High fluxes of deep volatiles from ocean island volcanoes: Insights from El Hierro, Canary Islands

Z. Taracsák*, M.E. Hartley¹, R. Burgess¹, M. Edmonds², F. Iddon², M-A. Longpré³

¹School of Earth and Environmental Sciences, University of Manchester, M13 9PL, United Kingdom
²Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
³School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, NY 11367, USA

Abstract

Basaltic volcanism contributes significant fluxes of volatiles (CO₂, H₂O, S, F, Cl) to the Earth’s surface environment. Quantifying volatile fluxes requires initial melt volatile concentrations to be determined, which can be accessed through crystal-hosted melt inclusions. However, melt inclusions in volatile-rich mafic alkaline basalts, such as those erupted at ocean islands, often trap partially degassed melts, meaning that magmatic volatile fluxes from these tectonic settings are often significantly underestimated. We have measured major, trace element and volatile concentrations in melt inclusions from a series of young (<20 ka) basanites from El Hierro, Canary Islands. Our melt inclusions show some of the highest CO₂ (up to 3600 ppm) and S (up to 4290 ppm) concentrations measured in ocean island basalts to date, in agreement with data from the recent 2011-2012 eruption. Volatile enrichment is observed in melt inclusions with crystallisation-controlled major element compositions and highly variable trace element ratios such as La/Yb. We use volatile-trace element ratios to calculate original magmatic CO₂ contents up to 4.2 wt%, which indicates at least 65% of the original CO₂ was degassed prior to melt inclusion

*Corresponding author
Email address: zoltan.taracsak@manchester.ac.uk (Z. Taracsák)
trapping. The trace element contents and ratios of El Hierro magmas are best reproduced by 1-8% partial melting of a garnet lherzolite mantle source. Our projected CO₂ (200-680 ppm) and S (265-450 ppm) concentrations for the source are consistent with upper estimates for primitive mantle. However, El Hierro magmas have elevated F/Nd and F/Cl in comparison with melts from a primitive mantle, indicating that the mantle must also contain a component enriched in F and other volatiles, most probably recycled oceanic lithosphere.

Our modelled original magmatic CO₂ contents indicates that, per mass unit, volatile fluxes from El Hierro magmas are up to two orders of magnitude greater than from typical mid-ocean ridge basalts and 1.5 to 7 times greater than from recent Icelandic eruptions, indicating large variability in the primary volatile content of magmas formed in different geodynamic settings, or even within different ocean islands. Our results highlight the importance of characterising mantle heterogeneity in order to accurately constrain both short- and long-term magmatic volatile emissions and fluxes from ocean island volcanoes.

Keywords: melt inclusions, volatiles, CO₂ degassing, volatile recycling, El Hierro, Canary Islands

1. Introduction

Volatiles (H₂O, CO₂, F, S, Cl) often constitute just a few weight percent of silicate melts, yet they impact a variety of processes in magmatic systems. In particular, volatiles strongly influence melt generation processes through changing the melting depth and degree of the source mantle (e.g., [Dasgupta et al., 2007], [Green et al., 2010]), and also affect the order in which crystallising phases appear on the liquidus (e.g., [Gaetani et al., 1993]; [Métrich and Rutherford, 1998]).

The volatile-carrying capacity of a magma is strongly influenced by its major element composition (e.g., [Dixon, 1997]). Mid-ocean ridge basalts (MORB) constitute ~75% of
the Earth’s annual magmatic output (Schmincke, 2004) and typically contain <0.3 wt% total volatiles (Saal et al., 2002). Ocean islands basalts (OIB) represent just ~10% of erupted magmas, but as they can contain >5 wt% volatiles (Dixon et al., 1997) likely contribute disproportionately more to global volcanic gas emissions. Volatile enrichment is most prominent in trace element and radiogenic isotope-enriched (e.g. HIMU) OIBs (Cabral et al., 2014; Boudoire et al., 2018). A good understanding of the origin, storage and flux of volatiles from OIB magmas is crucial if we are to provide reasonable estimates of volcanic volatile fluxes into the environment (Burton et al., 2013).

