, I did 

not make any predictions about whether this negative correlation would emerge in primary 

students. However, because this relationship has emerged more consistently in studies of 

secondary school students, I predicted that the negative relationship between MA and 

performance would emerge in secondary students (Hypothesis 4). As there is a lack of 

research investigating the link between MA and performance within children with 

mathematical learning disabilities I did not make any predictions about the MA-performance 

relationship in DD children.  

5.2 Method 

5.2.1 Participants. 

The sample consisted of 1757 children and adolescents attending primary and 

secondary schools in Cambridgeshire (8 schools), Hertfordshire (7 schools), Suffolk (7 

schools), Norfolk (2 schools) and Bedfordshire (1 school) of England, UK. The primary 

school sample (N = 830) consisted of 408 girls and 422 boys from Year 4 (mean age =109.4 

months SD = 3.73). The secondary school sample (N = 927) consisted of 340 girls and 349 

boys from Year 7 (mean age = 146.93 months; SD = 3.54) and 120 girls and 118 boys from 

Year 8 (mean age = 151.26 months; SD = 3.45). School demographics varied widely, with 

locations being both urban and rural. The percentage of students receiving Free School Meals 

(FSM) was used as an indicator of SES because a child's entitlement to FSM is determined 

from consistent economic criteria (Gorard, 2012). The national average percentage of 
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students receiving FSM is 20.9% (calculated from a sample of 11-year-olds in 2014, from 

figures in DfE, 2015a) and the percentage of students receiving FSM in the current sample 

varied from 2.9% to 36.5%  (DfE, 2015b). The percentage of students with special 

educational needs (SEN) and who had English as an additional language (EAL) also varied 

by school. In order to maintain a representative sample, students were not excluded from the 

study on the basis of SEN or EAL. Parental consent was received for all children before 

testing. The study received ethical permission from the Psychology Research Ethics 

Committee of the University of Cambridge. The information sheet and consent form can be 

found in Appendix F. 

5.2.2 Measures. 

5.2.2.1 Maths Anxiety.  

Maths anxiety was measured using the mAMAS (described in Chapter Four). The 

mAMAS can be found in Appendix C. Details of the specific administration procedure 

regarding using the mAMAS with primary level children is outlined in 5.2.3 below. 

5.2.2.2 Mathematics performance. 

Students’ maths performance was assessed using the MaLT tests (Williams, 2005). 

See Chapter Two for further details about the MaLT tests. In accordance with their schooling 

level, Year 4 students completed the MaLT 9, Year 7 students completed the MaLT 12 and 

Year 8 students completed the MaLT 13. Students had 45 minutes to complete the tests.  

5.2.2.3 Reading performance.  

The HGRT II (Vincent & Crumpler, 2007) was used to assess students' reading 

performance. See Chapter Two for further details about the HGRT. In accordance with their 

schooling level, Year 4 students completed HGRT level 2 and Year 7 and 8 students 

completed HGRT level 3.  

5.2.3 Procedure. 

Researchers went to schools to administer the tests and questionnaires. Children were 

assessed in group settings (either as a class or whole year group) with sessions lasting 

approximately 2 hours. The order in which the mAMAS, MaLT and HGRT were 

administered was counterbalanced between schools.  

Given the young age of the primary students, the testing material was presented in a 

child-friendly and accessible manner. Practice questionnaire items (e.g., "Rate how anxious 
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you would feel climbing a tree") were presented alongside a colourful PowerPoint slideshow. 

Furthermore, any difficult words or terms were explained (e.g. “anxiety” was defined as 

"nervousness" and "worry") and researchers checked that children understood how to 

complete the practice items before proceeding with the mAMAS. All mAMAS items were 

read out loud. The questionnaire was formatted so that it was more readable for young 

children and included sad and happy emoticons at the end points of the Likert-scale to aid 

students in their responses. However, the researchers emphasised that the questionnaire was 

assessing anxiety and that the faces in this context were meant to indicate feeling less and 

more anxious, not happiness and sadness. 

5.2.4 Grouping of children. 

Hereafter, when I use the term 'all children' I refer to the whole sample. In line with 

the absolute threshold definition used in Chapter Two, DD was defined as mathematics 

performance below 1 SD below the mean and reading performance above 1 SD below the 

mean. Different discrepancy definitions of DD were compared (see Table 9B), but these 

groupings were not used in later analyses. For analysis of co-occurrence of DD and MA, I 

primarily used the DD-A criteria described above, but in Figure 20A I also inspected a DD 

group with maths performance below 1.5 SD below the mean and reading above 1 SD below 

the mean. Comorbid mathematics and reading difficulties (hereafter: DD+RD), was defined 

as mathematics and reading performance below 1 SD below the mean. 

5.2.5 Data analysis. 

The normality of the distribution of MA scores for all children was tested using the 

Shapiro-Wilk test. Chi-square analysis was used to compare the frequency of DD in the three 

year groups. The association between MA and performance in the whole sample, for the three 

year groups separately, and in students with DD, was measured using Spearman's rank 

correlation.  In order to further assess the robustness of correlations, I also constructed bias 

corrected and accelerated 95% bootstrap confidence intervals for correlations (hereafter: 

BcaCI).  

The normality of the MA distribution in DD children was tested using the Shapiro-

Wilk test. Internal consistency of the mAMAS was estimated using Cronbach’s alpha 

coefficient and ordinal Alpha coefficients. MA raw scores were sorted into 5 bins (0-9, 10-

19, 20-29. 30-39, 40-45). Chi-square analyses were used to compare the frequency of 

children with high MA in different mathematics ability groups. Analyses were done in 
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MATLAB (R2015a) and in R (R Core Team, 2016) using the "GPArotation", "psych" and 

"Rcmdr" packages (Bernaards & Jennrich, 2005; Fox, 2005; Revelle, 2013). Power 

calculations were done in G*Power 3.1  (Faul, Erdfelder, Buchner, & Lang, 2009) 

 

5.3 Results 

5.3.1 Prevalence of high MA. 

The distribution of raw MA scores across the whole sample is shown in Figure 18A. 

The distribution of mAMAS scores in the current study was significantly different from 

normal (N=1757, W = .95, p <.001, skewness =.70; Kurtosis = -.006). The non-normality of 

the mAMAS is also illustrated in the q-q plot shown below in Figure 19. The distribution of 

scores was also significantly different from normal when tested separately by year group 

(Year 4: N = 830, W = .93, p <.001; Year 7: N = 689, W = .95, p <.001; Year 8: N = 238, W = 

.96, p <.001). See 5.4 for further details about non-normality of the mAMAS.  

High MA was defined as scores at or above the 90th percentile, which corresponded 

to raw scores of 30 and above (an average score above 'Moderate amount of anxiety' on the 

scale). Figure 18B shows the empirical cumulative distribution function with the score 

corresponding to the 90th percentile marked. These percentiles are also presented in tabular 

format in Appendix G. I note that the actual percentage of children diagnosed as having high 

MA was 11% of the total sample, as the precise location of the 90th percentile fell somewhere 

within several children with scores of 30. Rather than arbitrarily including some of the 

children with scores of 30 in order to get a high MA group of exactly 10% of the sample, I 

included all children with scores of 30 in the high MA group and thus, the resulting 

percentage was 11%. 

Cronbach’s alpha for the mAMAS was .85 (primary sample α = .85; secondary 

sample α = .86) and split-half reliability was .84 (primary sample .85; secondary sample .86). 

Cronbach’s alpha tends to underestimate reliability in cases where data are not continuous 

(e.g., Likert-type scales), when there are few items in a scale, and when scores are not 

normally distributed (these issues are discussed in Cipora, Szczygiel, Willmes, & Nuerk, 

2015). Therefore, in line with Cipora and colleagues, I estimated the reliability of the 

mAMAS further using ordinal Alpha coefficients (Gadermann, Guhn, & Zumbo, 2012). 

Ordinal Alpha for the mAMAS was 0.89 (0.89 for primary students and 0.89 for secondary 
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students). Ordinal alpha did not increase if any item was dropped. Thus, the mAMAS 

demonstrated good reliability at both school levels. 
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Figure 18. The distribution of raw MA scores (A) and the cumulative distribution function of 

MA scores (B). The 90th

  

 percentile (denoting high MA cut-off) is shown by the dashed line. 
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Figure 19. A normal q-q plot of the mAMAS data, showing the deviation from a normal 

distribution. 
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5.3.2 Prevalence of DD. 

 5.3.2.1 Absolute thresholds. 

Using the DD-A criteria, 99 children (5.6%) were diagnosed as having DD. The 

number and percentage of children in the DD-A group by year group are presented in Table 

9A. Chi-square analyses were used to compare the number of DD-A children in each year 

group. There were significantly more children with DD in Year 4 than in Year 7 (χ2 = 6.52, p 

=.012; two-tailed); however the number of children with DD was not significantly different 

between Year 4 and Year 8 (χ2 = .046, p =.831; two-tailed), nor between Year 7 and Year 8 

(χ2 = 4.54, p =.033; two-tailed) after correction for multiple comparisons (p-value divided by 

the number of comparisons: 3).  

5.3.2.2 Discrepancy (relative) thresholds.  

DD was also diagnosed using different discrepancy thresholds, that is, different 

discrepancies between maths and reading performance. The numbers of children meeting the 

DD discrepancy criteria are shown in  Table 9B. Note that in contrast to Chapter Two, there 

were no children with DD and high reading performance (see Discussion 5.4.1). Discrepancy 

thresholds were mainly inspected here as a comparison to Chapter Two. Hereafter, the 

absolute threshold definition of DD (maths < 1 SD below the mean with reading above 1 SD 

below the mean) is used for the remaining analyses in this chapter and in Chapter Six. 
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Table 9.  

The frequency of children with DD using different definitions. (A) Number and percentage of 

children in DD group in each year group. (B) Number of children with DD using a certain 

discrepancy definition.  

A. DD 

 N % 

Year 4 56* 6.7 

Year 7 26* 3.8 

Year 8 17 7.1 

Total 99 5.6 

 * Comparisons significant at p <.05. 

B. Discrepancy 

Reading criteria 
Maths < Mean –1 

SD 

Maths < Mean–1.5  

SD 

Average readers (within 

0.5 SD mean) 
49 10 

Above average readers (> 

0.5 SD above mean) 
3 2 

High readers (> 1 SD 

above mean) 
0 0 
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5.3.3 Relation between DD and MA. 

Table 10A shows the percentage of students with high MA in the different 

mathematics performance groups. When using a threshold of high MA at or above the 90th 

percentile, 10% of students with mathematics at or above 1 SD below the mean had high MA; 

however, 22% percent of students in the DD group had high MA. Note that this percentage is 

of the children who met the DD criteria, not the percentage of all children with maths scores 

falling below 1 SD below the mean. The frequency of children with high MA was 

significantly different between the DD group and the students with mathematics at or above 1 

SD below the mean (typical mathematics group; TM; χ2 = 14.42, p < 001; two-tailed). The 

frequency of children with high MA was also significantly different between the children 

with comorbid reading and maths difficulties (DD+RD) and the TM group (χ2 = 6.86, p 

=.008; two-tailed), however, the frequency of children with high MA was not significantly 

different between the DD group and DD+RD (χ2 = .96, p =.32, two-tailed). 
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Table 10.  

Maths anxiety scores in different groups.  

(A) Number and percentage of children with high MA falling within different mathematics 

achievement groups (DD: Developmental Dyscalculia; DD+RD: DD with Reading Deficit; 

TM: Typical Maths). Row 1 shows the proportions of high MA children in a group relative to 

the number of children in that group (e.g. there were 198 high MA children in the whole 

sample of 1757 children). Row 2 shows proportions relative to all 198 children with high MA 

(198 = 24+22+152). (B) Median MA scores and 95% bootstrap confidence intervals for 

medians in different groups.  

 

A. DD+RD DD TM Whole sample 

 N % N % N % N % 

Proportion 

with high 

MA in each 

group 

24/140 17 22/99 22 152/1518 10 198/1757 11 

Proportion 

relative to all 

high MA 

children 

24/198 12 22/198 11 152/198 77 - - 

B. DD+RD DD-A TM Whole sample 

 Mdn BcaCI Mdn BcaCI Mdn BcaCI Mdn BcaCI 

 23 21/24 22 20/26 18 17/18.67 18 18/19 
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Figure 20A confirms that only a relatively small proportion of DD children can be 

categorised to have high MA independent of the DD and MA diagnosis criteria used. When 

DD is defined as maths performance 1.5 SD below the mean, the percentage with high MA is 

25%, slightly higher than the mean–1 SD definition  (note that this percentage is calculated 

out of the total number of DD children meeting the mean–1.5 SD criterion: 32 children). 

Thus, as the definition of DD did not make a difference to the prevalence of co-occurrence of 

MA and DD, the remainder of my analyses refer to the original DD and high MA definitions.  

Importantly, of the students with high MA across the whole sample, only 11% fell in 

the DD group and 12% had below average maths performance but did not meet criteria for 

DD (i.e. had comorbid reading difficulty). Thus, the majority of students with high MA 

(77%) had average or above average mathematics performance (see Table 10A). The 

proportion of typically performing and high performing children with different maths anxiety 

scores is also illustrated Figure 21. Table 10B shows the median MA scores and BcaCI for 

median MA scores. rs 

In the total sample of 1757 children, MA was significantly and negatively correlated 

with mathematics performance (rs = -.30, p < .001, BcaCI: -.34, -.25). The correlation 

between MA and mathematics performance is shown in Figure 20B. The correlations were 

also significant when tested separately by year group (Year 4: rs = -.29, p < .001, BcaCI: -.35, 

-.23; Year 7: rs = -.32, p < .001, BcaCI: -.38, -.24; Year 8:  rs = -.15, p < .05, BcaCI: -.27, -

.02).  In contrast, the correlation between MA and mathematics performance within the DD 

group was not significant (rs = -.09, p = .38; BcaCI: -.29, .12). Note that the lack of 

correlation in such a sub-sample can also be expected because of the narrow range of maths 

scores in the DD group. The DD group amongst the whole sample is also shown in Figure 

20B and the lack of correlation between MA and maths performance in this group can be 

seen. Note that the spread of MA scores has about the same range in the DD group as in the 

whole sample. 
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Figure 20. The percentage of DD children with high MA using different DD diagnostic 

criteria (A) (maths performance below 1 SD below the mean vs. 1.5 SD below the mean) and 

different MA cut-offs (raw scores between 27 and 45: the maximum MA raw score). (B) The 

correlation between MA and mathematics performance in the whole sample. Filled circles 

show children in the DD group (mean–1 SD definition). 
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Figure 21. The probability of having mathematics performance above a certain threshold 

with different maths anxiety scores. 
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5.4 Discussion 

The current study aimed to investigate the relation between DD and MA. To my 

knowledge, this study is the first to estimate the prevalence of comorbidity of DD and MA in 

a large, nationally-representative cohort of primary and secondary school children.  

