Full Length Article

Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

Petr Janicek, Kham M. Niang, Jan Mistrík, Karel Palka, Andrew J. Flewitt

Abstract

ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05–6.0 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott–Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple–DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Transparent conductive oxides (TCOs), which are derived from wide band-gap semiconductors with low resistivity and high transparency in the visible spectrum, have been used in flat panel displays for many decades. The most widely used material is indium tin oxide (ITO) [1]. However, due to the concerns over the shortage of supply and high cost of indium, aluminium- or gallium- doped zinc oxides (AZO or GZO) have been intensively investigated as alternatives to ITO. Both the electrical and optical properties of these materials have been reported. In particular, spectroscopic ellipsometry has been widely used to investigate the dielectric functions of ZnO in a broad spectral range [2–6].

Amorphous oxide semiconductors (AOSs) such as doped ZnO are also used as channel layers in thin film transistors (TFTs). The requirement for this is different from TCOs. A resistive film with a well-controlled carrier concentration, high carrier mobility and preferably amorphous microstructure for better uniformity over large area are required. Various multi-component AOSs have been incorporated in TFTs [7], and the leading material, amorphous indium gallium zinc oxide (a-IGZO) has been demonstrated in displays [8]. Amorphous zinc tin oxide (a-ZTO) is an important indium-free alternative to the a-IGZO, and TFTs incorporating this material show high carrier mobility [9]. While the electrical properties of these materials have been well investigated, there are fewer reports on their optical properties [10–12].

Ellipsometric studies on high quality, single crystalline ZnO that have been epitaxially grown on sapphire substrates have shown...
that the band edge transition occurs at 3.3 eV [5] and that the surface roughness needs to be accounted for to achieve the best fitting of the measured data [3]. A shift in the absorption edge has also been reported when ZnO is doped with either aluminum or gallium in TCOs [4]. Similarly, AZO deposited by direct current magnetron sputtering shows an increase in the optical bandgap with the efficiency of aluminum doping in the film [13]. A Tauc–Lorentz model with a Lorentz-type oscillator is applied on the optical absorption spectra of crystalline (c-IGZO) and a-IGZO, which is further divided into high or low quality films depending on their Hall mobilities [10]. While an optical transition ~3.7 eV is determined for all the films, significant differences in the dielectric functions are observed which are attributed to the cation content, the crystallinity and the quality of the films [10].

In this paper, spectroscopic ellipsometry was used to study the optical properties of ZnO:Sn with various tin doping produced by remote-plasma reactive sputtering. The effect of tin doping on the complex dielectric functions of the ZTO are investigated over a broad spectral range from 0.05 to 6 eV. In the vicinity of the absorption edge (3.0 < E < 4.0 eV) a Mott–Davis model, in the semi-transparent spectrum (0.5 < E < 2.5 eV) a Wemple–DiDomenico single oscillator dispersion, and in the mid-infra-red (MIR) (0.2 < E < 0.5 eV) a Drude model were employed as this analysis provide physical meaning of the extracted parameters.

2. Experimental details

ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering without intentional substrate heating. Zinc: tin metal alloy targets with tin compositions of 10, 33 and 50 atomic% were used. For reference, undoped ZnO were also deposited from a 100% zinc targets using the same sputtering conditions. The details of the system and the deposition conditions can be found elsewhere [14], and are simply summarized here. Films were deposited for times between 10 and 15 min with an optimized flow of argon and oxygen (60 sccm and 35 sccm respectively) at a pressure ~6 × 10⁻⁶ mbar during sputtering. The deposited films were highly resistive which are suitable as channel layers in TFTs [14]. Moreover, it has been confirmed that the as-deposited ZnO:Sn thin films are amorphous while the as-deposited ZnO thin film is polycrystalline [14].

Chemical compositions were determined using energy dispersive X-ray spectroscopy (EDS) (Aztec X-Max 20, Oxford Instruments) attached to the scanning electron microscope (LYRA 3, Tescan) where each sample was analyzed at two spots (100 × 100 μm size and the data were averaged. The ratio of tin compositions in the ZnO:Sn films were determined to be ~33, 50 and 65 atomic%. Therefore, the undoped ZnO and doped ZnO samples are denoted as ZTO, ZT33, ZT50 and ZT65. No post-deposition annealing had been performed. Surface topography was also studied using atomic force microscopy (Solver NEXT, NT-MDT). Two measurements (spot size 10 × 10 μm) were performed on each sample and the average root mean square (RMS) of the surface roughness was determined according to the ISO 4287/1.