Determining magmatic volatile contents is complicated by their low solubility in silicate melts at low pressures, with melt volatile contents being reduced by degassing as they ascend towards the surface. Formation of immiscible sulfide globules at high melt sulfur concentrations can also lower the melt sulfur content. These issues can be circumvented by measuring volatile contents in crystal-hosted melt inclusions (MIs), which are theoretically shielded from processes like crystallization or shallow degassing from their carrier melt (e.g. Métrich and Wallace, 2008; Koleszar et al., 2009; Edmonds et al., 2013; Hartley et al., 2014; Cabral et al., 2014; Wallace et al., 2015). In practice, MI compositions are modified by post-entrapment crystallisation, diffusive re-equilibration with their external carrier melt, and sulfide formation due to melt reduction (Danyushevsky et al., 2002; Gae-tani et al., 2012). These processes can often be corrected to establish original inclusion compositions (Danyushevsky et al., 2000; Danyushevsky and Plechov, 2011).

This work focuses on El Hierro in the Canary Islands, a location relatively understudied until the occurrence of a submarine eruption 2 km off the southern tip of the island, between October 2011 and March 2012. The eruption received significant attention from geoscientists due to abundant surface gas measurements and seismic data recorded pre-, syn- and post-eruption (López et al., 2012; Pérez et al., 2012; Melián et al., 2014; Klügel et al., 2015). Floating rocks collected from the ocean during the eruption enabled petro-
logical studies of the magmatic plumbing system to infer the origin of the magma feeding the eruption (Troll et al., 2012; Martí et al., 2013a; Sigmarsson et al., 2013; Longpré et al., 2014). Volatile contents of MIs reveal that the erupted magma was one of the most CO$_2$- and S-enriched oceanic island basalts known to date. The estimated minimum volatile budget of the eruption is 1.3–2.1 Tg CO$_2$ and 1.8–2.9 Tg S (Longpré et al., 2017). However, it remains an outstanding question whether El Hierro magmas have been characterised by similar volatile enrichment over the past 20 ka.

Here we present major, trace and volatile element data from olivine- and clinopyroxene-hosted MIs from young (<20 ka) tephra samples collected from multiple locations on El Hierro. Melt inclusion compositions are discussed with an emphasis on melt genesis and evolution. Trace element data are used to identify mantle source characteristics, while volatiles combined with volatile and lithophile trace element ratios are utilised to estimate original magmatic volatile contents and the timing of their exsolution. The origin of volatile element enrichment in El Hierro magmas is also explored in detail. In this work, we highlight the importance of volatile-rich magmas erupting on ocean islands to both the global and local environment, and compare the volatile content of El Hierro magmas with other magmatic systems.

2. Geological Background

The Canary Archipelago comprises seven volcanic islands (Fig. 1A) formed above >80 km- Jurassic oceanic lithosphere. The easternmost islands have been active since the early Neogene (Coello et al., 1992; Hoernle and Schmincke, 1993), with some submarine rocks dated to the late Cretaceous (Le Bas et al., 1986; Balogh et al., 1999). The Canary Islands are characterised by low magma supply rate and relatively low eruption frequency: 13 eruptions have occurred over four islands since 1500 CE, 10 of these on La Palma or Tenerife (Fig. 1A). Seismic tomography indicates low-velocity anomalies down to the
core-mantle boundary beneath the archipelago, which have been interpreted as evidence for a deep mantle plume in the region (French and Romanowicz, 2015). Published Sr-Nd-Pb, O, He and Os isotopic data suggest a heterogeneous mantle source that includes a component of recycled oceanic lithosphere (e.g. Lundstrom et al., 2003; Day et al., 2010; Day and Hilton, 2011).

El Hierro is the youngest island in the Canary Archipelago; its oldest subaerial volcanics have been dated at 1.11 Ma (Guillou et al., 1996). It is built up by three successive subaerial volcanoes: the Tiñor volcano, the El Golfo volcano, and the Rift Volcanics, which post-date the collapse of the El Golfo volcano (Carracedo et al., 2001) (Fig. 1). Volcanism on El Hierro is dominated by mafic alkaline magmas. Petrological and geophysical studies of the 2011-2012 eruption suggest a vertically extensive magma plumbing system ranging from 10 to 30 km (Stroncik et al., 2009; López et al., 2012; Longpré et al., 2014; Klügel et al., 2015). Clinopyroxene-melt thermobarometry in young ankaramites and some dredged basanites around the island indicate crystallization pressures of 400-1000 MPa, extending into the upper mantle (Stroncik et al., 2009; Longpré, 2009).