5.4.1 Prevalence of high MA and DD. 

Whereas Hopko et al (2003) reported that AMAS scores were normally distributed in 

their scale development study (N = 815, Shapiro-Wilk W = .98, p = ns;  skewnesss = .32; 

kurtosis = –.31), I found that scores on the mAMAS were not normally distributed (N =1757, 

W = .95, p <.001, skewness =.70; Kurtosis = -.006). Importantly, none of the analyses 

conducted in the current study required normality of MA. That is, rather than defining high 

MA using a cut-off such as 1 SD above the mean (as used by Ashcraft et al (2007), I defined 

high MA as raw mAMAS scores at or above the 90th percentile (raw scores of 30 and above). 

This is lower than the 17% proposed by Ashcraft et al. which would result from using a cut-

off of 1 SD above the mean score of a normal distribution if MA scores were normally 

distributed, however, as scores on the mAMAS were not normally distributed it was not 

appropriate to use a SD definition of high MA, and thus, the high MA prevalence estimate 

was lower using our more conservative definition. 

Other recent studies employing translated versions of the AMAS have also shown that 

MA scores were not normally distributed. For example, Cipora et al. (2015) found that total 

scores on their Polish translation of the AMAS, and scores on two AMAS subscales were 

significantly different from normal. Likewise, Primi et al., (2014) found that some items of 

their Italian translation of the AMAS did not satisfy normality criteria when administered to 

samples of adults and secondary school students. Using another shortened version of the 

MARS (the MARS30-brief) Pletzer et al. (2016), found that neither the total score nor the 

items of the scale were normally distributed in adults.  It is possible that the positive skew of 

the MA distribution in our study is because our sample included children rather than adults, 

however, as mentioned above, recent studies did not find MA was normally distributed in 

adults and high school students either.  

I estimated the prevalence of DD using the different diagnostic criteria used in 

Chapter Two. When DD was defined using mathematics performance below 1 SD below the 

mean and reading performance above 1 SD below the mean, 5.6% of the sample met the 
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criteria for DD. This prevalence estimate is very similar to international estimates reported 

previously (Gross-Tsur et al., 1996; Koumoula et al., 2004). Somewhat surprisingly, the 

average prevalence estimate across year groups reported in this study is exactly equal to the 

prevalence I reported in Chapter Two using these same criteria (5.58%), which supports 

Hypothesis 1 which predicted that the prevalence of DD found in Chapter Two would be 

replicated. Note, however, that there was some variation in prevalence by year group, with a 

higher prevalence in Year 4 than Year 7. Again, the prevalence estimate of 5.6% reported 

here is higher than the prevalence of 1.3% reported previously for UK school children by 

Lewis et al. (1994). However, Lewis and colleagues' DD selection criteria included two 

control measures (IQ and reading) which would naturally increase the specificity of DD and 

accordingly decrease the percentage of children meeting the selection criteria.  

When I used a discrepancy definition of DD, that is, mathematics performance below 

1 SD below the mean and reading performance within 0.5 SD of the mean, the prevalence of 

DD reduced to 2.8%. However, in contrast to Chapter Two, I found that no children met the 

DD discrepancy criteria of mathematics performance below 1 SD below the mean and high 

reading performance (>1 SD above the mean). This difference may simply reflect the fact that 

mathematics and reading performance were highly correlated in the total sample (rs =.72, p < 

.001 - a higher correlation than the correlation reported between maths and reading in 

Chapter Two: r=.63, p < .001), and accordingly, no children in the current sample had 

extremely discrepant performance in these two academic domains. 

5.4.2 Relationship between DD and MA. 

In the whole sample, MA and mathematics performance were moderately negatively 

correlated (rs = -.30), supporting Hypothesis 3 which predicted a negative correlation 

between MA and performance. This correlation is about the same effect size as that reported 

in previous meta-analyses (Hembree, 1990; Ma, 1999). The similarity between the current 

data and results from the 1990s is remarkable: MA seems to be a highly persistent factor in 

mathematical development. Analysis by year group revealed that the correlations were 

significant and negative for all three year groups, supporting Hypothesis 4 which predicted 

that a significant relationship would be found in secondary students. The fact that a 

significant negative correlation between MA and maths performance also emerged in primary 

school children supports the few studies that have also shown this association (e.g., Punaro & 

Reeve, 2012; Wu et al., 2012). But our finding contrasts with studies that have not found an 

association between MA and performance in young primary children (Krinzinger et al., 2009; 
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Thomas & Dowker, 2000). It is unclear why there are differences across studies but it is 

possible that differences in the age of the samples (e.g., the latter studies' samples were 

younger than the sample tested in the current chapter). Alternatively, the differences between 

the current and prior findings may reflect differences in how MA has been operationalised by 

different researchers and the components of MA measured by the different scales (Sorvo et 

al., 2017). Indeed, Wigfield & Meece (1988) reported a stronger relationship between the 

emotionality component of MA and performance than between worry and performance. 

Similarly, Sorvo and colleagues reported a stronger relationship between anxiety about 

mathematics situations and maths performance than the relationship between anxiety about 

mathematics failure and maths performance (Sorvo, et al., 2017).  It was not possible to 

separate these components of MA in the current study because the mAMAS measures the 

amount of anxiety elicited by mathematical situations and items were not worded to 

specifically assess worry, emotionality, or anxiety related to failure. For example, mAMAS 

item 4, which gauges the amount of anxiety felt when 'Taking a maths test', potentially 

assesses one or all of these components. 

In contrast to the moderate negative correlation that emerged in the whole sample, the 

correlation between MA and maths performance was not significant in children with DD. 

Most notably, children with DD had a similar range of MA levels to the typically developing 

children and 78% of DD children did not have high MA. While 11% of the whole sample had 

high MA, and 10% of the children with at least average mathematics performance had high 

MA, 22% of the DD group had high MA. Hence, high MA appears to be twice as likely in 

children with DD as in children with mathematics performance at or above the average range. 

On the one hand, this finding supports previous studies which have shown higher levels of 

MA in children with DD/MLD (Lai et al., 2015; Passolunghi, 2011; Wu et al., 2014) and 

supports Hypothesis 2 which predicted that high MA would be more likely in children with 

DD than in children with typical maths performance. However, on the other hand, of the 

students with high MA across the whole sample, only 11% fell in the DD group and 12% 

were in the DD+RD group. Thus, the majority of students with high MA (77%) had average 

or above average mathematics performance, demonstrating that high MA is not exclusive to 

children with MLD or DD.  

In contrast to the idea that MA may simply equate to low maths performance, the 

results of the current study suggest that many children with DD do not report high levels of 

MA. These findings challenge the hypothesis that deficits in basic numerical processing 
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underlie MA (e.g., Maloney et al., 2010; 2011), as here the results suggest that although there 

is some degree of overlap between them, MA and numerical deficits (characteristic of DD) 

are dissociable. Hence MA and DD are likely to require different types of intervention. The 

implications of these findings are discussed in greater detail in the General Discussion. 

5.5 Summary 

The current chapter found that the prevalence of DD averaging across year groups 

was 5.6%, using the criteria from Chapter Two (maths performance < 1 SD below the mean 

with reading performance above 1 SD below the mean). However, there was some variability 

in DD prevalence when inspected in each year group separately. MA was found not to be 

normally distributed, thus, high MA was defined as scores above the 90th percentile for the 

sample, which corresponded to raw scores of 30 and above. Using these definitions I found 

that there was some degree of overlap between DD and MA in school children. However, not 

all children with DD reported high levels of MA and likewise, not all children with high MA 

had poor mathematics performance. In fact, the majority of highly maths anxious children 

had mathematics performance within or above the average range. Furthermore, whilst the 

correlation between MA and performance was significant in the total sample (and in each of 

the year groups separately), it was negligible in children with DD. These findings call into 

question the idea that MA is only present in children who struggle with mathematics.  
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6. Chapter Six. Gender differences in MA and DD.5

The previous chapters have established that the prevalence of DD is approximately 

6% in UK school children and that no gender difference exists in the prevalence of DD at the 

primary school level. However, it is unclear whether a gender difference in DD prevalence 

exists at the secondary school level. Given that other research has revealed small to moderate 

gender differences in mathematics performance during the secondary school years favouring 

boys, and that boys are overrepresented at the upper end of the performance distribution (e.g., 

Else-Quest et al., 2010; Stoet & Geary, 2013), it is possible that more girls than boys may 

meet the diagnostic criteria for DD in secondary school. 

 

With regard to MA gender differences, prior literature has revealed mixed results in 

young children, with some reporting higher levels of MA in primary school girls than boys 

(e.g., Griggs et al., 2013, Hill et al., 2016; Satake & Amato, 1995; Yüksel-Şahin, 2008). 

However, this finding is not universal and several studies of younger children have reported 

null findings (e.g., Gierl & Bisanz, 1995; Harari, et al, 2013; Newstead, 1998; Punaro & 

Reeve, 2012; Ramirez, et al., 2013; Young et al, 2012). 

The pattern of MA gender differences appears to be more consistent in secondary 

school samples. Although some have reported no MA gender differences  (e.g., Birgin et al, 

2010; Dede, 2008; Hadfield et al, 1992; Kyttälä & Björn, 2014; Sepie & Keeling, 1978), the 

majority of studies have shown increased levels of MA (or MA subtypes) in girls compared 

to boys (e.g., Baya'a, 1990; Chinn, 2009; Devine, et al., 2012; Frenzel et al, 2007; Goetz et 

al., 2013; Hill et al., 2016; Ho et al. 2000; Jain & Dowson, 2009; Khatoon & Mahmood, 

2010; Kvedere, 2012; Luo et al, 2009; Primi et al., 2014; Saigh & Khouri, 1983). Two major 

meta-analyses of cross-national data also support this finding (Hembree, 1990; Else-Quest et 

al. 2010).  

In contrast, gender differences in the relationship between MA and maths 

performance seem to vary between studies. For example, our previous study found that the 

                                                 
5  This chapter is an extended version of a material published previously. Copyright © 2017 by the 

American Psychological Association. Reproduced with permission. The official citation that should be used in 
referencing this material is Devine, A., Hill, F., Carey, E., & Szűcs, D. Cognitive and emotional math problems 
largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety, Journal of Educational 
Psychology. Advance online publication. doi: http://dx.doi.org/10.1037/edu0000222. The use of APA 
information does not imply endorsement by APA. No further reproduction or distribution is permitted without 
written permission from the American Psychological Association. 
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relationship between MA and math performance is stronger in girls than in boys (Devine et 

al., 2012), but Ma & Xu (2004) found that maths performance may be more predictive of MA 

in boys than girls. Yet other studies have found no gender difference in the relationship 

between MA and maths performance (e.g., Meece et al., 1990; Wigfield & Meece, 1988). 

Collectively, the literature suggests that girls may have higher MA than boys, 

particularly at the secondary school level, however, there appears to be no consistency 

regarding gender differences in the relationship between MA and maths performance. 

As mentioned in the introduction to Chapter Five, although the MA and maths 

performance relationship has been studied extensively, there is no research systematically 

investigating the prevalence of comorbidity of MA and DD. As such, there is also no research 

investigating gender differences in children with these co-occurring mathematics learning 

problems. The current chapter addresses this research gap. 

6.1.1 Current Study. 

The aims of the current study were to inspect gender differences in maths and reading 

performance, DD, MA and co-occurring DD and MA in the sample described in Chapter 

Five. 

In keeping with the findings of Chapter Three, and previous UK research showing 

that girls outperform boys in reading at both the primary school (e.g., DfE, 2014) and 

secondary school level (Sammons et al., 2014), it was predicted that girls would outperform 

boys in reading at both school levels (Hypothesis 1). 

Also in keeping with the results of Chapter Three, it was predicted that girls and boys 

would show equivalent mathematics performance at the primary school level (Hypothesis 2). 

Although international research has indicated small to moderate gender differences at the 

secondary school level, recent UK research has not revealed gender differences in maths 

performance at GCSE level (Bramley et al., 2015). Thus, it was also predicted that there 

would be no gender difference in maths performance at the secondary school level 

(Hypothesis 3).  

Chapter Three and other UK research (Lewis et al., 1994) found the gender ratio of 

DD was 1:1, thus, it was predicted that there would be no gender difference in DD prevalence 

at the primary school level (Hypothesis 4). However, as previous studies have not 

investigated the prevalence of DD in secondary school samples it was unknown whether 
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there would be a gender difference in DD at the secondary school level, and I made no 

hypothesis regarding this. 

 In line with the research cited above, I predicted that girls would show higher levels 

of MA than boys in primary school (Hypothesis 5) and at the secondary school level 

(Hypothesis 6). However, due to the lack of prior research investigating the prevalence of 

comorbidity of MA and DD, I had no firm hypothesis regarding a gender difference in the 

prevalence of co-occurring MA and DD. 

In line with the findings of our previous study (Devine et al., 2012), it was predicted 

that girls would show a stronger correlation between MA and performance than boys in 

secondary school students (Hypothesis 7).  However, due to the scarcity of prior research in 

gender differences at the primary school level, I had no predictions regarding gender 

differences in the MA-maths performance correlation in primary students. 

6.2 Method 

6.2.1 Participants. 

The sample consisted of 1757 children and adolescents attending primary and 

secondary schools described in Chapter Five. The primary school sample (N = 830) consisted 

of 408 girls and 422 boys from Year 4 (mean age =109.4 months SD = 3.73). The secondary 

school sample (N = 927) consisted of 340 girls and 349 boys from Year 7 (mean age = 

146.93 months; SD = 3.54) and 120 girls and 118 boys from Year 8 (mean age = 151.26 

months; SD = 3.45).  

6.2.2 Measures. 

6.2.2.1 Maths Anxiety. 

Maths anxiety was measured using the mAMAS (described in Chapters Four and 

Five). 

6.2.2.2 Mathematics performance. 

Students’ maths performance was assessed using the MaLT (Williams, 2005). In 

accordance with their schooling level, Year 4 students completed the MaLT 9, Year 7 

students completed the MaLT 12 and Year 8 students completed the MaLT 13. 



140 
 

6.2.2.3 Reading performance.  

The HGRT-II (Vincent & Crumpler, 2007) was used to assess students' reading 

performance. In accordance with their schooling level, Year 4 students completed HGRT 

level 2 and Year 7 and 8 students completed HGRT level 3. 