Optical characterizations were performed using two variable angle spectroscopic ellipsometers (VASE and IR-VASE, J. A. Woollam Co.). The first, rotating analyzer ellipsometer, operates in the spectral range 190 nm–1700 nm (ultra-violet (UV)–vis (VIS)–near-infrared (NIR)). Measurements with 30 analyzer revolutions with photon energy steps of 0.05 eV at three selected angles of incidence (AOI) at 50°, 60° and 70° were performed for each sample. The second, rotating compensator ellipsometer, covers the spectral range 1.7 μm–22 μm (NIR-MIR). Spectra for AOI of 50°, 60° and 70° were recorded (measuring 25 scans, 15 spectra per revolution, with wavenumber steps 8 cm⁻¹). Near normal incidence optical reflectance was measured by the same instruments. WVASE32 software was used for modeling of the measured data.

3. Results and discussion

3.1. Structure model and material optical constants

As shown in Fig. 1, a sample model used to analyze the raw ellipsometry data consists of i) a semi-infinite crystalline silicon substrate, ii) a SiO₂ layer, iii) a homogenous, isotropic layer representing the ZnO:Sn layer, iv) surface roughness and v) air as the ambient medium.

Optical constants of Si and SiO₂ in the NIR-VIS-UV ranges were taken from the literature [15]. Optical constants of Si and SiO₂ layer in the MIR part of spectra was obtained by measurement of an uncoated SiO₂/Si substrate.

In the literature different models describing mostly the transparent part of the spectra for ZnO, such as Cauchy or Sellmeier have been reported [16]. Mammadov et al. have applied the parameterized semiconductor oscillator function (PEM) model for describing the dielectric function of ZnO over a wide spectral range [6]. The PEM model analytically describes the dielectric functions as the summation of several energy-bounded Gaussian-broadened polynomials and poles accounting for index effects due to absorption occurring outside the region being modeled [17–19].

In this work, the model dielectric function used for the ZnO:Sn layer consists of several contributions:

\[
\hat{\varepsilon} = \hat{\varepsilon}_{\text{PEM}} + \sum \hat{\varepsilon}_{\text{Lorentz}} + \hat{\varepsilon}_{\text{Drude}}
\]

The above mentioned PEM oscillator functions sufficiently describes the short wavelength absorption edge of amorphous doped ZnO:Sn samples and polycrystalline undoped ZnO samples as well. In addition, a Lorentz oscillator is further applied to model inter band transitions in the UV [20]. In the MIR region (0.05 < E < 0.5 eV), Lorentz oscillator functions are used to model the long wavelength absorption edge and a Drude oscillator to model free carrier absorption [21]. Surface roughness is modeled by a Bruggeman type effective medium approximation [22] with 50% of voids and 50% of ZnO:Sn.

3.2. Figure of merit and quality of the fit

The measured spectroscopic ellipsometry parameters, \(\psi^\text{exp}\) and \(\Delta^\text{exp}\), are fitted against the designed model in the spectral range

![Fig. 1. Sketch of the optical model used to fit the ellipsometry data.](image-url)
from 0.05 eV to 6 eV using the mean square error (MSE) given in the following expression:

$$\text{MSE} = \sqrt{\frac{1}{2N-M} \sum_{i=1}^{N} \left[\left(\frac{\psi_{i}^{\text{exp}} - \psi_{i}^{\text{exp}}}{\sigma_{\psi,i}^{\text{exp}}} \right)^{2} + \left(\frac{\Delta_{i}^{\text{exp}} - \Delta_{i}^{\text{exp}}}{\sigma_{\Delta,i}^{\text{exp}}} \right)^{2} \right]}$$ \hspace{1cm} (2)

where N is the number of measured pairs of ellipsometric parameters ψ^{exp} and Δ^{exp} and M represents the total number of fitted parameters. $\sigma_{\psi,i}^{\text{exp}}$ and $\sigma_{\Delta,i}^{\text{exp}}$ are then the estimated experimental error of ψ^{exp} and Δ^{exp}, respectively. Ellipsometric data measured for all three angles of incidence 50°, 60° and 70° were used in the fit simultaneously.