3. Samples, analytical techniques and data processing

Our samples comprise glassy tephras collected from El Hierro pyroclastic deposits that post-date the last glacial maximum (Fig. 1B). The seven sampling locations cover all three rift systems on the island. Two samples were collected from Tanganasoga, a large edifice near the centre of El Hierro. From the western rift system we collected samples from scoria cones next to the village of Sabinosa and at Montañita Negra. From the southern rift system we collected samples from the Mercade and Montañas de Julán scoria cones, and from the eastern rift we collected one sample from a scoria cone near the village of Tamaduste. Tephra clasts were hand-crushed in a stainless steel mortar, and olivine crystals containing glassy melt inclusions were picked from sieved size fractions between 0.25 and 2 mm.
Olivines were individually ground to expose MIs, then mounted in epoxy and polished for analysis. Clinopyroxene megacrysts >10 mm in length, collected near the summit of Tanganasoga, were cut, mounted in epoxy and polished to expose MIs. Inclusions were typically ellipsoidal in shape, with diameters between 14 and 714 µm (mean diameter 117 µm). Bubbles were observed in 47 MIs (52%) and occupy between 0.3 and 59.2 vol% of the inclusion (Fig. S6). Several inclusions contained crystals, generally Fe-Ti oxides, together with the glass and bubble. Four analysed inclusions from Tanganasoga contained a sulfide globule ~2-10 µm in diameter. Sulfides were not observed in the groundmass material. Small (<10 µm) fluid inclusions were present in some olivines.

Trace and volatile (H$_2$O, CO$_2$, F and Cl) element concentrations in a total of 80 olivine-hosted MIs, 10 clinopyroxene-hosted MIs, and 16 tephra glasses and embayments along crystal rims, were measured by secondary ion mass spectrometry (SIMS) using the CAMECA IMS-4f instrument at the University of Edinburgh. The C and H measurements were calibrated by repeat analyses of basaltic glass standards (Shishkina et al., 2010) (Fig. S2). The precision of carbon measurements was better than ±10% (1σ) at concentrations ≤500 ppm, and ±7% at concentrations >500 ppm. The precision of H$_2$O measurements was ±3-6%. Precision and accuracy of trace element measurements were monitored by repeat analyses of glass standards. Precision was ±1-5% (1σ) for trace elements in higher abundance (Ba, Zr, Nb, Y, La), and ±10-20% for trace elements in low abundance (Dy, Yb, Lu). Following SIMS analyses, glasses and minerals were analysed for their major, minor elements and volatiles S and Cl by electron microprobe (EPMA) using the CAMECA SX100 instrument at the University of Manchester. Fluorine concentrations in five MIs were measured by EPMA at the University of Cambridge to verify the SIMS fluorine data. Compositional data and details of all analytical methods are provided as supplementary material.

Inclusion-hosted bubbles were analysed by micro-Raman spectroscopy using a Ren-
ishaw inVia instrument at the University of Manchester. Spectra were acquired using a 514 nm laser at 50% power, with acquisition time 10 s over 10 accumulations. Of the 41 inclusion-hosted bubbles analysed, 27 bubbles in samples from Tanganasoga, Tamaduste or Sabinosa contained detectable CO$_2$. Raman spectra were processed by fitting Gaussian distributions to the Fermi diad peaks. Fitted peak positions were then used to determine the separation of the Fermi diad, which is proportional to the CO$_2$ fluid density. The CO$_2$ density was calculated using the calibration of Wang et al. (2011). Bubble CO$_2$ contents were obtained through mass balance calculations following the method of Steele-Macinnis et al. (2011) and using a melt density of 2750 kg/m2. The CO$_2$-bearing bubbles occupied ≤11 vol% of their host inclusions.