6.2.3 Procedure.  

The procedure is described fully in 5.2.3. 

6.2.4 Grouping of children. 

When I use the term 'all children' I refer to the whole sample. In line with the absolute 

threshold definition used in Chapters Two, Three and Five, DD was defined as mathematics 

performance below 1 SD below the mean and reading performance above 1 SD below the 

mean. 

6.2.5 Data analysis. 

The current chapter collapsed the Year 7 and 8 data in order to compare across 

school level (primary vs. secondary students). The normality of the distributions of maths, 

reading and MA scores were tested separately by school level, using the Shapiro-Wilk test. 

The distributions of reading, maths, and MA scores were compared for each gender using the 

Mann-Whitney U test. Maths and reading standard scores were sorted into 9 bins (<70, 70-

79, 80-89, 90-99, 100-109, 110-119, 120-129, 130-139, 140 and above). MA raw scores were 

sorted into 5 bins (0-9, 10-19, 20-29, 30-39, 40-45). Where distributions differed, the cell 

counts of girls and boys were compared using Chi-square analyses. Chi-square analysis was 

also used to compare the frequency of girls and boys with DD. 

Girls' and boys' mean reading, maths and MA scores were also compared using bias 

corrected and accelerated 95% bootstrap confidence intervals (hereafter: BcaCI). Effect sizes 

reported are Cohen’s d. 

The distribution of MA scores in children with DD was also compared for each 

gender using the Mann-Whitney U test and binning and post-hoc tests were carried out as 

described above. Chi-square analysis was also used to compare the frequency of girls and 

boys with high MA and DD. In comparisons with sample sizes of less than 5, Fisher’s exact p 

is reported.  
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Post-hoc tests were corrected for multiple comparisons (p-value divided by the 

number of comparisons: 9 for the reading and maths distribution comparisons, 5 for the MA/ 

DD+MA distribution comparisons). 

The association between MA and performance for each gender, for primary and 

secondary students separately, was measured using Spearman's rank correlation.  In order to 

further assess the robustness of correlations I also constructed BcaCI for correlations. 

Analyses were done in MATLAB (R2015a). 

6.3 Results. 

6.3.1 Reading and mathematics performance. 

Shapiro-Wilk tests revealed that reading and mathematics distributions were 

significantly different from normal, in the total sample (Reading: N = 1757 W = .99, p <.001, 

skewness =.07; kurtosis = -.43; Maths: N = 1757 W = .99, p <.001, skewness =-.07; kurtosis 

= -.55). The distributions were also significantly different from normal when tested for each 

school level separately (primary reading: N = 830 W = .99, p <.001, skewness = .09; kurtosis 

= -.48;  secondary reading: N = 927 W = .99, p <.001, skewness = -.01; kurtosis = -.53; 

primary maths: N = 830 W = .99, p <.001, skewness =-.19; kurtosis = -.64; secondary maths: 

N = 927,W =  .99, p <.001, skewness =.03; kurtosis = -.40). These findings contrast with 

Chapter Two which found that maths and reading distributions were not significantly 

different from normal. However, the standardisation of the HGRT and MaLT tests was 

conducted on a nationally-representative sample which was much larger than the current 

study, thus, the distributions of scores in the current sample may not precisely match those of 

the standardisation sample. Crucially, none of the subsequent analyses required normality of 

the distributions. 

The Mann-Whitney U comparisons revealed that the reading performance distribution 

was significantly different for girls and boys at the primary school level (Z = 2.03, p = .04; 

girls' mean = 106.83; BcaCI: 105.34, 108.33; boys' mean = 104.51; BcaCI: 102.91, 106.09).  

The effect size of the difference in means was d = -.15 Figure 22A shows the reading 

performance distribution for primary students by gender. Chi-square analyses suggested that 

there was a greater number of boys than girls at the lower end of the distribution (specifically 

for standardised scores 70-79 and 80-89) and a greater number of girls at the upper end of the 

performance distribution than boys (specifically scores 130-139), however, these 

comparisons were not significant after correction for multiple comparisons (all were 
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significant at p <.05). Girls' and boys’ reading performance was also significantly different in 

secondary school students (Z = 3.34, p <.001; girls' mean = 102.06, BcaCI: 100.68, 103.48; 

boys' mean = 98.65, BcaCI: 97.24, 99.93). The effect size of the difference in means was d = 

-.23. Figure 22B shows the reading performance distribution for secondary students by 

gender. Chi-square analyses suggested there were more boys than girls at the lower end of the 

distribution (specifically for standardised scores 70-79) and more girls than boys performing 

above the average range (specifically scores 120-129), however, these comparisons were not 

significant after correction for multiple comparisons (both were significant at p <.05).  
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Figure 22. Reading performance distributions of primary (A) and secondary (B) students. 
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The Mann-Whitney U comparisons revealed that the maths performance distribution 

was significantly different for girls and boys at the primary school level only (Z = -2.16, p 

=.03; girls' mean = 102.14, BcaCI: 100.70; 103.59; Boys' mean = 104.06; BcaCI: 102.49, 

105.54). The effect size of the difference between the means was d =.12. Chi-square analyses 

revealed there were more girls than boys with standardised scores 90-99 (χ2 = 12.93, p 

<.001). Chi-square analyses also suggested there were more boys than girls with standardised 

scores 110-119, but this comparison was not significant after correction for multiple 

comparisons (significant at p <.05). Figure 23 shows the maths performance distribution for 

primary students (A) and secondary students (B). 
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Figure 23. Mathematics performance distributions of primary (A) and secondary (B) 

students. 
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6.3.2 MA. 

As reported in Chapter Five, the Shapiro-Wilk test revealed that the MA distribution 

was significantly different from normal, when collapsed across school level (N = 1757 W = 

.95, p <.001, skewness =.70; kurtosis = -.006). The current analyses revealed the MA 

distribution was also significantly different when tested separately by school level (primary: 

N = 830 W = .94, p <.001, skewness =.81; kurtosis = .30; secondary: N = 927 W = .95, p 

<.001, skewness =.61; kurtosis = -.27). 

The Mann-Whitney U comparisons revealed that the MA distribution was 

significantly different for girls and boys at the primary school level, indicating that girls had 

higher levels of MA than boys (Z = 6.26, p <.001; girls' mean = 20.71, BcaCI: 19.98; 21.46; 

Boys' mean = 17.83; BcaCI: 17.12; 18.62). The effect size for the mean difference was small 

to moderate (d = -.38). Chi-square analyses revealed that there were more boys than girls 

with MA scores at the lower end of the MA distribution (scores 0-9: χ2 = 17.00, p <.001) and 

more girls than boys with moderate to high levels of MA (scores 20-29: χ2 = 9.03, p =.003; 

scores 30-39: χ2 = 7.85, p =.005). All other comparisons were not significant. Figure 24A 

shows the MA performance distributions for each gender in primary school students. 

The MA distribution was also significantly different for secondary school girls and 

boys, suggesting that girls had higher MA than boys (Z = 4.97, p <.001; girls' mean = 21.27, 

BcaCI: 20.60; 22.03; Boys' mean = 18.81; BcaCI: 18.19; 19.48). The effect size for the mean 

difference was small to moderate (d = -.33). Chi-square analyses revealed that there were 

more boys than girls with MA scores at the lower end of the MA distribution (scores 0-9: χ2 = 

7.54, p <.001; scores 10-19: χ2 = 12.81, p <.001) and more girls than boys with high levels of 

MA (scores 30-39: χ2 = 16.12, p <.001). All other comparisons were not significant. Figure 

24B shows the MA performance distributions for each gender in secondary school students. 
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Figure 24. Maths anxiety score distributions for primary students (A) and secondary students 

(B). 
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6.3.3 DD prevalence.  

Table 11 shows the prevalence of DD by gender. Chi-square analysis confirmed that 

the number of girls and boys in the DD group was not significantly different at any of the 

school levels. 
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Table 11. 

Number and percentage of children in DD group by gender and year group. 

 Girls Boys Total 

 N % N % N % 

Primary 31 7.6 25 5.9 56 6.7 

Secondary 26 5.6 17 3.6 43 4.6 

Total 57 6.5 42 4.7 99 5.6 
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6.3.4 DD and MA comorbidity. 

The distributions of MA scores in the DD group for girls and boys are shown in 

Figure 25. The Mann-Whitney U test confirmed that girls' and boys' distributions were 

significantly different from one another (Z = -2.50, p =.013, girls’ mean = 24.15, BcaCI: 

22.12; 26.15; boys’ mean =   20.19; BcaCI: 17.86; 22.78, Cohen’s d = 0.5). Chi-square 

analysis confirmed that there were more girls with scores in the 30-39 range than boys 

(Fisher’s exact p =.007). The gender differences for the other cells did not reach statistical 

significance. When the high MA cells (scores above 30) were collapsed, chi-square analysis 

confirmed that there were more girls with high MA (18) than boys with high MA (4) in the 

DD group (Fisher's exact p = .013; two-tailed). The distribution of MA scores in the DD 

group for each school level is shown in Figure 26. Where sample sizes allowed chi-square 

comparisons to be made separately for each school level, none of the gender comparisons 

was significant after correcting for multiple comparisons. 
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Figure 25. Distribution of mathematics anxiety scores for the DD group by gender across 

both school levels. 

 

 

Figure 26. Distribution of mathematics anxiety scores for the DD group by gender for 

primary students (A) and secondary students (B). 
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6.3.5 MA and maths performance relationship. 

MA was significantly and negatively correlated with mathematics performance in 

girls (rs = -.25, p < .001, BcaCI: -.31, -.18) and boys (rs = -.33, p < .001, BcaCI: -.39, -.26). 

Significant negative correlations also emerged when the correlations for each gender were 

tested separately by school level (primary girls: rs = -.27, p < .001, BcaCI: -.36, -.18; primary 

boys: rs = -.29, p < .001, BcaCI:  -.38, -.19; secondary girls: rs = -.22, p < .001, BcaCI: -.31, -

.13; secondary boys: rs = -.35, p < .001, BcaCI: -.43, -.27). According to difference tests, the 

strength of the correlation was the same for boys and girls, whether tested across the whole 

sample, or within school levels (p >. 05 for all). The correlations between MA and 

performance in girls and boys at both school levels is shown in Figure 27.
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Figure 27. Correlation of MA and maths performance for primary school girls (A); primary school boys (B); secondary school girls (C); and 

secondary school boys (D).
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6.4 Discussion 

The current study aimed to investigate gender differences in maths and reading 

performance, MA, DD prevalence, and the prevalence of comorbid DD and MA in the 

sample investigated in Chapter Five.  

Gender differences in the reading performance distribution emerged suggesting 

slightly higher performance in girls than boys at both school levels (small effect sizes) and 

also suggesting an overrepresentation of boys at the lower end of the distribution and an 

overrepresentation of girls at the upper end of the distribution. Thus, these results provided 

partial support for Hypothesis 1 (that girls would show higher reading performance than boys 

at both school levels). The effect size of the difference in mean reading performance of 

primary school girls and boys was smaller than the effect reported in Chapter Three, 

nonetheless, these results corroborate the gender differences in Year 3 and 4 children’s 

reading performance found in Chapter Three. 

There was also a gender difference in the maths performance distribution of primary 

level students, suggesting that more girls than boys had standardised scores in the lower 

average range (scores in the 90-99 range). However, the gender difference in mean 

performance was of negligible effect size and there was no evidence that boys were 

overrepresented at the upper end of the distribution at either school level. These findings 

support Hypotheses 2 and 3 which predicted equal performance in girls and boys at both the 

primary and secondary school level. The results also agree with recent UK research at the 

secondary level which reported that boys were not consistently overrepresented at the upper 

end of the maths performance distribution at GCSE level (Bramley et al., 2015). However, 

the lack of a gender difference in the mathematics distributions contrasts with international 

findings (Stoet & Geary, 2013) and primary level research in the UK (DfE, 2014) showing a 

preponderance of boys at the upper end of the maths performance distribution.  

DD prevalence was the same for boys and girls at the primary school level, which 

supported Hypothesis 4 (predicting a gender ratio of 1:1) and the results of Chapter Three. 

These findings are commensurate with three other studies that have found no gender 

differences in DD prevalence (Gross-Tsur et al., 1996; Koumoula et al., 2004; Lewis et al., 

1994). Interestingly, the prevalence of DD was equal in secondary school girls and boys as 

well. 
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MA distributions were significantly different in boys and girls. The distribution 

comparisons suggested higher mean maths anxiety in girls than boys at both the primary and 

secondary school level. The effect sizes were still fairly small (d = .33/.38), but were double 

the size of the gender difference in mathematics performance and effects of this magnitude 

are considered clinically relevant according to Wolf's (1986) interpretation. Furthermore, 

more boys than girls had MA scores towards the lower end of the distribution whereas more 

girls than boys had moderate to high levels of anxiety. This finding emerged at both school 

levels, supporting Hypotheses 5 and 6 which predicted girls would report higher MA at in 

primary school as well as secondary school. Thus, these findings support some studies which 

found higher levels of MA in girls in the primary school years (Griggs, et al., 2013, Hill et al., 

2016; Satake & Amato, 1995; Yüksel-Şahin, 2008) and the many studies cited earlier that 

found significantly higher MA in secondary school girls than boys (see Devine et al., 2012 

and Hill et al., 2016 for a review) 

When MA scores were inspected in the children with DD, the distributions also 

differed significantly for girls and boys. Post-hoc tests revealed there were more girls with 

high MA scores than boys. These results suggest that girls are more susceptible to negative 

affective reactions to mathematics alongside performance deficits in the subject. The 

implications of these findings with regard to girls' uptake of mathematics courses in higher 

education and participation in STEM careers are discussed in detail in the General 

Discussion. 

MA was significantly and negatively correlated with performance in boys and girls at 

both school levels. The strength of correlation did not differ between boys and girls, 

providing no support for Hypothesis 7 which predicted that the correlation would be stronger 

in secondary school girls than in secondary school boys. These results also contrasted with 

the results of our previous study, which found a stronger MA-performance relationship in 

girls than in boys (Devine et al., 2012). There are a few potential reasons why the current 

study may have revealed different results. Firstly, our previously published study measured 

performance on a mental arithmetic test, whereas the current study used a more holistic maths 

test, which assessed a wider range of mathematical skills. The mental arithmetic tests used in 

our previous study had a greater time pressure (20/25 problems in 5 min) than the MaLT tests 

(around 45 questions in 45 min); and probably also had a higher working memory load than 

the MaLT tests, as the children were not allowed to do working out on paper during the 

mental maths test, whereas the MaLT includes blank space on each question for working out. 
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Thus, the debilitating effects of MA may have influenced girls' mathematics performance 

more in the mental mathematics context whereas boys and girls were affected equally in the 

standardised test. However, given the results were correlational in nature, I cannot infer the 

direction of the relationship between MA and performance, as it is equally possible that MA 

was a consequence of prior poor performance, which manifested to a larger extent in girls 

than boys in the mental maths context than in the national curriculum test.  The previous 

study also included slightly older children (Year 10 pupils as well as pupils in Year 7 and 8). 