Fig. 2 shows the spectra of the ellipsometry parameters, ψ (circles) and Δ (triangles) for an AOI of 60° in the spectral range from 0.05 to 0.8 eV (MIR part of spectrum, left column) and from 0.9 to 6 eV (NIR-VIS-UV part of spectrum, right column). Two samples, ZT0 and ZT65 are chosen to represent the polycrystalline ZnO and amorphous ZT layers respectively. Good agreement (MSE less than 5) was obtained between the measured (symbols) and calculated data (solid lines) for both ZT0 and ZT65.

3.3. Film thickness and surface roughness

Measurement of the uncoated SiO$_2$/Si substrate revealed a SiO$_2$ layer thickness of 216 nm. In all models used for evaluation of ellipsometry data, the thickness of the SiO$_2$ was not fixed but was used as one of the free parameters. Measured thicknesses of SiO$_2$ and ZT films are summarized in Table 1 together with the MSE values calculated in the range from 0.05 eV to 6 eV.

Fig. 3 compares the surface roughness determined by ellipsometry with AFM measurements. Ellipsometry data shows that the

![Fig. 2. Measured values of ψ (circles) and Δ (triangles) for samples ZT0 and ZT65 in the MIR part of the spectrum (left column) and NIR-VIS-UV part of the spectra (right column). The best fit for the angle of incidence 60° is shown by solid lines.](image1)

![Table 1. Thickness of SiO$_2$ and ZT films obtained by the best fit of ellipsometry data together with MSE values.](image2)

![Fig. 3. Comparison of surface roughness determined by SE (dashed line) and AFM (solid lines) as a function of tin doping in the ZT films.](image3)
surface roughness of ZTO is ~16 nm and that it decreases sharply to ~6 nm in ZT33, 50 and 65. A similar trend of decreasing surface roughness with increase in tin doping is observed in AFM data. The difference in the values obtained by the two techniques can be rationalized if we consider the distinctive nature of the SE and AFM measurements: SE roughness is a mixture of material and voids, while AFM “physically” measures the average height of the features on top of the film bulk [23–25]. The surface roughness of ZnO:Sn films are generally smaller than undoped ZnO film. This can be attributed to their amorphous nature, in contrast with the polycrystalline nature of undoped ZnO film [14]. The surface roughnesses among the Sn doped ZT layers are very similar (within the experimental error).

3.4. Refractive index and extinction coefficients of ZnO:Sn in wide spectral range

Fig. 4 shows determined wide spectral range dispersion of the refractive index, n, and extinction coefficient, k, of ZT films. In the NIR-VIS-UV region (0.5 < E < 6.0 eV), undoped ZTO shows a narrow profile of refractive index with a peak at ~3.2 eV. On the contrary, the doped samples (ZT33 to ZT65) show broader profiles with peaks at higher energies than the undoped sample. Moreover, the intensities (heights) of the peaks are also lower. Comparing among the doped samples (ZT33, ZT50 and ZT65), it is observed that the peak energy shifts to higher energy and the profile gets broader (with the corresponding decrease in intensity) with increased doping concentration.

The same figure shows Lorentzian and Drude models used to fit the data. The Drude model is known to fit the Drude oscillator with reported crystalline ZnO films deposited by magnetron sputtering or by pulsed laser deposition [29]. On the contrary, the doped samples (ZT33 to ZT65) show broader profiles with peaks at higher energies than the undoped sample. Moreover, the intensities (heights) of the peaks are also lower consistently within the NIR-VIS-UV region.

Finally, as shown in Fig. 4, in semi-transparent part of spectra the extinction coefficient, k, is very small (ideally zero). Therefore, the real part of the complex refractive index, n, has been used to gauge the quality of the films for use in electronic devices. A refractive index = 2 is obtained for both undoped and doped ZT samples; this is similar to that reported for a-IGZO [10–12]. A high value of refractive index indicates a low void concentration in the film, which is desirable [30].

It is worth to mention that Tauc-Lorentz oscillator [31,32] which is usually used for description of short wavelength edge of amorphous semiconductors could be also successfully used instead of PSEMI oscillator in the case of ZT33, ZT50 and ZT65 samples leading us to the idea that these samples exhibit indirect optical band gap. On the contrary Tauc-Lorentz oscillator cannot usefully describe direct optical band gap of ZTO sample. Results obtained by Tauc-Lorentz oscillator will be described in chapter 3.5. for comparison.