4. Results

4.1. Major Elements

Measured melt inclusion compositions lie between 38.6-52.9 wt% SiO$_2$, 2.2-6.4 wt% MgO, 1.9-5.6 wt% Na$_2$O and 8.3-15.1 wt% FeO$_{(t)}$ (data are available as supplementary material). However, olivine-hosted MIs experience both post-entrapment crystallization (PEC) and diffusive Fe loss during cooling. Published whole-rock and glass SiO$_2$ and FeO contents from El Hierro are linearly correlated (R2=0.938), yet measured inclusion compositions show Fe depletion up to 2 wt% relative to the FeO-SiO$_2$ correlation, indicative of diffusive Fe loss (Longpré et al., 2014). We used Petrolog3 (Danyushevsky and Plechov, 2011) to correct MIs for PEC and diffusive Fe loss. Calculations were performed using the olivine-melt equilibrium model of Putirka (2005) and Fe$^{3+}$/Fe$^{2+} = 0.35$, as calculated for the 2011-2012 erupted products using ilmenite-magnetite oxybarometry (Longpré et al., 2014, 2017). PEC corrections between 0 and 18.3% were required to restore inclusion compositions to equilibrium with their host olivine. The average PEC
correction was 4.3%. Five olivine-hosted MIs required a PEC correction >10%. For 8
inclusions Petrolog3 predicts negative PEC values, i.e. olivine addition to the inclusion.
The amount of olivine addition predicted is always <4.2%, and typically <2%, which is
small in comparison to the Fe-loss correction for these inclusions. Following the PEC
and Fe-loss corrections, trace element and volatile concentrations were corrected using
the distribution coefficients listed in the supplementary material.

For clinopyroxene-hosted MIs, the measured Mg# of the host was generally lower
than the Mg# of clinopyroxene calculated to be in equilibrium with the inclusion using
$K_{d_{cpx-\text{liq}}}^{\text{Mg-Fe}} = 0.28$ (Putirka, 2008). Haloes surrounding the MIs were not observed in back-
scattered electron images, ruling out any PEC on the inclusion walls. Clinopyroxene-
hosted inclusions were therefore only corrected for diffusive Fe loss.

Following PEC and Fe-loss corrections, the olivine- and clinopyroxene-hosted MIs
contain 37.8-53.5 wt% SiO$_2$, 2.3-9.2 wt% MgO, and 8.3-15.5 wt% FeO (Fig. 3).

4.2. Trace elements

Trace element concentrations in MIs generally fall within the range of published whole-
rock compositions for El Hierro lavas (Fig. 4A) (Carracedo et al., 2001; Longpré, 2009;
Day et al., 2010; Martí et al., 2013b). Concentrations of incompatible lithophile elements
(ILE) such as Zr increase with decreasing MgO content (Fig. 4B). Trace element ratios
cover a much wider range than previously published whole-rock and MI data: La/Yb
varies between 5 and 70, and variation is high even within hosts with a narrow Mg# range
(Fig. 4C). Inclusions from the Tanganasoga ankaramite hosted in Fo$_{78-79}$ olivines have
La/Yb between 15 and 58; this La/Yb variation is three times larger than measured in MIs
from the 2011-2012 eruption (Longpré et al., 2017). Similarly large variations in La/Yb
are observed in other samples, especially those from eruption centres along the southern
rift. Melt inclusions from the western rift zone are characterised by lower La/Yb between
5-27. Primitive MIs hosted in Fo>82 olivines have the most ILE-depleted compositions. In addition to olivine-hosted MIs, we analysed 10 clinopyroxene-hosted MIs from Tanganasoga. We observe no systematic differences in the major and trace element concentrations of olivine- and clinopyroxene-hosted inclusions, although trace element ratios in clinopyroxene-hosted MIs are somewhat less variable, with $27<\text{La/Yb}<35$. The small number of clinopyroxene-hosted MIs precludes statistical comparison with olivine-hosted MI, and any observed compositional differences might not persist if more clinopyroxene-hosted MIs were to be measured.

4.3. Volatiles

The studied inclusions have maximum glass CO$_2$ and S contents of 3610 ppm and 4290 ppm, respectively (Fig. 5). Most MIs from Tanganasoga contain >3000 ppm S. The matrix glasses contain 0-55 ppm CO$_2$ and 140-500 ppm S (except for one glass analyses with 1890 ppm S). H$_2$O concentrations vary between 0.06-2.22 wt% for MIs and 0.07-0.38 wt% for matrix glasses. Melt inclusions contain 970-3350 ppm F and 290-1500 ppm Cl. One MI has an anomalously high Cl content of 2450 ppm. Matrix glasses contain 1520-3220 ppm F and 380-1340 ppm Cl (Fig. S5).