It is possible that the gender difference in the strength of the relationship between MA and 

performance only emerges later in schooling, however, it was not possible to test this 

conjecture with the age range of the current sample and the previously published findings 

were not reported separately by year level. 

6.5 Summary 

The current chapter largely corroborated the findings of previous chapters. Firstly, 

girls outperformed boys in reading. In contrast, mathematics performance was similar for 

girls and boys. Furthermore, there was no evidence of boys outperforming girls at the top end 

of the maths performance distribution. The current chapter confirmed that there was no 

gender difference in DD prevalence, yet found that girls reported higher levels of MA than 

boys and there were more girls than boys with comorbid DD and MA. The gender difference 

is in line with the many studies that have suggested that girls have higher levels of MA than 

boys and this study suggests that girls may be particularly susceptible to comorbid cognitive 

and emotional difficulties in maths.  These results have important implications for STEM 

subject uptake in girls and boys, which are discussed in the next chapter. 
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7. Chapter Seven. General Discussion 

The overarching aim of the current thesis was to explore the relationship between 

cognitive and emotional mathematics learning problems and the role of gender. To this end, 

this thesis systematically measured the prevalence of DD, MA, and the prevalence of overlap 

of these mathematics learning problems in large samples of primary and secondary school 

children. The current thesis also investigated gender differences in mathematics and reading 

performance, DD, and MA. The associations between mathematics performance, other 

cognitive skills, and MA, were investigated in a comprehensive longitudinal analysis of 

children with DD, typical maths performance and high mathematics abilities. The main 

findings are now discussed with regard to main research themes. 

7.1 Main findings 

7.1.1 DD definitions, prevalence, and gender ratio. 

Inspection of the prior DD research literature revealed a large amount of variability in 

the criteria used to define DD. Experimental studies have tended to use broader performance 

thresholds than prevalence studies. However, prevalence studies have also varied in their use 

of performance thresholds and the inclusion of control variables in DD diagnostic criteria. 

The current thesis screened for DD by measuring mathematics and reading performance in 

large samples of primary and secondary school children using standardised, national 

curriculum-based assessments. Chapter Two revealed a moderate positive correlation 

between mathematics and reading performance, but the correlation was stronger in the lower 

half of the distribution than in the upper half. This change in the strength of the correlation 

had important implications for the definition of DD, as a reading performance criterion was 

included in the DD definition.  

In Chapter Two, we systematically varied the reading and mathematics performance 

thresholds and found that DD prevalence was affected by the cut-off score used to define 

good reading performance due to the intercorrelation of maths and reading performance. In 

summary, even when shifting cut-off scores in reading and maths between <1 SD and <1.5 

SD below the mean, there was considerable variation in the number of children diagnosed 

with DD; the frequency of diagnosis ranged from 9–173 (0.89% - 17.23%) in a sample of 

1004 primary school children.  When both cut-offs were set at <1 SD below the mean, the 
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prevalence of DD was 5.6%. Interestingly, when using these same criteria to define DD in the 

data set analysed in Chapter Five (primary and secondary school children), DD prevalence 

was also 5.6% when averaged across the three year groups (Years 4, 7 and 8). However, there 

was some variability in prevalence by year group, which suggested that there were fewer 

children with DD in Year 7 than in Year 4 which may be due to differences between the Year 

7 sample and the sample used to standardise the MaLT. 

In both Chapter Three and Chapter Five, the girl-to-boy gender ratio of DD was 1:1. 

Chapter Three revealed this gender ratio was the same regardless of the absolute performance 

thresholds used to define DD. However when a discrepancy between maths and reading 

performance of 1 or 1.5 SD was used to define DD, significantly more girls than boys met the 

DD criteria (gender ratio was 1.4 - 2.3 girls to every boy). But it was noted that these criteria 

did not discriminate between children who had DD (poor maths performance compared to 

reading performance) and high readers (children with relatively high reading performance 

and average maths performance). Thus, different discrepancies were compared which 

specified at least average performance in reading and revealed that an equal number of girls 

and boys could be classified as having DD using these discrepancy criteria. 

7.1.2 DD Stability. 

Although Chapter Two illustrated alternative ways of defining DD using different 

maths and reading performance cut-offs, it did not resolve how DD should be defined.  As 

mathematics performance was measured using an age-standardised test for which 

performance scores were normally distributed, no natural cut-point existed with which to 

differentiate individuals with DD/ MLD from children with typical mathematics 

performance. Thus cut-offs were chosen arbitrarily which may have resulted in Type I errors 

if the performance threshold was too lenient (i.e., identifying false positive cases of DD) or 

Type II errors if the performance thresholds were too strict (i.e., missing true cases of DD) 

Several researchers have emphasised diagnosing DD using multiple measurements 

and different assessment instruments (Desoete & Roeyers, 2000; Mazzocco & Myers, 2003; 

Silver et al., 1999), which has also been recommended for clinical diagnoses of LDs 

(American Psychiatric Association, 2016). Measuring mathematics performance across 

several time points allows to capture the natural fluctuation of performance above and below 

performance cut-offs, and may help control for factors other than poor mathematics ability 

that could result in a child underperforming on any one particular assessment (e.g., situational 
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factors, test anxiety; Mazzocco & Myers, 2003; Mazzocco & Räsänen, 2013; Stock et al., 

2010).  

Indeed, this approach was used to identify a group of children with DD, described in 

Chapter Four, who participated in the detailed longitudinal assessment. DD was defined as 

maths below 1 SD the mean on two assessments of mathematics, and average performance in 

reading and IQ. This study found that 80% of the children who initially met the criteria for 

DD also met the criteria 20 months later (not taking into account participant attrition). This 

prevalence of persistent DD was higher than reported previously (Morgan et al., 2009; Shalev 

et al., 1998; 2005; Silver et al., 1999). The higher prevalence of persistent DD in the current 

study may be due to the use of several control criteria to ensure the specificity of the 

mathematical deficit at diagnosis: average reading performance across two tests, and average 

verbal and non-verbal IQ. Thus, using a large number of control variables to ensure 

specificity of the mathematical learning problem reliably identified a sample of children with 

a specific and persistent deficit. Another reason for the stability of DD diagnosis in the 

majority of the DD sample may be because two different tests of maths performance were 

used for DD diagnosis, and measurement took place at different time points and in different 

contexts (group vs. individual assessment). 

Two control participants and two participants with high maths performance also no 

longer met the criteria for categorisation into their group at the final time point. This 

movement into other achievement groups reflected the natural fluctuation of performance 

above and below performance cut-offs.  

7.1.3 Cognitive skills associated with maths performance. 

Chapter Four examined the stability of cognitive performance exhibited by children 

with DD, a control group of children with average performance across a range of cognitive 

skills, and a group of children who performed highly in mathematics. The link between maths 

performance and MA was also inspected in these children. Correlations between mathematics 

and other cognitive skills were measured over two or three time-points. In line with our 

previous research (Szűcs, et al., 2014), mathematics performance was correlated with VSWM 

at several time points and with spatial skills, but maths was also correlated with verbal WM, 

intelligence and reading. However, due to the small sample size, it was not possible to run 

regression analysis to inspect the relative contribution of these skills to mathematical 

performance. 
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The cognitive performance of the three achievement groups was also compared over 

time. In contrast to our previous work (Szűcs et al., 2013) the control children and children 

with DD had similar VSWM performance at Time 3, suggesting that the VSWM impairment 

exhibited in DD children at 8 years of age was not stable over time and was no longer shown 

almost two years later. As predicted, mathematically high performing students exhibited 

superior performance in VSWM and Spatial skills compared to the other two groups. These 

results suggest that mathematical excellence is associated with advantages in spatial 

processing compared to children with average or low performance in mathematics. However, 

it is important to remember that the children in this group also had superior general cognitive 

abilities and also had above average reading performance. Therefore, the elevated spatial 

orientation performance in the HM group compared to the other two groups likely partly 

reflected their higher general cognitive ability as well as superior spatial abilities. 

In line with previous research, MA was significantly higher in the DD group than in 

the control and high performing children and significant correlations emerged between MA 

measured at Time 3 and mathematics performance at every time point.  However, the sample 

analysed in Chapter Four included selected groups which were not representative of the 

normal population, thus the correlations between MA and maths performance were likely to 

have been stronger than they would have been in a sample including children across the 

entire mathematics performance distribution. Moreover, the DD children had a wide range of 

MA scores and did not have scores clustered at the upper end of the MA score range. Thus, 

these findings do not necessarily support the theory that MA is exclusively linked to 

numerical deficits, as not all children with DD had very high levels of MA, and in fact, some 

CON and HM children had MA levels on a par with some of the DD children. In order to 

systematically investigate the link between DD and MA, the prevalence of co-occurrence of 

DD and MA was inspected in large representative samples. 

7.1.4 MA definitions, prevalence, and gender differences. 

I found that scores on our modified version of the AMAS (mAMAS) were not 

normally distributed, in contrast to the original study published by Hopko et al. (2003) which 

reported that AMAS scores were normally distributed in an adult sample. The lack of 

normality was demonstrated in all year groups and in both genders in the current study. 

Importantly, none of the analyses conducted in the current study required normality of MA.  I 

defined high MA based on the MA score distribution of the sample rather than using a cut-off 
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such as 1 SD above the mean (as used by Ashcraft et al., 2007). I defined high MA as raw 

mAMAS scores at or above the 90th percentile for the sample (raw scores of 30 and above). 

11% of the sample had scores of 30 and above which is lower than the 17% of the population 

that would meet the criteria for high MA if scores were normally distributed and a cut-off of 

1 SD above the mean score was used (as suggested by Ashcraft et al., 2007). Because scores 

on the mAMAS were not normally distributed in this study, it was not appropriate to use a SD 

definition of high MA, and thus, our more conservative definition resulted in a lower 

prevalence estimate for high MA. 

It is possible that the positive skew of the MA distribution in our study in comparison 

to the study of Hopko et al (2003) is because our sample encompassed children rather than 

adults, however, recent studies did not find MA was normally distributed in adults and high 

school students either. Recent studies which used translated versions of the AMAS have 

shown that MA scores were not normally distributed in their samples (e.g., the Polish 

translation of the AMAS used by Cipora et al., 2015; and an Italian version used by Primi et 

al., 2014). Using the MARS30-brief (which is another shortened variation of the MARS, 

similar to the AMAS), Pletzer et al., (2016) found that neither the total score nor the 

individual items of the scale were normally distributed in adults.  Thus, it seems that MA 

scores are not normally distributed in some adult samples either. 

Girls’ and boys’ MA score distributions were significantly different at both the 

primary and secondary school level. The distribution comparisons revealed higher mean 

maths anxiety in girls than boys and more boys than girls had MA scores towards the lower 

end of the distribution whereas more girls than boys had moderate to high levels of anxiety. 

These findings support a few studies which found higher levels of MA in primary school 

aged girls compared to boys (Griggs et al., 2013; Hill et al., 2016; Krinzinger et al., 2012; 

Satake & Amato, 1995; Yüksel-Şahin, 2008) and the many studies that found significantly 

higher MA in girls than boys at the secondary school level (e.g., Baya'a, 1990; Chinn, 2009; 

Devine, et al., 2012; Frenzel, et al., 2007; Goetz, et al, 2013; Hill et al., 2016; Ho et al. 2000; 

Jain & Dowson, 2009; Khatoon & Mahmood, 2010; Kvedere, 2012; Luo et al., 2009; Primi, 

et al., 2014; Saigh & Khouri, 1983). 
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7.1.5 Relationship between DD and MA, and gender ratio. 

Chapter Five measured MA and DD in large samples of primary and secondary 

school children. Correlations between MA and mathematics performance were measured in 

the whole sample and in children with DD. Furthermore, the prevalence of comorbidity of 

DD and high MA was inspected. This study revealed that MA and mathematics performance 

were moderately negatively correlated (rs = -.30) in the whole sample. Interestingly, this 

correlation is about the same effect size as that reported in previous meta-analyses from the 

1990s (Hembree, 1990; Ma, 1999) suggesting that MA is a highly pertinent factor in 

mathematical development. The correlation between MA and performance was significant 

and negative for all three year groups, suggesting a link between MA and performance exists 

at the primary school level as well as in secondary students. Although this correlation has 

emerged in many studies involving secondary school students, it has only been shown in a 

few studies of primary school students previously (Hill et al., 2016 [primary girls only] 

Punaro & Reeve, 2012; Wu et al., 2012).  

In contrast, the correlation between MA and maths performance was not significant in 

children with DD. Inspection of the distribution of scores revealed that children with DD had 

a very similar range of MA levels as the typically developing children and the majority (78%) 

of children with DD did not have high MA. High MA appears to be twice as likely in 

children with DD (22% of DD children affected) than in children with mathematics 

performance at or above the average range (10%). On the one hand, this finding supports 

previous studies which have shown that DD/MLD children report higher levels of MA than 

children without MLD (Lai et al., 2015; Passolunghi, 2011; Wu et al., 2014). On the other 

hand, the majority of students with high MA across the sample had average or above average 

mathematics performance (77%), demonstrating that high MA is not exclusive to children 

with MLD or DD. In Chapter Five, DD was only defined from assessments taken at one time-

point, rather than defined using two different measurements of maths. Chapter Four did 

diagnose DD using two maths measurements and revealed that a much smaller proportion of 

the sample met the criteria for DD (partly due to the use of several control measures, as well 

as self-selection of the sample opting into the longitudinal study). Nonetheless, this suggests 

that if DD had been defined using additional measurements (for example if all the children in 

the sample analysed in Chapters Five and Six had taken part in follow-up assessments of 

mathematics and reading a few months later) a smaller sample of DD children would likely 

have been identified, suggesting even less overlap between high MA and persistent DD. 
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Unfortunately, without taking further measures it was not possible to test this claim. 

Importantly, in line with the finding of higher MA in girls compared to boys, Chapter Six 

revealed that more girls had comorbid DD and high MA than boys. These findings have 

important implications for the model proposed by Ashcraft et al. (2007), as well as for 

educational practice. These implications are discussed in section 7.2.  