In the following sections the wide spectral range of ZT refractive index and extinction coefficient will be divided into three parts (as shown in Fig. 4) where different models (Mott-Davis, Wemple-DiDomenico, Drude) will be applied to get more physical insight of ZT films.

3.5. Effect of tin doping on the optical band gap

According to the Mott and Davis [33,34] and Tauc [35] models, the width of the localized states near the mobility edges depends on the degrees of disorder and defects present in the amorphous structure, in particular, differences in coordination number in amorphous state with respect to crystalline state [36,37].

For photon energies (2.0 eV < E < 6.0 eV) short wavelength absorption edge is observed. As mentioned previously, PSEMI oscillator functions are used to model the band edge region, and Lorentz oscillators to model inter band transitions.

For majority of amorphous semiconductors, the optical absorption in the vicinity of the short wavelength absorption edge obeys the Tauc relationship [35]:

\[\alpha E = B (E - E_{gap})^{\frac{1}{2}} \]

(3)

Please cite this article in press as: P. Janicek et al., Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering, Appl. Surf. Sci. (2016), http://dx.doi.org/10.1016/j.apsusc.2016.10.169
Fig. 5. \((\alpha E)^{1/2}\) as a function of photon energy (symbols) obtained using PSEMI oscillator and its linear part described by Tauc model (solid lines).

where \(\alpha = \frac{4\pi k}{E}\) is absorption coefficient, \(E\) is the energy of the incident photon, \(B\) is a constant, \(E_g\) is the optical energy gap.

In order to obtain parameters from previous equation dependence in the form of \((\alpha E)^{1/2}\) as a function of photon energy \(E\) is depicted at Fig. 5 (left) and the Tauc model (Eq. (3)) is used to describe its linear part (lines). Parameter \(B\) can be calculated as \(B = \frac{4\pi k_{\text{max}}}{\Delta E}\) [34], where \(k_{\text{max}}\) is the minimum metallic conductivity usually assumed as constant \(\approx 350\,\Omega^{-1}\,\text{cm}^{-1}\). \(n\) is the refractive index, \(c\) is the free space velocity of light and \(\Delta E = \Delta E\) is the width of localized states near valence band mobility edge can be taken as a measure of a disorder.

The addition of Sn leads to the considerable changes in the sample disorder (the change of parameter \(n^{1/2}\)). The slope of short wavelength absorption edge (SWAE) decreased from 2218 cm\(^{-1/2}\) eV\(^{-1/2}\) for the ZTO to 724, 553 and 435 cm\(^{-1/2}\) eV\(^{-1/2}\) for the ZT33, ZT50 and ZT65, respectively. The values of the refractive index for 3.0 eV decreased monotonically in the series ZTO, ZT33, ZT50 and ZT65.

Considering that Sn doped samples can be successfully fitted by Tauc-Lorentz oscillator and monotonous decrease of \(n^{1/2}\) in the series ZTO, ZT33, ZT50 and ZT65 we can compare the width of localized states near valence band for measured samples as \((\Delta E_{ZT33}^2/\Delta E_{ZT50}) = (B_{ZT50}/B_{ZT33})/(E_{ZT33}/E_{ZT50})\) using value of refractive index for photon energy close to bandgap energy \((\approx 3.0\,\text{eV})\). For the ZT50 film we obtained \((\Delta E_{ZT50}/\Delta E_{ZT33}) = (435/553)^2/(2.02/1.98) = 0.61\), for the ZT33 film \((\Delta E_{ZT33}/\Delta E_{ZT50}) = (435/272)^2/(2.1/1.98) = 0.34\) and for the ZT0 film we obtained \((\Delta E_{ZT0}/\Delta E_{ZT50}) = (435/2218)^2/(2.1/1.98) = 0.035\) so by Sn doping there was observed pronounced widening of the width of localized states near valence band. All parameters used for this calculation are summarized in Table 2. For comparison values obtained using Tauc-Lorentz model are in Table 2 as well. Although results of precise calculation of ratio of \(\Delta E\) with values obtained from Tauc-Lorentz model differ, general trend described earlier is the same.

Values of parameter \(E_g\) obtained as interception of linear part of dependence of \((\alpha E)^{1/2}\) as a function of photon energy \(E\) with the energy axis are summarized in Table 2 as well and compared with the parameter \(E_g\) obtained from the Tauc-Lorentz model [31,32]. As can be seen from Table 2 in our case the value of \(E_g\) does not change significantly during Sn doping. As was mentioned earlier Tauc-Lorentz oscillator is enable to describe short wavelength absorption edge for ZTO sample.