Of the 27 MIs containing detectable CO$_2$ in inclusion-hosted bubbles, nine were also analysed by SIMS. For these inclusions, it is possible to determine their total CO$_2$ by summing the glass and bubble CO$_2$ contents. The highest bubble CO$_2$ contents of 0.83-1.02 wt% were measured in MIs from Tanganasoga ankaramite samples; these inclusions also had the largest bubbles occupying 7.4-10.5 vol% of the inclusion. Inclusions with bubble proportions $>10\%$ likely formed due to heterogeneous trapping of melt and fluid phases, such that their total inclusion CO$_2$ overestimates the true CO$_2$ content of the trapped melt (Moore et al., 2015; Steele-MacInnis et al., 2017). The two MIs with the largest bubble proportions have diameters $<40\ \mu m$. If these MI radii are uncertain by just 10%, their
calculated bubble could be reduced to 5.8-7.7 vol%, which in turn decreases their calculated total CO$_2$ contents by several thousand ppm. Estimation of true MI glass volumes is further complicated by the presence of included oxides. If MIs with bubbles <10 vol% are considered to represent homogeneously trapped melts, then up to 85% of the total inclusion CO$_2$ may be sequestered into the bubble. This is consistent with previous studies demonstrating that inclusion-hosted bubbles can sequester up to 90% of an inclusion’s original CO$_2$ ([Hartley et al., 2014] [Wallace et al., 2015]). Our reconstructed total CO$_2$ contents, i.e. glass plus bubble, in MIs with <10 vol% bubble fraction are between 3800 and 13700 ppm (Fig. 5). These results demonstrate the importance of CO$_2$ degassing into inclusion-hosted bubbles, and suggest that glass CO$_2$ contents measured in El Hierro MIs represent minimum melt CO$_2$ contents, in agreement with ([Longpré et al., 2017]).

5. Discussion

5.1. Crystallisation and mixing of El Hierro magmas

Melt inclusions can be trapped at any point along a crystallisation pathway. By modelling liquid lines of descent (LLDs) from primitive lavas representative of primary melt compositions, the extent of crystallisation at the time of entrapment can be determined. We used Petrolog3 ([Danyushevsky and Plechov, 2011]) to calculate possible LLDs for El Hierro magmas (Fig.3). Input starting compositions were 17 whole-rocks with MgO >10 wt% ([Carracedo et al., 2001] [Longpré, 2009] [Day et al., 2010]). Figure 3 shows LLDs calculated assuming an initial 1 wt% H$_2$O, consistent with our mean and median melt inclusion H$_2$O concentrations (0.9 and 0.95 wt%, respectively) and the 0.71-1.49 wt% H$_2$O concentrations based on clinopyroxene H$_2$O contents in the western Canary Islands ([Weis et al., 2015]). Oxygen fugacity was specified as an Fe$^{3+}$/Fe$^{2+}$ ratio of 0.35 ([Longpré et al., 2014] [Longpré et al., 2017]). We used the mineral-melt equilibrium models of [Putirka, 2005] for olivine,
Danyushevsky (2001) for clinopyroxene and plagioclase, and Ariskin and Barmina (1999) for magnetite. Further details of Petrolog3 calculations are provided as supplementary material.

In all calculated LLDs, the first crystallizing phase is olivine (Fig. 3). After 7.7–19.3% olivine crystallization, the melt reaches saturation in clinopyroxene and titaniferous magnetite. This is consistent with observed phase relations in our samples: crystals of Ti-rich magnetite are absent in MgO-rich MIs hosted in Fo>82 olivines, but are common in MgO≤6 wt% inclusions. The calculated LLDs predict that plagioclase saturation is reached at melt MgO contents around 5-5.5 wt%. However, plagioclase is rarely present in our most MgO-poor tephra samples as a phenocryst phase, nor is it observed as an included crystal in any MI: it is mostly present as microlites in the groundmass. Plagioclase saturation is depressed to lower temperatures in melts with high H$_2$O contents, so it is possible that the 1 wt% H$_2$O assumed for our starting compositions underestimates the true H$_2$O content of some El Hierro primary melts (e.g. Sabinosa and Tamaduste) (Longpré et al., 2017). Using 0.5 to 2 wt% H$_2$O contents do not change the shape of LLDs and crystallising assemblage significantly, indicating this interval is the reasonable initial H$_2$O content for our crystallisation modelling. (Fig. S4).