7.1.6 Gender – integration of findings. 

Gender differences were inspected in the reading and mathematics performance of 

primary school children (Chapters Three and Six) and secondary school students (Chapter 

Six). Small gender differences (d = -.15 to -.23) emerged in reading performance at both 

school levels. More primary school girls than boys had high reading performance and average 

mathematics performance (Chapter Three). Furthermore, girls were overrepresented at the 

upper end of the performance distribution compared to boys, and boys were overrepresented 

at the lower end of the performance distribution at the primary school level (Chapter Three), 

however, there was only a trend for this pattern in the samples analysed in Chapter Six. 

Nonetheless, these findings are concordant with myriad studies which demonstrated that girls 

outperform boys in reading and other language abilities at the primary school level and 

beyond (e.g., Logan & Johnson, 2010, Stoet & Geary, 2013). 

While Chapter Three revealed no gender difference in mean mathematics 

performance of primary school girls and boys, nor in the distribution of mathematics scores, 

there were more boys than girls with high maths scores and slightly above average reading 

performance. Furthermore, a gender difference in mathematics performance did emerge in 

the primary school sample analysed in Chapter Six. The gender difference in mean maths 

performance in Chapter Six was of negligible effect size (d =.12) and analysis of the 

distribution showed that more girls than boys had standardised scores in the lower average 

range (scores in the 90-99 range). However, there was no evidence that boys were 

overrepresented at the upper end of the distribution at either school level in Chapter Six. The 

results are in agreement with recent UK research at the secondary school level which 

revealed that boys were not consistently overrepresented at the upper end of the maths 

performance distribution at GCSE level (Bramley et al., 2015). However, the current findings 

contrast with international findings (Stoet & Geary, 2013) and primary level research in the 

UK (DfE, 2014) showing a preponderance of boys at the upper end of the maths performance 

distribution.  
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The reasons why the current results differ from these other studies are not clear but 

may be due to differences in the age and size of the samples. The primary students analysed 

in this chapter were approximately two years younger than the sample reported in the DfE 

reports; likewise, the secondary students were about two years younger than the age at which 

students participate in the PISA assessments analysed in Stoet and Geary’s (2013) study. 

Furthermore, the samples analysed in both the DfE and PISA assessments were much larger: 

approximately 557,000 in the DfE report and approximately 510,000 (over 12,000 UK 

students) in the 2012 PISA assessment (OECD, 2015), thus, the larger sample sizes would 

have led to increased statistical power for detecting gender differences in mean maths 

performance and at the upper end of the distribution. 

Another reason for the differences between the current results and those of national 

and international assessments may be due to differences in the content of the maths 

assessments. Whereas the MaLT tests are linked to the national curriculum in England and 

Wales, the PISA mathematics assessments are not linked to any specific curriculum and are 

intended to measure general mathematical competencies and the application of mathematical 

skills and knowledge to real-life problems.  Thus, it is possible that girls may match (or 

outperform) boys when assessed on their knowledge of the national curriculum (e.g., in the 

MaLT tests here, and in GCSE performance: Bramley et al., 2015); but when asked to apply 

their mathematical knowledge to novel or real-life situations (i.e., in PISA maths) girls may 

lag behind boys. Indeed, OECD reported that there were some gender differences within 

different problem types included in the mathematics and science assessments. For example, 

they noted that "girls’ performance tends to be better in areas where they are required to 

apply mathematics concepts, facts, procedures and reasoning, and to recognise scientific 

issues. However, girls appear to underperform considerably when they are required to think 

like scientists – meaning when they are asked to formulate problems mathematically, 

interpret phenomena scientifically and predict changes, solve interactive problems, or 

understand and solve problems where the way of solving the problem is not immediately 

obvious and the problem evolves over time." (OECD, 2015, p 89.) However, these 

conclusions may paint girls' scientific and mathematical aptitude with too broad a brush; 

indeed, some researchers have inspected the OECD data more closely and found that girls 

outperformed boys on some questions which required scientific interpretation and 

mathematical formulation and noted that the specifics of what was being tested likely had an 

impact on whether gender differences emerged (Benton, 2015). Moreover, OECD themselves 
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noted that large gender differences in mathematical or scientific self-efficacy emerged for 

problems that included gender stereotypical content. Thus, girls’ problem-solving 

performance may have been influenced by their self-efficacy for particular problems in the 

PISA assessments.  

As well as mathematics performance being similar between girls and boys in the 

current studies, DD prevalence was also the same for boys and girls when absolute 

performance thresholds were used (in primary school children in Chapter Three and Chapter 

Six, and in secondary school children in Chapter Six).  

In contrast, Chapter Six revealed that MA distributions were significantly different in 

boys and girls at both school levels, indicating higher levels of MA in girls than boys, and an 

overrepresentation of boys at the lower end of the MA score distribution compared to girls, 

and the opposite pattern at the upper end of the performance distribution. Furthermore, there 

were more girls with comorbid DD and high MA than boys. 

The reasons why females frequently report higher MA than males are not well 

understood but several explanations have been offered. These explanations mainly involve 

the same biological, individual, social, and environmental factors or theories that I described 

in Chapter One with relation to the causes of MA and gender differences in mathematics.  

Biological links to MA have been suggested by the study of MA in monozygotic and 

same-sex dizygotic twins by Wang et al (2014) which revealed that around 40% of the 

variation in MA could be explained by genetic factors. Nonetheless, environmental and social 

factors play some part in the development of MA gender differences.   

For example, some have proposed that the different ways in which boys and girls are 

socialised during childhood may differentially affect the anxiety experienced by males and 

females in certain situations (Bander & Betz, 1981). This hypothesis, known as the sex-role 

socialisation hypothesis, argues that because mathematics was traditionally viewed as a male 

domain, girls may be socialised to think of themselves as mathematically incompetent and 

therefore girls may be more likely to avoid mathematics and experience more anxiety during 

mathematics than boys (ibid; Sherman, 1976). Maths-gender stereotypes do have a 

detrimental effect on girls performance (Appel, Kronberger, & Aronson, 2011; Flore & 

Wicherts, 2014) and other work has suggested that parents' and teachers' gender-stereotyped 
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beliefs influence children's attainment, and indirectly affect children's academic choices 

(Eccles, 1994; Gunderson, Ramirez, Levine et al., 2012).  

Females are also more likely to report higher levels of both TA and GA than males 

(Hembree, 1988; Wren & Benson, 2004; Vesga-Lopez et al., 2008); thus, it is possible that 

females’ general propensity for anxiety may contribute to girls' higher levels of MA. 

Although these other anxiety forms were not investigated in the analysis reported in this 

thesis, GA and TA were measured in Project 2 (i.e., the same sample investigated in Chapters 

Five and Six). Our analysis of the dataset including these other anxiety measures suggested 

that girls were more likely than boys to fall within a high GA profile (high GA compared to 

the other anxiety subtypes) or a high anxiety profile, for which levels of GA, TA and MA are 

all high (Carey, Devine, Hill & Szűcs, 2017a). In contrast, within the secondary school 

sample, boys were more likely than girls to fall within a  high academic anxiety profile, for 

which levels of TA and MA were high relative to GA levels. Thus, it appears that girls' 

general propensity towards anxiety may contribute to the girls' higher MA levels reported in 

the current studies. However, it is not clear from the analyses reported in Carey et al. (2017a) 

how these anxiety types develop with respect to one another. Longitudinal studies of the 

development of different anxiety forms would enable these relationships to be investigated 

more clearly. 

An alternative explanation is that the gender difference in MA may be due to a 

general response bias in females (Hunsley & Flessati, 1991). Research has shown that 

females/ feminine individuals are more likely to express feelings of anxiety or psychological 

distress than males/masculine individuals (Biaggio & Nielsen, 1976).  

Another view, the maths experiences hypothesis (Richardson & Woolfolk, 1980) 

claims that gender differences in MA disappear when individuals' mathematical background 

is taken into account (e.g., the amount of interaction with mathematics and the number of 

positive/negative experiences). Whilst this has been supported in one study with an adult 

sample (Brush, 1978), other studies have shown that even though maths experience is related 

to levels of MA, maths experience does not account for the gender difference in MA (Flessati 

& Jamieson 1991; Hunsley, 1988). 

More recently, Maloney and colleagues suggested that cognitive factors may explain 

gender differences in MA. They found that the relationship between gender and MA was 
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mediated by self-rated spatial abilities (Maloney et al., 2015). However, as in their other 

study mentioned in Chapter One (Ferguson, et al., 2015), spatial abilities were measured 

using a self-report questionnaire (the Object Spatial Imagery Questionnaire, OSIQ; 

Blajenkova, Kozhevnikov,& Motes, 2006) and, thus, reflected perceived aptitude and 

preference for spatial processing rather than actual spatial ability. Although the OSIQ has 

been shown to be correlated (fairly weakly) with several measures of spatial ability 

(Blajenkova et al, 2006), actual spatial abilities were not measured in the experiments of 

Maloney et al. Moreover, the relationship between perceived spatial abilities and MA could 

potentially be explained by gender-stereotyped beliefs about spatial abilities. Past research 

has shown a male advantage in some types of spatial abilities (e.g., mental rotation of 3D 

figures), although there are inconsistencies in spatial gender differences across different 

paradigms and age groups (reviewed in Halpern et al., 2007). Nonetheless, the stereotype of 

male superiority in spatial abilities is fairly ubiquitous (e.g., views such as males being better 

at reading maps or females being terrible at parallel parking are common). Thus, similar to 

maths gender stereotypes, females may hold the view that their spatial abilities are inferior to 

males (even if their individual abilities may not be poor) and may provide lower ratings in 

confidence and aptitude for spatial tasks. A relationship between MA and perceived spatial 

abilities is therefore not that surprising. Again, because this study assessed adults and did not 

follow the development of MA and spatial abilities (and perceptions of spatial abilities) 

longitudinally, it could not be determined whether spatial abilities or MA comes first in the 

causal chain. Moreover, measuring actual spatial abilities, rather than perceptions of spatial 

abilities would provide a clearer picture. 

Other variables that may account for the gender difference in MA are mathematics 

confidence/self-concept and mathematics self-efficacy. Several studies have shown that boys 

report greater confidence in mathematics and higher mathematics self-efficacy than girls 

(Pajares, 2005; Huang, 2013; Wigfield, Eccles, MacIver, Reuman, & Midgley, 1991). As 

mentioned previously, mathematics self-efficacy has been shown to be related to MA 

(Meece, et al., 1990; Jain & Dowson, 2009) thus, maths competency beliefs may indeed 

contribute to MA gender differences. 

7.2 Implications for Research and Education 

The results of the current thesis have important implications for research in 

mathematical learning problems and for educational practice. Here I focus on the 
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implications pertaining to the main themes of the thesis: defining DD and MA, gender 

differences in mathematics performance and affect, and the link between cognitive and 

emotional maths learning problems. 

7.2.1 Definitions of DD and MA. 

First, the literature review in Chapter One revealed that both experimental and 

prevalence studies of DD use wide-ranging criteria for DD diagnosis. As well as resulting in 

a wide range of prevalence estimates (between 1.3 and 13.8% in DD prevalence studies), the 

variable diagnostic criteria employed by DD researchers have likely resulted in conclusions 

being drawn about very different samples of children. For example, Desoete et al (2007) 

defined DD as mathematics performance below 2 SD below the mean, a discrepancy between 

maths performance and other skills, and impairments showing resistance to intervention. This 

is likely to have identified a more select group of children than for example, Badian’s (1983) 

study, which defined MLD only on the basis of maths performance below the 20th percentile. 

Therefore, the conclusions that each piece of research draws are specific to the sample and 

diagnostic criteria used in that study. The results of Chapter Two revealed that the cut-off 

criteria used to define good reading performance notably affected the prevalence of DD. 

Furthermore, Chapter Three illustrated that the way in which the control variable was used 

(absolute thresholds vs. discrepancy definition) also affected whether a gender difference in 

DD prevalence emerged. Moreover, Chapter Four revealed that measuring maths 

performance over several assessments and time points, and controlling for skills in other 

domains (such as reading and IQ), identified a sample of DD children who showed severe, 

specific, and persistent deficits in mathematical skills. These results suggest that control 

variables should be included in DD diagnosis and that mathematics should be measured over 

several time points and with different measurements. DD researchers should agree upon 

standardised diagnostic criteria for DD in order to synthesise the findings from different 

studies and to allow stronger, generalizable conclusions to be drawn. As DD is recognised as 

a heterogeneous learning disability (Kaufmann et al., 2013), agreeing upon a definition of DD 

would not necessarily require agreement on the theoretical origins of DD. However, a 

consensus on its definition and standardised diagnostic criteria for research would enable a 

clearer comparison of DD prevalence rates across different countries, but would also be 

relevant for the comparison of experimental studies testing causal theories of DD or the 

outcomes of intervention studies.  
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The current research also revealed that scores on the mAMAS were not normally 

distributed in primary and secondary students. This contrasts with the original study reported 

by Hopko et al (2003). In fact, MA researchers have rarely reported formal tests of normality. 

For example, the original MARS study by Richardson & Suinn (1972), and several studies by 

Ashcraft and colleagues (e.g., Ashcraft & Faust, 1994; Ashcraft & Kirk, 2001; Hopko, 

Ashcraft, Gute, Ruggiero, & Lewis, 1998; Kellogg, Hopko, & Ashcraft, 1999) present means, 

SDs or percentile ranks but these descriptive statistics do not demonstrate normality in and of 

themselves. Moreover, recent research using translated versions of the AMAS also revealed 

skewed distributions in adult and secondary school samples (Cipora et al., 2015; Pletzer et al., 

2016; Primi et al., 2014). Collectively, these results suggest that MA may not be normally 

distributed. Therefore it is not appropriate to use SD definitions to define high MA or to split 

the sample into low, medium and high MA groups as is often done in experimental studies. 

MA researchers need to present the distribution of scores in their work and conduct statistical 

tests of normality before employing SD cut-offs. Similar to DD research, it would also be 

helpful to integrate MA research findings across studies if researchers were able to come to a 

consensus on a definition for high MA. If a SD definition is preferred then only scales which 

result in a normal distribution of scores should be used. 