It has been previously reported for chemical vapor deposited ZnO that as the growth temperature is reduced from 500 to 200 °C, the films become more amorphous, and the extended localization in the conduction and valence bands increases [38]. Likewise, since the incorporation of tin induces an amorphous phase in ZnO, one can expect the increase in local disorder with Sn doping, resulting in the increase of \(\Delta E\) as demonstrated here.

3.6. Effect of tin doping on the refractive index dispersion data

The effect of tin doping on the refractive index dispersion data in the semi-transparent part of spectra below the bandgap \((0.5 < E < 2.5 \, \text{eV})\) is further investigated using a Wemple-DiDomenico model [39,40]. The refractive index data can be fitted in this spectral range to the single oscillator expression

\[
n^2(E) = 1 + \frac{E_0 \cdot E_d}{E_0 - E^2}\]

(4)

where \(E\) is the photon energy, \(E_0\) is the energy of the effective dispersion oscillator and \(E_d\) is the dispersion energy. From linear regression of dependence \((n^2 - 1)^{-1}\) against \(E^2\) (as shown in Fig. 6), the parameters \(E_d\) and \(E_0\) could be calculated.

The parameter \(E_d\), which is a measure of the intensity of the inter-band optical transition, is related to other physical parameters of the material through the following empirical relationship [39,40],

\[
E_d(eV) = \beta \cdot N_e \cdot N_e \cdot Z_a
\]

(5)

where \(N_e\) is the effective coordination number of the cation nearest-neighbor to the anion, \(Z_a\) is the formal chemical valence of the anion, \(N_e\) is the effective number of valence electrons per anion and \(\beta\) is a two valued constant with either an ionic or covalent value (\(\beta_{\text{ionic}} = 0.26 \pm 0.03\, \text{eV}\) and \(\beta_{\text{covalent}} = 0.37 \pm 0.04\, \text{eV}\)).

Fig. 7 shows the variation of \(E_d\) and \(E_0\) as a function of tin doping of the ZT films. \(E_d\) is \(-16\,\text{eV}\) in undoped ZTO and \(-18\,\text{eV}\) in the doped ZT films. Given that ZTO is a polycrystalline structure whereas doped ZT films are amorphous, the \(E_d\) values are very similar. A similar small variation of \(E_d\) values has been reported for crystalline SiO\(_2\) and amorphous fused silica, indicating that \(E_d\) is not affected by the loss of long range order [39]. Our \(E_d\) value of ZTO (16 eV) is also very similar to that reported by Wemple (17.1 eV). There is no significant difference in \(E_d\) values between the doped ZT films (ZT33, 50 and 65). In spite of Eq. (5) increase of \(E_d\) between undoped ZTO and Sn doped ZT33, ZT50 and ZT65 could be explained both by increase of \(\beta\) and by increase of \(N_e\). It is reasonable to suppose creation of Sn-O bonds instead of Zn-O bonds, with the
Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>$B^{1/2}_{\text{PSEMI}}$ (cm$^{-1/2}$ eV$^{-1/2}$)</th>
<th>$E_{\text{g PSEMI}}$ (eV)</th>
<th>n (3.0 eV)</th>
<th>$B^{1/2}_{\text{HL}}$ (cm$^{-1/2}$ eV$^{-1/2}$)</th>
<th>$E_{\text{g HL}}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZT0</td>
<td>2218</td>
<td>3.1</td>
<td>2.15</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>ZT33</td>
<td>724</td>
<td>3.06</td>
<td>2.10</td>
<td>575</td>
<td>3.05</td>
</tr>
<tr>
<td>ZT50</td>
<td>553</td>
<td>3.08</td>
<td>2.02</td>
<td>500</td>
<td>3.06</td>
</tr>
<tr>
<td>ZT65</td>
<td>435</td>
<td>3.0</td>
<td>1.98</td>
<td>431</td>
<td>3.0</td>
</tr>
</tbody>
</table>

When focusing on NIR part of spectra (0.2 < E < 0.5 eV, 1000 < λ < 4000 nm) a Drude-only model could be used with MSE less than 6 to investigate the effect of tin doping on the free carrier absorption [21]. As shown in Fig. 8 (left), the increase of extinction coefficient with increasing tin content in the NIR part of spectra is observed and is typically correlated with increase of electric conductivity.