Melt inclusion trace element contents are broadly consistent with crystal fractionation-dominated trends: concentrations of incompatible trace elements such as Zr increase with decreasing Mg# of the host mineral (Fig. 4B). However significant variability can be observed in the Zr content of MIs hosted crystals with similar Mg#. Large variability is observed in trace element ratios such as La/Yb, La/Y, Sm/Yb and Nb/Zr, both within individual samples and between samples from different eruptions (Fig. 4C), even though these ratios are not expected to vary significantly during crystal fractionation. Melt inclusions from Montañita Negra and Tamaduste show no significant variation in La/Yb as a function of olivine Fo content (Fig. 4C), as expected during crystal fractionation. The large varia-
tion in La/Yb (15-58) in Tanganasoga MIs is less straightforward to explain. Our data do not provide conclusive evidence that this variation is caused by mixing of magmas with differing La/Yb accompanied by crystallisation, since we do not observe decreasing variability in La/Yb with decreasing host Fo content: instead, the Tanganasoga MIs are largely restricted to host olivine compositions of Fo$_{79\pm1}$. A single crystallizing magma cannot explain the observed trace element ratio (La/Yb, La/Y, Sm/Yb and Nb/Zr) variations. We propose that the Tanganasoga MIs represent multiple magma batches that were stored separately, and were mixed prior to eruption. In this scenario the most enriched and depleted endmembers must have La/Yb>50 and La/Yb<15 respectively, and similar major element compositions, since the Tanganasoga olivines are relatively uniform in composition and show no chemical zonation. Variations in melt inclusion La/Yb could also be achieved through restricted mixing between melts already stored in a chamber and new intruding batches of melt. A third possibility is that part of the Tanganasoga crystal cargo was entrained from one or more mush zones whose crystals trapped MIs with different La/Yb to the Tanganasoga carrier melt.

Magma storage depths of 10-30 km have been calculated using clinopyroxene-liquid thermobarometry on samples from the 2011-2012 eruption and dredged rock samples along the rift axis (Stroncik et al., 2009; Longpré et al., 2014; Klügel et al., 2015). These depth estimates suggest a vertically extensive magma storage system beneath El Hierro: a suitable environment for magmas to evolve separately with little mixing. We suggest that the Tanganasoga magmatic plumbing system comprises multiple interconnected sills over a depth range of \sim10-15 km, and that mixing between melts stored in these reservoirs, and possibly crystal entrainment, could reproduce the trace element characteristics observed in Tanganasoga MIs.
5.2. Volatile budget and degassing of El Hierro magmas

The presence of large bubbles (>10 vol.%) within our MIs suggest trapping from volatile-saturated melts. We used D-Compress (Burgisser et al., 2015) in the C-S-O-H-Fe system to calculate MI volatile saturation pressures. D-Compress requires oxygen fugacity as an input parameter, so it should be suitable for calculating volatile solubility in relatively oxidised alkaline melts. The isobars shown on Fig. 5 were calculated at 1200 °C using a melt composition representing the Tanganasoga ankaramite at clinopyroxene saturation. We assumed an \(f_{O_2} \) of ∆NNO=1.5 at 300 MPa and 1200 °C, based on the \(f_{O_2} \) estimate of Longpré et al. (2014, 2017). Isobars calculated using the most primitive and most evolved MI compositions differ by less than the 1σ analytical uncertainty on the measured MI H\(_2\)O and CO\(_2\) contents.

Taking only glass CO\(_2\) contents into account, the highest calculated volatile saturation pressures are between 150-355 MPa for individual samples. For MIs where both glass and bubble CO\(_2\) contents were measured, calculated pressures using the total inclusion CO\(_2\) reach 350-700 MPa (Fig. 5A, C). Applying the pressure-depth conversion of Longpré et al. (2014), these values correspond to depths of 6-13 km (glass only) and 13-24 km (glass=bubble), respectively. These volatile saturation pressures should be regarded as minima, since the glass CO\(_2\) content does not take into account any CO\(_2\) degassed into a vapour bubble after inclusion trapping. Pressures calculated using the total CO\(_2\) contents are consistent with both clinopyroxene-liquid barometry (400-900 MPa) and with fluid inclusion data (300-500 MPa) from previous studies (Hansteen et al., 1998; Stroncik et al., 2009; Longpré et al., 2014; Klügel et al., 2015). These pressures likely represent the main magma storage system beneath El Hierro.