7.2.2 Gender differences in mathematics learning problems. 

The current data suggest that boys are not under- nor over-represented in DD, unlike 

several other learning disabilities for which there are a preponderance of boys (e.g., reading 

disability, dyslexia, ADHD and autistic spectrum disorders; Bauermeister, et al., 2007; Rutter 

et al., 2004; Scott et al., 2002). The lack of gender difference in DD in our study is 

problematic for some current genetic theories of DD which suggest a possible role for x-

linked genes. However, most of these proposals rely on studies of highly atypical individuals 

with Fragile X syndrome and Turner syndrome (Kemper et al., 1986; Gross-Tsur et al., 1993; 

Shalev, 2004). Moreover, large-scale twin research revealed no gender differences in the 

aetiology of MLD (Kovas, et al., 2007). Hence, gender-related observations from highly 

special populations are not likely to be valid for more typically developing children. 

Moreover, throughout this thesis, there was little evidence for gender differences in 

mathematics learning, with the exception of higher levels of MA in girls than boys. These 

findings accord with our previously published research involving adolescents (Devine et al., 

2012) and primary level children (Hill et al., 2016). These findings suggest that because girls 

performed on a par with boys, despite reporting greater anxiety towards mathematics, girls 
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may have had the potential to outperform boys in mathematics, but their performance may 

have been attenuated by anxiety (Devine et al., 2012). However, this conclusion is 

speculative and further research is needed to test whether a gender difference emerges 

(favouring girls) if MA is treated.   

Importantly, because MA has been linked to avoidance of mathematics, as well as 

drop out from elective mathematics classes (Ashcraft, 2002; Ma, 1999), MA could plausibly 

contribute to the large gender disparities seen in the uptake of STEM professions (OECD, 

2014). Firstly, higher levels of MA in girls could lead to more girls dropping out of 

mathematics courses after compulsory education. Secondly, the debilitating effect of MA 

could also explain the gender gaps seen in performance at the upper end of the mathematics 

distribution in the students who take mathematics beyond GCSE level (Smithers, 2014). That 

is, MA may not only cause many high-performing girls to choose other academic subjects 

and career paths, it may also impair the performance of the girls who do continue with the 

subject.  It is important to note, however, that MA is likely to be one of many factors 

contributing to the lack of females in most STEM fields (Eccles, 1994), including 

mathematics ability beliefs (Perez-Felkner, Nix & Thomas, 2017). 

Even if girls and boys appear to be performing similarly in mathematics, the 

development of negative emotional reactions to mathematics warrants attention in the 

classroom. Educators need to be aware of the ways in which girls and boys differ in terms of 

the motivational, cognitive and emotional factors associated with learning mathematics. 

Moreover, teachers and parents need to be especially aware of how their own beliefs and 

emotions regarding mathematics can differentially influence the attitudes, performance, and 

career choices of girls and boys (Beilock, et al, 2010 Eccles, 1994; Gunderson, Ramirez, 

Levine et al., 2012).  

 

7.2.3 The link between cognitive and emotional mathematics learning problems. 

7.2.3.1 Model of MA development. 

The current work allowed me to test some of the predictions of the MA model 

proposed by Ashcraft et al (2007) described in 1.2.4. As MA and mathematics performance 

were measured in the longitudinally followed sample in Chapter Four and in the large 

representative samples of primary and secondary school children in Chapter Five, I could 

examine whether MA was closely linked to maths performance deficits, whether some 
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children had maths performance deficits in the absence of MA, and whether children with 

adequate mathematical skills were largely unaffected by MA as predicted by the model.  

In the current study, children with adequate (at least average) mathematics 

performance had lower levels of MA than children with DD (shown in Chapter Four), and 

were more likely than children with average performance to have high MA (Chapter Five 

revealed that 22% of DD with high MA compared to 11% of typically achieving children). 

These results suggest that children with adequate mathematics performance were less 

affected by MA than children with DD. These findings more or less accord with Ashcraft et 

al's predictions that 1) adequate performance would be related to adequate skill and lower 

levels of anxiety and 2) children with deficient skills would be more likely to experience MA. 

However, other findings in this thesis suggest that this model oversimplifies the relationships 

between mathematical aptitude, MA, and maths performance deficits. Importantly, a 

dissociation between MA and maths performance deficits was evident in Chapter Five, which 

is not apparent in Ashcraft et al's MA model. That is, in the current work, only one-fifth of 

the children with DD actually had high MA as well, and, across the whole sample, the 

majority of the children with high MA, in fact, had average or above average performance in 

mathematics, suggesting that high MA is common in the absence of mathematics 

performance deficits. In Figure 28 I depict an alternative to Ashcraft et al's MA model, 

proposing separate paths for children with different skill levels, and showing several potential 

pathways to mathematics performance deficits and avoidance. This model is described citing 

evidence from the current thesis for the existence of these pathways. 

Firstly, for simplicity and to relate the model to the current results, unless otherwise 

stated, the MA variable in Figure 28 refers to high levels of MA rather than moderate or low 

levels. Furthermore, this modified model makes assumptions about the underlying ability of 

the children based on their performance on the measures taken in the current studies. This 

model also assumes that MA is the result of cognitive biases, in accord with Ashcraft et al’s 

(1997) model. 
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Figure 28. A theoretical model of MA development showing different paths to MA and 

maths performance deficits. Pathways of children with average and high maths performance 

are also included in this model.  
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 In Figure 28 the yellow line shows the likely pathway of children with adequate 

(average) mathematics performance, for whom a positive learning history, adequate 

motivation levels and WM skills, but no MA, leads to adequate mastery and performance. 

This pathway is supported by the finding that nine out of ten control children in Chapter Four 

(selected for a control group on the basis of average performance across a range of skills) had 

low levels of MA. Furthermore, in Chapter Five, a large proportion of children with average 

maths performance had MA below the high MA threshold (this proportion was not reported 

in Chapter Five, but the percentage of average performers in mathematics with MA scores 

below 30 was 88% [984/1118] of average performing students). The WM findings from 

Chapter Four (and the previously published findings in Szűcs et al., 2013) also support the 

conjecture that children with average mathematics performance have average WM skills, as 

predicted by this model. 

 Similarly, the green line shows the path of children with high mathematical skill, 

WM and motivation, and no MA, leading to excellent mastery of mathematics and 

performance. This pathway is supported by the fact that the majority of HM children in 

Chapter Four had MA scores at the lower end of the distribution, as did the majority of high-

performing children in Chapter Five (this proportion was not reported in Chapter Five, but 

the percentage of high performers in mathematics with MA lower than the high MA threshold 

was 96% [334/347] of high performing students). Furthermore, Chapter Four revealed that 

the HM children had superior WM and general cognitive abilities. It is also likely that these 

children had high levels of motivation, as the majority of the HM children showed 

consistently high performance across the longitudinal measures. Importantly, although this 

model does not link average and high mathematics performance to high MA, this does not 

preclude the development of MA and subsequent performance deficits in some children with 

average or high maths abilities. Indeed, inspection of Figure 17 in Chapter Four shows that 

one HM and one CON child had moderately higher MA than the rest of their group. 

Interestingly, these two children had fairly variable performance over the longitudinal 

mathematics measures and they no longer met the performance criteria for their group at 

Time 3 (that is, the CON child fell within the DD performance range and the HM child fell 

within the CON performance range at Time 3). Thus, it is possible that a reciprocal 

relationship between MA and performance existed in these two children, that is, their 
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performance might have been influenced by their moderate levels of MA, and/or an 

awareness of their variable performance might have led to higher than expected levels of MA 

in these children. Similarly, the results of Chapter Five reveal that 134 children with average 

performance and 13 children with high maths performance also had high levels of MA and 

many more had moderate levels of MA (see Figure 20B in Chapter Five). Although I cannot 

test the direction of these relationships, these results provide evidence for links between MA 

and performance in a minority of the average and high performing children. 

The solid red line depicts the children with inadequate skill, working memory and/or 

motivation (but who do not have high MA) and who have mathematics performance deficits 

and a tendency to avoid mathematics. This is path would represent DD children who do not 

have high MA, and is supported by finding that 70% of the DD children in Chapter Four and 

78% of DD children in Chapter Five did not report high MA. Chapter Four (and the 

previously published findings of Szűcs et al., 2013) indicated a link between lower maths 

performance and lower working memory performance (however, WM deficits may not be 

evident in ALL children with inadequate mathematics skills: Chapter Four suggested that the 

average WM performance of DD and control children was comparable). An equal proportion 

of girls and boys make up children in this path (evidenced by the equal gender ratio of DD 

reported in Chapter Three and Chapter Six). Again, this model does not intend to preclude the 

development of MA in children with DD, as maths performance deficits may lead to MA at 

some stage or under certain circumstances in DD children, thus a dashed line links maths 

performance deficits and avoidance and high MA. 

The purple line depicts the children with adequate (at least average) mathematical 

skill, WM and motivation, who do report high levels of MA, but who also have adequate 

mathematical mastery and performance. Importantly, these children are likely to have 

cognitive biases which led to the development of MA. This path is supported by finding that, 

in Chapter Five, 10% of the children with at least average mathematics performance also 

reported high levels of MA. As girls had higher maths anxiety overall than boys, more girls 

make up this group than boys (indeed 62% of the children with at least average maths 

performance and high MA in Chapter Five were girls). Although these children did not show 

performance deficits on the maths measures in the current study, in line with Ashcraft et al's 

predictions, I believe that this group would be at a greater risk of developing mathematics 

deficits in the future due to the potential for MA to lead to maths avoidance or interference 
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with performance during mathematical tasks. Thus, a dashed line links MA and maths 

performance deficits and avoidance in this group. 

Finally, the solid orange line depicts the pathway of children with comorbid DD and 

high MA. These children have inadequate mathematical skills, WM and motivation, and have 

negative cognitive biases which have jointly led to the development of high MA, resulting in 

mathematics performance deficits (and potential avoidance). These children could be referred 

to as skills deficit anxious. A dashed line depicts the likely reciprocal relation between MA 

and maths performance deficits in this group. Evidence for this path is supported by finding 

that 11% of children with DD in Chapter Five also reported high MA and that lower 

mathematics performance was associated with lower WM performance (Chapter Four and the 

findings of Szűcs et al., 2013). Furthermore, girls were overrepresented in this group 

compared to boys.  However, I have mapped out an alternative path for these children marked 

with the dotted line passing through the adequate skills box. This pathway accounts for the 

possibility that my assumption about the underlying ability of the children with DD and MA 

is incorrect, and that some children with co-occurring mathematical deficits and MA may 

actually have adequate mathematical skills (or may have had adequate skills in the past). 

However, this group’s cognitive biases and MA led them to perform more poorly at the time 

of assessment either due to maths avoidance (prior to or during the test) or due to cognitive 

interference during the test. While this scenario is possible in some of the children in Chapter 

Five, it is less likely to have been the case in the longitudinally followed children with DD in 

Chapter Four, as these children's mathematical deficits were confirmed across several 

measures and time points, thus, we know they had persistent skill deficits. However, 

mathematics performance was measured at just one time-point in Chapter Five, and I did not 

follow the development of MA or mathematical skills in these children, thus, I cannot know 

whether MA or performance deficits occurred first in the causal chain. Nonetheless, the two 

orange pathways cover both possibilities, in line with a dynamic systems model (Thelen & 

Smith, 1994). 

In summary, this model illustrates that the development of MA and associated 

performance deficits can take many routes. Furthermore, although MA and performance are 

likely to relate reciprocally (e.g., Carey et al., 2016), the results of this thesis have revealed 

that MA is not synonymous with poor performance in mathematics, thus different paths are 

necessary to depict this dissociation.  
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7.2.3.2. Implications for the classroom. 

In contrast to the idea that MA may simply equate to low maths performance, the 

results of the current study suggested that many children with DD did not have high levels of 

MA. It is not clear why many children with DD are not highly anxious about mathematics, 

but it may be related to expectations or the value attached to mathematics (Eccles, 1994).That 

is, MA may be related to children's worries about not meeting their own or their socialisers' 

expectations (Ho et al., 2000; Wigfield & Meece, 1988). Children with DD may not have 

high expectations of themselves with regard to their mathematics performance (or their 

socialisers may not have high expectations of them), therefore, some DD children may not 

develop anxiety towards mathematics. Similarly, mathematics may not be viewed as 

important by children with DD (and/or their parents/peers), thus, they may not get anxious 

about poor performance in the subject (Wigfield & Meece, 1988).  However, an alternative 

explanation could be that some children with DD may not possess the metacognitive skills 

necessary to accurately evaluate their mathematics abilities and consequently, they may not 

perceive mathematics as anxiety inducing. Past research has revealed metacognitive deficits 

in MLD. More specifically, younger children with MLD are less accurate than typically 

achieving children in evaluating and predicting their mathematical performance (Garrett, 

Mazzocco, & Baker, 2007) and adolescents with learning disabilities are more likely to 

overestimate their mathematics performance compared to typically achieving children 

(Heath, Roberts, & Toste, 2013). Therefore it is possible that the link between MA and 

mathematics performance may be moderated by DD children’s self-perceptions of their 

mathematics performance/ability. However, children’s self-perceptions were not measured in 

the current work, so I could not test these relationships. Yet, research has suggested that the 

relationship between mathematics self-ratings and performance may develop prior to the 

relationship between MA and performance in primary school children (Dowker, Bennett & 

Smith, 2012); thus, maths self-ratings are important to consider. Further research is needed to 

investigate the link between self-perceptions of mathematics ability and MA in children with 

DD. 

However, the current work revealed that approximately one-fifth of the children with 

DD report high levels of MA. As children’s mathematics performance is likely to be 

influenced by anxiety during assessment (Ashcraft et al., 2007; Ashcraft & Ridley, 2005), 

there is the possibility that highly maths anxious children may have the potential to improve 

their mathematics performance, if they are able to combat their MA. Indeed, research has 



177 

 

shown that interventions which specifically address MA (rather than mathematics 

knowledge) have resulted in mathematics performance benefits (Hembree, 1990; Ramirez & 

Beilock, 2011). For example, Hembree (1990) reported that interventions which focussed on 

systematic desensitisation or cognitive restructuring resulted in improvements in mathematics 

performance. More recently, Ramirez and Beilock also found performance benefits when 

participants wrote about their anxieties before an examination. The authors theorised that 

writing about one's anxieties before a test reduces the need to worry during the test, which 

decreases rumination and frees up working memory resources, thereby improving 

performance on the test. Mindfulness is thought to function similarly, in that mindful 

individuals are more able to attend to a test because they devote less attention and WM 

resources to focusing on negative anxieties (Bellinger, DeCaro & Ralston, 2015). Although 

mindfulness training has not been trialled as an intervention for MA yet, Bellinger et al 

(2015) found that dispositional mindfulness indirectly improved arithmetic performance both 

in the classroom and in a high stakes test simulation, via the reduction of state anxiety during 

the assessments. The results of intervention studies suggest that test performance can be 

improved by reductions in maths and/or test anxiety, thus, is it possible that some of the DD 

children with comorbid high MA may be able to improve their performance by overcoming 

or reducing MA, to the point that they may no longer meet DD diagnostic criteria. Therefore, 

identifying MA in the classroom is essential so that children can be equipped with 

appropriate coping strategies for dealing with anxious reactions towards mathematics, 

particularly around assessment. 