The model dielectric function described by Drude model is expressed by [20],

$$
\varepsilon_{\text{Drude}} = \frac{-\left(\frac{h}{2\pi}\right)^2}{\varepsilon_0 \rho \left(\pi E^2 + i \left(\frac{h}{2\pi}\right) E\right)}
$$

where h is the Planck constant, and ε_0 is the permittivity of free space. From the Drude model, resistivity, ρ, and mean scattering time, τ, as free parameters could be extracted. Another two parameters, free carrier concentration, N, and carrier mobility, μ, could be calculated using effective mass m^* and the carrier charge e

$$
\rho = \frac{m^*}{Ne^2\tau} = \frac{1}{e\mu N}
$$

Free carrier concentration and mobility could be further derived using $m^* = 0.34 \times m_0$ [43] and the results are depicted in Fig. 8 (right). With increasing Sn doping free carrier concentration is increasing from 4.4×10^{18} cm$^{-3}$ for ZT33 to 7.6×10^{18} cm$^{-3}$ for ZT65 with mobilities in the range of 6–16 cm2/Vs. Although values of free carrier concentration and mobility cannot be confirmed experimentally by Hall measurement due to the fact that films are highly resistive, these values are comparable with previous study of Islam et al. [44]. The decrease in mobility with increasing carrier concentration is typically attributed to scattering due to ionized impurities [45].

4. Conclusions

Spectroscopic ellipsometry study was conducted on the ZnO:Sn with various tin doping produced by remote-plasma reactive sputtering...
tering. While undoped ZnO is polycrystalline, doped ZnO:Sn films are amorphous [14]. The refractive index and extinction coefficient of those films over the broad spectral range of the MIR-VIS-UV region (0.05 < λ < 6.0 eV) were obtained by the best fit of ellipsometry data parameterizing ZnO:Sn model dielectric function by a PSEMI oscillator for description of short wavelength absorption edge, a Drude oscillator for description of free carrier absorption in NIR part of spectra (not used in the case of ZTO sample) and Lorentz oscillators for the long wavelength absorption edge and intra-band absorption in the UV part of the spectra.

Using a Mott-Davis model in the vicinity of the absorption edge (3.0 < λ < 4.0 eV), the width of the localized states is significantly increased by Sn doping indicating the increase of local disorder with tin doping. Using Wemple-DiDomenico single oscillator dispersion in the semi-transparent spectrum (0.5 < λ < 2.5 eV), the intensity of interband optical transition, E_D, shows an increase ~2 eV from undoped ZTO to doped ZT films probably due to increase of number of Sn-O bonds which are more covalent that Zn-O bonds and there is no obvious difference between the doped ZT films. The energy of the effective dispersion oscillator (E_D) increase with increasing tin doping indicating distancing of centroids of the valence and conduction bands. Using a Drude-only model in the NIR part of spectra (0.2 < λ < 0.5 eV, 1000 < λ < 4000 nm), the free carrier concentration increases with tin doping from 4.4 × 10^{18} cm^{-3} for ZT33 to 7.6 × 10^{18} cm^{-3} for ZT65, and mobilities in the range of 6–16 cm²/Ns were calculated. These results are comparable with other studies e.g. [45].

The range of transparency, i.e. value of parameter E_D, of prepared ZnO:Sn layers is more dramatically affected by tin doping, whereas electrical conductivity could be controlled by tin doping. The value of refractive index ~2 obtained for doped ZT samples, are similar to that reported for a-IGZO. These results indicate possibility of utilization of prepared layers as an initial free substitution of a-IGZO.

Acknowledgements

Authors appreciate financial support from the grant C2.105/4.100/11.0251 from the Ministry of Education, Youth and Sports of the Czech Republic as well as financial support from the grant No. EP/M013650/1 from Engineering and Physical Sciences Research Council UK.

Authors would like to acknowledge Prof. L. Tichy from Joint Laboratory of Solid State Chemistry of the Institute of Macromolecular Chemistry of AS CR and University of Pardubice for valuable comments, suggestions and discussion.

References

Please cite this article in press as: P. Janicek, et al., Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering, Appl. Surf. Sci. (2016), http://dx.doi.org/10.1016/j.apsusc.2016.10.169