D-Compress predicts sulfur solubility in the El Hierro melts to be up to 0.6 wt% at 200 MPa, and 1.1 wt% at 750 MPa, meaning MIs are unlikely to have experienced extensive S degassing. Our D-Compress calculations predict that MIs were trapped from melts domi-
ated by S^{6+} rather than S^{2-}, consistent with the high melt inclusion S contents. Very few MIs contained sulfides (~ 4%), and sulfides were not observed in the tephra groundmass. No strong correlation is present between FeO and S content in MIs, and there is no difference between the S content of sulfide-bearing and sulfide-free inclusions. We suggest that inclusion-hosted sulfides could be formed after trapping, in response to decreasing sulfur solubility during diffusive Fe loss (Danyushevsky et al., 2002), or due to a decrease in MI fO_2 as a result of lattice diffusion of Fe$^{+2}$ via the host olivine (Gaetani et al., 2012).

The Tanganasoga melt inclusions show near-constant H$_2$O contents that do not decrease with decreasing sulfur (Fig. 5B). These near-uniform water contents suggest that diffusive re-equilibration has occurred between MI and the external melt, via H^+ diffusion through the host olivine. This process occurs on timescales of hours to days at magmatic temperatures (Gaetani et al., 2012). The H$_2$O contents of Tanganasoga MIs, and possibly those from other eruptions, likely record the water content of the pre-eruptive magma rather than their original trapped water contents (Hartley et al., 2015).

The observed H$_2$O-CO$_2$-S variations in El Hierro MIs are broadly consistent with calculated closed-system degassing pathways (Fig. 5A, C). There is a near-constant offset of ~1500 ppm S between the modelled degassing curves and our measured melt inclusion S contents (Fig. 5C): this may be an artefact of the D-Compress model, which predicts melt sulfur contents up to 2000 ppm higher than other volatile saturation models such as SolEx (Witham et al., 2012). Matrix glasses contain <500 ppm S, indicating 85-90% is degassed during ascent and eruption.

Volatile-trace element ratios of an undegassed melt such as CO$_2$/Ba or CO$_2$/Nb are not expected to vary during melting or crystallisation, meaning that Ba and Nb can be used as proxies for the original melt CO$_2$ content (Saal et al., 2002; Rosenthal et al., 2015). Undegassed OIBs are expected to have CO$_2$/Nb=505±168, and CO$_2$/Ba=133±44 (Rosenthal et al., 2015). Our MIs have glass CO$_2$/Nb values <48 and CO$_2$/Ba<10 (Fig. 6A). Using
reconstructed total CO₂, CO₂/Ba and CO₂/Nb increases to 9-31 and 51-181, respectively. We suggest that even reconstructed MI CO₂ contents represent a partially degassed melt. Exsolation of CO₂-rich fluid likely started at pressures >1 GPa, significantly deeper than melt inclusion trapping (Longpré et al., 2017; Boudoire et al., 2018). Assuming a primary melt CO₂/Ba of 89 and using the OIB mantle CO₂ content (600 ppm) of Rosenthal et al. (2015), we calculate that our inclusions represent melts that had degassed at least 65% of their original CO₂. Using a CO₂/Nb instead of CO₂/Ba increases our estimate of pre-entrapment CO₂ degassing to >80%.

Several inclusion-hosted bubbles that occupied a large volume fraction (>10%) of the inclusion, therefore likely formed due to heterogeneous trapping of a fluid and a melt rather than by simple shrinkage (Steele-MacInnis et al., 2017), did not contain detectable CO₂. We suggest empty bubbles are formed due to MI decrepitation, whereby the fracturing of the host mineral causes loss of the vapour phase. Decrepitation is induced when internal MI and external melt pressure difference exceeds ~200 MPa (Maclennan, 2017), promoted by rapid magma ascent and low PEC. We suggest that the preservation of CO₂-rich bubbles in MIs from Tanganasoga, Sabinosa and Tamaduste could reflect relatively slow magma ascent or long residence times accompanied by cooling, which provides sufficient time for PEC to maintain the inclusion internal pressure below the decrepitation threshold. At other locations, faster magma ascent may have induced decrepitation, leading to CO₂ loss from the bubbles. Longpré et al. (2017) favoured CO₂ loss through decrepitation to explain low volatile saturation pressures (<260 MPa) for olivine-hosted MIs from the 2011-2012 eruption. We suggest that the 2011-2012 eruption and those of the Montañita Negra and Mercade cinder cones experienced similar magma ascent rates.