 The current findings challenge the suggestion that deficits in basic numerical 

processing underlie MA (e.g., Maloney et al., 2010; 2011), as here the current results suggest 

that although there is some degree of overlap between them, MA and numerical deficits 

(characteristic of DD) are dissociable and are likely to require different types of intervention. 

Children affected by MA, or co-occurring MA and DD are likely to benefit from the types of 

interventions outlined above, rather than interventions focusing on the improvement of 

mathematical skills. Indeed, Hembree’s (1990) meta-analysis of MA studies revealed that 

interventions for MA that focus on the cognitive aspects of anxiety were more effective than 

interventions that attempted to reduce MA through maths tuition or curricular changes. 

Moreover, the abovementioned interventions which focussed on relieving the cognitive 

symptoms of anxiety, particularly those which are purported to free up WM resources, have 

shown promising results for the relief of anxiety and improvement of performance. On the 
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other hand, children with DD who do not have negative emotional reactions towards 

mathematics are likely to benefit from interventions that target the development of 

mathematical skills, working memory and visuo-spatial processing. Indeed, several 

intervention studies targeting these skills have shown improvements in mathematics (e.g., 

Holmes & Dowker, 2013; Holmes, Gathercole & Dunning, 2009; Wißmann, Heine, Handl, & 

Jacobs, 2013). Nonetheless, children with DD are also likely to benefit from the 

encouragement of positive attitudes towards mathematics, which may, for example, foster 

engagement with maths, or encourage children to persist with maths in spite of difficulty with 

the subject and may even mitigate the development of anxiety towards maths in the future. 

However, it should be noted that the majority of the studies investigating the abovementioned 

interventions (for MA and cognitive skills) have measured the immediate or short-term 

effects of the interventions for alleviating anxiety and improving mathematics performance; 

thus, it remains to be seen whether these interventions also show long-term effects. Further 

research is needed to investigate whether a discrete course of intervention is sufficient or 

whether on-going intervention is necessary to see improvement in anxiety symptoms and 

mathematics performance across the school years.  

 Although it is likely that MA is triggered by past poor performance in some cases 

(for example, potentially in some children with DD and high MA), the current research shows 

that a much greater proportion of children with high MA have typical mathematical 

performance. This is also apparent in the observation that the most conspicuous feature of the 

correlation between MA and mathematics performance seems to be a drop in the number of 

mathematically high achieving children rather than an increase in the number of very poor 

achievers. These findings suggest that many children who are performing adequately in 

maths may, in fact, be struggling with MA. These children may “slip under the radar” if 

teachers and parents/caregivers rely on mathematics achievement as a measure of children’s 

mathematical wellbeing. Competent mathematicians with high MA still run the risk of 

developing further negative attitudes towards mathematics, potentially leading to maths 

avoidance and drop-out from mathematics classes in the future (Ashcraft, 2002; Hembree, 

1990; Ma, 1999). Evidence also suggests that the MA-performance association may function 

reciprocally or as a vicious circle (Carey et al., 2016, Cargnelutti et al., 2017). Thus, even if 

students with high MA are performing within the average range at one time-point, MA may 

lead to poorer educational outcomes in the future. The current findings, therefore, emphasise 

the importance of identifying MA in children of all ability levels and I suggest that 
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attendance to children’s affective reactions during mathematics learning should be considered 

an essential element of educational provision. 

7.3 Research limitations 

There are several limitations to the studies included in this thesis, several of which 

have already been mentioned in the discussions of Chapters Two to Six. Here I will address 

the limitations of the research as a whole. Firstly, although the sample sizes in the screening 

datasets included 839-1004 students, caution must be exercised when making claims about 

the general population based on studies with samples of this size. It is possible that the 

prevalence estimates (for DD and comorbid DD and MA), and patterns of gender differences, 

would differ in larger samples, or in different age groups. Although we aimed for nationally-

representative samples of students at both school levels, the samples were still dependent on 

schools that were located within a reasonable travel radius of Cambridge opting into the 

projects. Consequently, the schools involved in both projects were mainly located in the East 

of England. Indeed the DfE reported some regional variability in performance on the national 

curriculum assessments at Key Stage 2 and at GCSE level in England and Wales (DfE, 2014; 

DfE, 2016), thus, the prevalence of DD, comorbid DD and MA, and gender differences found 

in the current studies may not extend to other regions of the UK.  

As mentioned previously, another limitation of the testing procedure employed during 

the screening phase of both Project 1 and Project 2 was that we could not measure other skills 

such as IQ, spelling abilities, or phonological decoding, due to time and cost constraints 

related to the large sample sizes. This meant that DD was defined based on only one control 

measure (reading). However, as noted earlier, most of the previous DD demographic studies 

used only one control variable and only one study included more than one control variable 

(Lewis et al., 1994), yet some did not include a control measure at all.  It is likely that if we 

had included an additional control measure, such as IQ, or a different control measure, such 

as decoding ability, in our DD diagnostic criteria at screening, the prevalence of DD may 

have differed (Lewis et al., 1994). Similarly, the proportion of children with persistent DD 

was defined on the basis of reading and mathematics performance at Time 3. If an additional 

control variable such as IQ was also taken into account at Time 3, then the prevalence of 

persistent DD might have been lower than the 66/80% estimated in Chapter Four. 

Another limitation of the DD prevalence analysis (Chapters Two and Three) is that 

there was no longitudinal follow-up of the whole screening sample, which would have 
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enabled an analysis of DD stability across the whole sample (similar to the analysis of 

Mazzocco and Myers, 2003) rather than the analysis of DD stability within a smaller, selected 

sample. Again, this was due to time and cost restraints of the project. Similarly, it was 

unfortunate that MA was not measured longitudinally in the sample analysed in Chapter 

Four. It was originally planned that MA would be measured during the screening phase of 

Project 1, however some schools objected to us introducing the concept of anxiety towards 

mathematics and testing situations at such a young age (the majority of the children in Project 

1 were in Year 3 at the outset of the study and had not participated in many tests by that age) 

thus, the MA measures were dropped from this phase of Project 1. 

Although the current results showed that MA is not always associated with maths 

learning problems, the pathways outlined in the theoretical model shown in Figure 28 are 

purely speculative. The study described in Chapter Five was not longitudinal, thus I could not 

determine the direction of the relationship between mathematics performance deficits and 

MA in the children with comorbid maths problems, nor was I able to make any claims about 

development with the cross-sectional design. Similarly, the current work did not measure 

other variables which potentially cause or interact with MA, nor did it assess other variables 

influencing the development of gender differences in mathematics. Such variables include 

liking of mathematics, ability self-ratings, self-efficacy, confidence and value students attach 

to mathematics (Dowker et al., 2012; Eccles, 1994; Wigfield & Meece, 1988).   Longitudinal 

studies would enable these relationships to be tested, however, such a design was outside of 

the scope of the current work. 

7.4 Directions for future research 

The results of the current thesis suggest several lines of future research, the most 

obvious being the longitudinal investigation of the development of mathematical skills and 

anxiety as mentioned above. If a large sample of children was followed, techniques such as 

Structural Equation Modeling (SEM) could be used to investigate likely causal pathways 

between variables. SEM has previously proven to be useful in elucidating the likely causal 

pathways between MA, performance, gender, and other factors, such as perception of 

controllability, in child samples (Zirk-Sadowski et al., 2014). Moreover, if the development 

of mathematical skills and attitudes was followed from a relatively young age up until GCSE 

level, then it would be possible to see the development and nature of MA at different ages 
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and in response to experiences such as the transition from primary to secondary school or 

high-stakes examinations.  

As mentioned in the discussion of Chapter Four, mathematics was assessed as a single 

entity, which was the case for all of the studies described in the current thesis. Investigating 

mathematics as a constellation of abilities rather than a single ability would enable many 

other research questions to be investigated. For example, possible avenues of research include 

investigating whether differential relationships exist between MA and different mathematical 

abilities (Dowker, 2005). Importantly, children with mathematical difficulties have shown 

strengths and weaknesses in different mathematical skills (Russell & Ginsburg, 1984). For 

example, fourth-grade children with MD have been shown to perform similarly to age-

matched control children on some tasks assessing estimation and base-ten knowledge, yet 

these MD children were impaired in some arithmetic operations, retrieval of arithmetic facts 

and tasks involving larger numbers (ibid). Similarly, research comparing the mathematics 

performance of children with and without phonological difficulties has revealed that 

phonological difficulties are associated with impairments in some formal mathematical 

abilities, but are not as likely to be associated with impairments in informal mathematical 

skills (Jordan, Wylie & Mulhern, 2010). As mentioned in the discussion of Chapter Two, 

measures of phonological decoding were not administered in the current studies, thus, other 

important areas of investigation include measuring the relationships between different 

mathematical abilities and MA in children with different MD subtypes (including those with 

comorbid phonological processing or reading difficulties).  

 Qualitative research in MA (and MLD) is relatively lacking, however qualitative 

work is important as it may reveal more detailed information about the relationship between 

MA and performance which may not be apparent in path analysis methods like SEM. For 

example, it is possible that some individuals may develop MA in response to past 

performance deficits and some may perform poorly in mathematics due to MA interference, 

whereas other children may develop MA and maths performance deficits at the same time. 

When additional factors are taken into account, the potential causal pathways would likely 

become even more complex (Ahmed et al., 2012; Jain & Dowson, 2009). Therefore, 

complementing quantitative measures with qualitative ones such as interviews or classroom 

observations, and conducting quantitative analysis at the level of the individual may allow for 

a more detailed understanding of individual differences in the MA-performance relationship, 
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the origins of MA, and potential mediating variables. The current results suggested that some 

children did not experience anxiety about their mathematics problems, thus, evaluation of 

children's self-competence beliefs (e.g., self-concept, self-efficacy) may clarify why this is 

the case. Indeed the work of Eccles and colleagues has shown that a child's self-concept of 

ability and their interpretations of their achievement- related experiences are important 

factors in the development of a child's subjective task value, expectation of success and 

achievement-related choices (Eccles, 1994). Thus the relation of these factors to MA is of 

interest. Recent qualitative research has suggested that MA develops in response to early 

classroom experiences, manifesting as numeracy apprehension in the early school years 

(Petronzi, 2016). Observations from teachers and parents collected in that study suggest that 

the current testing culture in the UK may be contributing to the onset of the development of 

numeracy apprehension in young children, among other factors (ibid). Indeed, one of the 

aims of the linked funded project (Project 2) was to investigate the potential causal origins of 

MA by conducting qualitative interviews in selected samples of children from the screening 

sample in Chapters Five and Six; however, at the time of writing this thesis, the qualitative 

analysis was still in progress and the findings were yet to be published. 

As mentioned previously, DD has been linked to WM deficits, particularly in VSWM 

(e.g., Bull et al., 2008; Geary, 2004; Hitch & McAuley; 1991; Keeler & Swanson, 2001; 

Passolunghi & Siegel, 2001, 2004). Similarly, MA is thought to interfere with WM processes 

during mathematics performance (Ashcraft & Krause, 2007; Ashcraft, Krause, & Hopko, 

2007). Prior research has investigated WM deficits in children with MA and DD and revealed 

a dissociation in the type of WM deficit present in each group (Mammarella, Hill, Devine, 

Caviola, & Szűcs, 2015). Compared to typically developing children, DD children 

specifically showed VSWM deficits, whereas children with MA showed verbal WM deficits. 

A closer analysis of children with DD who also had high MA revealed that this group showed 

poorer verbal and VSWM performance than typically developing children. However, this 

analysis was conducted on fairly small samples (N = 11 in the group with DD and MA). 

Further research could investigate WM deficits in a larger group of children with comorbid 

DD and MA and also investigate whether WM training, in combination with interventions 

that focus on the treatment of the anxiety (such as the ones described earlier in section 

7.2.3.3) improves the mathematics performance of children with comorbid DD and MA.  
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MA is probably more likely to be alleviated if it is identified early before negative 

attitudes have begun to influence performance or set off a vicious cycle. Although several 

scales have been developed for use with young children, there is a lack of research 

investigating the utility of such measures for the identification of MA in the classroom so that 

teachers can begin to address it. Future work could investigate how teachers could use these 

scales and whether they provide more information than teachers’ own observations of the 

children’s behaviours and attitudes. It is possible that self-report scales may reveal underlying 

attitudes that teachers are not normally privy to, however, teachers’ observations are also 

likely to pick up on more subtle behavioural manifestations of anxiety in young children that 

may not be covered by self-report scales, for example, off-task behaviours and other maths 

avoidance strategies. Thus these diagnostic approaches are likely to complement one another. 

7.5 Conclusions 

The primary goal of this thesis was to examine the link between cognitive and 

emotional mathematics learning problems. The work in this thesis is unique in that it is the 

first study to systematically measure the relation between mathematics learning problems and 

MA in large samples of school children. The secondary goal of the current thesis was to 

investigate gender differences in DD and MA. 

Systematic variation of maths and reading performance thresholds revealed that the 

prevalence of DD ranged between 0.89-17.23% depending on the mathematics performance 

threshold used. We used an operational definition of DD, setting reading and maths 

performance thresholds at 1 SD below the mean, and found that 5.6% of children were 

affected. This prevalence rate was confirmed in separate samples and suggests that 

approximately 6% of UK school children are affected by DD. Longitudinal follow-up of a 

smaller sample of children with DD showed that including additional measures of 

mathematics, reading and IQ in the diagnostic criteria identified a group of children with 

severe and persistent DD. Approximately 80% of these children met the criteria for DD 

approximately two years after diagnosis. In the context of the wider DD literature, these 

results suggest that researchers should come to an agreement about the diagnostic criteria for 

DD in order to ensure that they are studying similar samples so that findings can be integrated 

across studies. Agreeing upon a definition of DD would not necessarily require agreement on 

the theoretical origins of DD, as DD could merely be defined operationally, as we did in the 
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current work. These results also suggest that DD should be measured using several 

assessments of mathematics as well as multiple control measures.  

MA scores were not normally distributed, thus, high MA was defined as scores at or 

above the 90th percentile for the sample, rather than using SD definitions as other researchers 

have done in previous studies. The finding that MA scores were not normally distributed 

coincides with several recent studies showing that MA is not normally distributed in adults 

and secondary school samples. These results suggest that MA may not, in fact, be normally 

distributed, at least using the scales currently used in the field, thus, SD definitions should not 

be used to define discrete groups of children with differing MA levels. 

MA levels were higher in children with DD than in children with average or above 

average mathematics performance; however, these results were restricted to small, selected 

samples. The prevalence of co-occurrence of DD and high maths anxiety was estimated in a 

larger sample using the abovementioned definitions. Relatively few children with DD had 

high maths anxiety and the majority of students with high maths anxiety, in fact, had 

mathematics performance within or above the average range, suggesting that MA is not just 

restricted to children with poor maths performance. Moreover, these results suggest several 

different potential pathways to MA and maths performance deficits. Furthermore, because 

cognitive and emotional mathematics problems are dissociable, they likely require different 

types of intervention. Whereas DD children would likely benefit from interventions which 

focus on the improvement of mathematical skills, WM or spatial skills, previous research has 

suggested that children with MA may benefit from interventions that focus on alleviating 

anxiety rather than targeting cognitive skills. Future studies could further test this possibility. 

Throughout this thesis, there was little evidence of gender differences in mathematics 

performance at the primary or secondary school level. Moreover, when absolute performance 

thresholds were used to define DD, there was no gender difference in DD prevalence. These 

results suggest that gender differences in maths performance are non-existent at the primary 

and early secondary school level. However at both school levels, girls had higher MA than 

boys, and more girls were affected by co-occurring DD and MA than were boys. Higher MA 

in girls may be a potential explanation for the underrepresentation of females in careers 

involving mathematics. 
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Collectively, the results of the current thesis contribute to the existing body of 

mathematical cognition research suggesting a complex interaction between the motivational, 

cognitive and emotional factors associated with learning mathematics. To ensure 

mathematical well-being in all children, educators must pay attention to all facets of 

mathematics learning. 
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Appendix A. Consent form for Project 1. 

Department of Experimental 
Psychology 
Craik Marshall Building, Downing Street, Cambridge, CB2 3EB 

 

 
 

[Date] 
 
Dear Parent/ Guardian, 
 
[School name] has given us permission to write to you to ask whether you would permit your 
child to be included in a research project examining mathematics skills and developmental 
dyscalculia. Children with developmental dyscalculia lag behind their peers in mathematics 
performance but otherwise their performance (general cognitive ability, reading, writing) is 
typical for their age. In particular, the project will examine which current theory of 
developmental dyscalculia has more explanatory power. We hope that the outcomes of the 
project will help us to design prevention and intervention methods for children and adults 
with severe problems in mathematics. 
 
We will be testing children over the whole range of mathematical abilities in the hope of 
identifying the specific areas in which mathematical difficulties might arise. However, 
because very little is currently known about developmental dyscalculia and there is no agreed 
definition, we cannot make any kind of diagnosis with regard to development or attainment 
based on your child’s performance in our study. We can however provide you with your 
child’s raw scores and details of who to contact should you wish to discuss your child’s 
progress further. 
 
During this phase of the project each participating child will be given a set of tasks involving 
solving a mathematics test, a reading test, an attention and memory test, a test of general 
cognitive ability, and some additional computerized mathematics tasks where we measure 
your child’s reaction times. It is expected that all tasks can be completed in 3 – 4 short 
sessions of approximately 25 – 40 minutes, to be given at convenient times during the school 
day. All tasks will be administered by Amy Devine and Alison Nobes.  If you prefer we can 
also arrange for your child to complete the tasks as a home visit or at our lab at the 
Department of Experimental Psychology in Cambridge during the holidays or weekends.  
 
Ideally we would like to follow the development of these skills over time, so we would like to 
come back in future years to document your child’s progress.  At a later stage we would also 
like to measure the brain’s activity while solving simple arithmetic-related tasks in some of 
the participating children.  You may be sent a separate letter about these brain measurements 
if you decided to permit your child to participate in the first phase of the study. 
 
This research project may not bring any immediate benefits to your child. Rather, we hope 
that in due course the information that we obtain will help children’s and adults’ educational 
development and quality of life. 
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Confidentiality/Ethical Approval 
 
All data will be identified by a code, with names kept in a locked file. Results are normally 
presented in terms of anonymised groups and will be presented at conferences and written up 
in journals.  If any individual data were to be presented, the data would be totally anonymous, 
without any means of identifying the individuals involved. This project has received ethical 
approval from the Cambridge Psychology Research Ethics Committee. 
 
Participation/Withdrawal 
 
A consent form is attached to this letter. If you are willing for your child to take part in this 
study, please complete it and return it to Amy Devine using the provided freepost envelope 
as soon as possible. There is of course no obligation to participate, and if you decide against 
it there is no need to provide any information or return the forms at all, although the option is 
there if you want to confirm receipt of the information so that we do not contact you again, or 
if you have any comments. Please note that you may withdraw from the project at any stage 
without explanation.  
 
Yours sincerely, 
 
Dr Dénes Szucs 
Amy Devine 
Alison Nobes 
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Consent Form 
 
Cognitive performance in mathematics development: behavioural tasks 
 
Dr Dénes Szucs, Amy Devine, Alison Nobes 
Department of Experimental Psychology, University of Cambridge 
Craik Marshall Building, Downing Street, Cambridge, CB2 3EB 
Contact: Amy Devine 
Tel: 01223 767549; Email: ajd85@cam.ac.uk 
 

Have you read the information sheet about the study? YES/NO 

Have you received sufficient information about the study? YES/NO 

Do you understand that you are free to withdraw from the study at any 
time and without giving a reason for withdrawing? 

YES/NO 

Do you agree to your child taking part in this study? YES/NO 
 
• All data analysis is completely anonymous. Each participant will be given a code for 

identification.  
• Results will be presented at conferences and written up in journals. Results are normally 

presented in terms of groups of individuals. If any individual data is presented, the data 
would be totally anonymous, without any means of identifying the individuals involved. 

• You are free to withdraw from the study at any time, without explanation. 
• This project has received ethical approval from the University of Cambridge 

Psychology Research Ethics Committee. 

 

Signed       Date      

Parent’s name in block letters          

Address           

             

Telephone number           

Email address            

 

Child’s name in block letters          

School       Date of birth     

Please turn over 
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Appendix B. SES questionnaire for Project 1. 

 

It would be useful for our research if you could also answer the following questions 

What is your occupation?          

What is the highest level of education you have completed? (tick one) 

Less than secondary school  

GCSE or equivalent   

A Level or equivalent  

Some University  

Bachelor’s Degree  

Master’s Degree  

Doctorate Degree  

Other (please specify): 

 

 

 

Many thanks for taking the time to complete this form and for helping with our research. 
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Appendix C. mAMAS 

A modified version of the Abbreviated Mathematics Anxiety Scale 1. 

Instructions: 
Please give each sentence a score in terms of how anxious you would feel during each 
situation. Use the scale at the right side and circle the number which you think best describes 
how you feel. 
 
 
 

      

 Low 
anxiety 

Some 
anxiety 

Moderate 
anxiety 

Quite a 
bit of 

anxiety 

High 
anxiety 

1. Having to complete a worksheet by 
yourself. 
 

1 2 3 4 5 

2. Thinking about a maths test the day 
before you take it. 
 

1 2 3 4 5 

3. Watching the teacher work out a maths 
problem on the board. 
 

1 2 3 4 5 

4. Taking a maths test. 
 1 2 3 4 5 

5. Being given maths homework with lots of 
difficult questions that you have to hand in 
the next day. 
 

1 2 3 4 5 

6. Listening to the teacher talk for a long 
time in maths. 
 

1 2 3 4 5 

7. Listening to another child in your class 
explain a maths problem. 
 

1 2 3 4 5 

8. Finding out you are going to have a 
surprise maths quiz when you start your 
maths lesson. 
 

1 2 3 4 5 

9. Starting a new topic in maths. 1 2 3 4 5 
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Appendix D.  Spatial Orientation Task. (adapted from Kozhevnikov & Hegarty, 2001) 

Map from the Spatial orientation task  

 

Test redacted from electronic version of thesis. See original test in the above reference. 
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Appendix D continued 

 

Test redacted from electronic version of thesis
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Appendix E. Partial correlations from 4.3.3 (interpretation given on next page). 

Table E. Partial correlations controlling for IQ (Raven's CPM) are shown for the relationships between the maths measures and the other 

variables. P values were corrected for multiple comparisons using Bonferroni correction (p value divided by the number of comparisons: 39. 

Significant correlations are shown in bold (p <.001 in all cases). 

Measure 
1. Maths 
Time 1  

2. Maths 
Time 2 

3. Maths 
Time 3 

4. 
Reading 
Time 1 

5. 
Reading 
Time 2 

6. 
Reading 
Time 3 

7. 
Verbal 
STM 
Time 2 

8. 
Verbal 
STM 
Time 3 

9. 
VSWM 
Time 2 

10. 
VSWM 
Time 3 

11. MA 
Time 3 

12. 
SpatialO 
Time 2 

13. 
SpatialO 
Time 3 

14. 
Vocab 
Time 2 

15. 
Vocab 
Time 3 

1. Maths 
Time 1  - 0.72 0.77 0.40 0.21 0.13 0.19 0.30 0.66 0.53 -0.69 0.52 0.36 0.27 0.38 

2. Maths 
Time 2  - 0.80 0.26 0.42 0.36 0.55 0.55 0.64 0.40 -0.51 0.47 0.12 0.19 0.22 

3. Maths 
Time 3   - 0.15 0.42 0.34 0.33 0.43 0.56 0.45 -0.74 0.43 0.21 0.26 0.19 
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Appendix E continued 

After controlling for non-verbal IQ, Maths at Time 1 and Time 2 were significantly 

correlated with VSWM at Time 2 (r=.66 and r = .64). However, after controlling for IQ, and 

correcting for multiple comparisons, none of the Maths measures were significantly 

correlated with VSWM at Time 3. It is important to note that these correlations are still 

within the moderate to large range, despite not being significant after correction (r = .40 –

.53). SpatialO Time 3 measures were not correlated with mathematics performance at any of 

the time points. Maths at Time 1 and Time 3 were strongly negatively correlated with MA at 

Time 3 (r = -.69 and r= -.74 respectively). 

However, as noted in section 4.3.3, the correlations in Table E are difficult to interpret 

because intelligence develops in concert with working memory (Fry & Hale, 2000). 

Moreover, others have noted that controlling for intelligence in cognitive studies of 

developmental disorders is not appropriate (Dennis et al., 2009). 
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Appendix F. Consent form for Project 2. 

 

 
  

 
Dear Parent/Guardian, 
 
[School name] has expressed an interest in taking part in a new University of Cambridge 
research study about learning mathematics. Your child’s class will be undertaking some short 
maths and reading tests as well as some questionnaires about attitudes towards mathematics, 
the results of which will be useful for the school as well as for the beginning stages of our 
research. Further information is provided below. If you would prefer that your child did not 
participate in the whole class standardised tests/ questionnaires then please return the attached 
form to your school or contact your child's teacher before the date indicated on the form. 
 
At a later stage, some children may be asked to do some further individual testing at school, 
but you will be sent an information pack and consent form beforehand if your child is 
involved. 
 
What is the project about? 
We are conducting a study examining the development of numerical abilities and attitudes 
towards mathematics in primary and secondary school children. 
 
What will my child be asked to do? 
 
Your child will complete standardised mathematics and reading tests. The tests would be 
administered by our researchers to the whole class and take 30- 45 min each. Furthermore 
your child will complete three short questionnaires about attitudes towards mathematics. 
 
What will happen with the results? 
All data will be identified by a code, with names kept in a locked file and we shall not be 
identifying either the children or the school by name in any reports that we make about the 
study. We will provide anonymised results to the school. 
 
At your request, we are able to provide the children’s raw scores from the tests, however, it is 
not possible to make any formal diagnosis with regard to development or attainment based on 
these scores.   
 
 
 
Centre for Neuroscience in Education 

Department of Psychology 

University of Cambridge, Downing Street, Cambridge CB2 3EB 

Tel:  +44 (0)1223 333550     Fax:  +44 (0)1223 333564 

http://www.cne.psychol.cam.ac.uk/  

 

Department of Psychology 
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What if I do not want my child to participate? 
Participation in this study is entirely voluntary and the children are free to withdraw their 
participation from the study at any time. If you would prefer that your child did not 
participate in the whole class tests then please complete the attached form and return it to 
your child's teacher before the date indicated. 
 
This project has received ethical approval from the Cambridge Psychology Research Ethics 
Committee. 
 
If you would like further information please Amy Devine by telephone: 01223 767549 or 
email: ajd85@cam.ac.uk.  
 
 
 
Yours sincerely,  

 

 

Dr. Dénes Szucs, Amy Devine and Francesca Hill. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Centre for Neuroscience in Education 

Department of Psychology 

University of Cambridge, Downing Street, Cambridge CB2 3EB 

Tel:  +44 (0)1223 333550     Fax:  +44 (0)1223 333564 

http://www.cne.psychol.cam.ac.uk/ 

  

 

Department of Psychology 
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Opt-out Form 
 
 
Mathematics attitudes project 
 
Dr Dénes Szucs, Amy Devine, Francesca Hill 
Department of Psychology, University of Cambridge 
Craik Marshall Building, Downing Street, Cambridge, CB2 3EB 
Contact: Amy Devine 
Tel: 01223 767549; Email: ajd85@cam.ac.uk 
 
 
I would prefer that my child did not participate in the whole class standardised tests. 
 
 

 
Signed       Date     

Parent’s name in block letters         

Name of child      Class     

 

 

Please return this letter to your child's teacher by ____________________ 
 

 

 

 

 

Centre for Neuroscience in Education 

Department of Psychology 

University of Cambridge, Downing Street, Cambridge CB2 3EB 

Tel:  +44 (0)1223 333550     Fax:  +44 (0)1223 333564 

http://www.cne.psychol.cam.ac.uk/

 

Department of Psychology 
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Appendix G 
Table G. Percentiles for each raw score of the mAMAS. 

MA raw score Percentile MA raw score Percentile 

9 4.7 29 88.6 

10 9.7 30 90.2 

11 14.6 31 92.0 

12 19.9 32 92.8 

13 25.3 33 94.4 

14 31.1 34 95.8 

15 35.2 35 96.7 

16 40.5 36 97.4 

17 46.2 37 97.9 

18 50.5 38 98.2 

19 54.7 39 98.5 

20 58.9 40 99.0 

21 63.4 41 99.2 

22 67.2 42 99.3 

23 70.2 43 99.5 

24 73.8 44 99.7 

25 77.9 45 100 

26 81.2   

27 83.8   

28 86.2   
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