Melt inclusions and matrix glasses have very similar F and Cl contents (Fig. S5), suggesting that the melts experienced minimal halogen degassing. Furthermore, the MIs have F/Nd and Cl/K either above or within the expected ranges for primitive mantle-derived
melts (Fig. 6B). It has been suggested that fluorine in MIs is susceptible to diffusive re-equilibration with the surrounding melt (Koleszar et al., 2009; Le Voyer et al., 2014); however, reheating experiments do not appear to influence melt inclusion F contents (Portnyagin et al., 2008; Bucholz et al., 2013). Fluorine diffusivity in olivine has not been precisely measured, so we cannot calculate the possible effects of diffusive F exchange between our MIs and their carrier melts. However, we can rule out F enrichment through trapping of incompatible-enriched boundary layers: boundary layer effects are thought only to affect MIs smaller than 20 µm (Danyushevsky et al., 2002), and we observe no systematic change in F content as a function of inclusion size (Fig. S3). The consistency between MI and matrix glass F/Nd values, and the fact that F and Cl are positively correlated (Fig. S5), leads us to conclude that F concentrations in our MIs have not been modified by diffusion above analytical uncertainty.

5.3. Trace element characteristics of the El Hierro mantle

Canary Island magmas have been suggested to originate from a mantle source that is heterogeneous on the scale of the archipelago, with melting in asthenospheric and lithospheric mantle domains (Hoernle and Schmincke, 1993; Lundstrom et al., 2003). Stable and radiogenic isotopic data from whole-rock samples suggest the presence of lithological heterogeneities beneath La Palma and El Hierro in the form of recycled oceanic crust and lithosphere (Day et al., 2010; Day and Hilton, 2011).

While whole-rock samples represent the mixed average composition of melts supplied to a magmatic system, melt inclusions may preserve records of diverse mantle-derived melts. To explore the significance of trace element variability of our MIs, we carried out melting calculations using various mantle source compositions (Fig. 7), including the primitive mantle (PM) estimate of Hofmann (1988). We then calculated possible enriched mantle compositions by adding an eclogite-derived melt to this PM composition. Eclogite
represents a subducted oceanic crustal component in the source, and acts as a Si- and trace element-enriched metasomatising agent. Our eclogite-derived melt represents 15% melting of the median eclogite composition of [Barth et al. (2001)]. This melt was mixed into a PM matrix in proportions of 5 and 10%. We assume that mixing occurs in a chemically closed system and that all melt reacts with peridotite to form orthopyroxene from olivine. Detailed derivations of the enriched mantle compositions are provided as supplementary material.

Our calculations suggest that the trace and rare earth element (REE) contents and ratios of El Hierro MIs are best explained by 1-8% melting of a garnet lherzolite with composition close to PM (Fig. 7). Apart from one inclusion, all our data fall within the range covered by the PM and the 5% enriched mantle melting curves. The outlier MI is extremely depleted in heavy REEs and Y, and falls between the 5 and 10% enriched garnet lherzolite melting curves. Enriched spinel lherzolite-derived melts could match the compositions of some inclusions from Montañita Negra, but do not reproduce the compositions of any other samples. Our calculated melting degrees are lower than for Hawaiian alkaline basalts (8-12%; [Feigenson et al. (2003)]), which could reflect lower mantle temperatures in the Canary Islands compared to Hawaii ([Herzberg and Asimow, 2008]). Our melting degrees are more comparable to continental alkaline basalts (e.g. [McGee et al., 2013]).

As melting seems to be restricted to the garnet stability field, it likely occurs below the spinel-garnet transition at 2.5 GPa (80 km at 1450 °C, [Klemme and O’Neill, 2000]). This is consistent with melting of an asthenospheric source below >90 km-thick Jurassic lithosphere ([Fullea et al., 2015]), and is similar to previous estimates of melting depths beneath the western Canary Islands ([Day et al., 2010]). It is also consistent with the ~2-6% melting of a PM-dominated source ([Day et al., 2010]), with possible contribution from carbonated peridotites, suggested to explain the melt volatile systematics of the 2011-2012 eruption ([Longpré et al., 2017]). The 1-8% variability in melting degree either reflects minor vari-
ations in temperature in the source (mantle potential temperatures for the Canary Islands are estimated around 1420-1480 °C; [Herzberg and Asimow (2008)], or slight changes in mantle lithology, for example varying amounts of recycled lower lithospheric mantle (more refractory), primitive mantle, and recycled altered oceanic crust/uppermost oceanic mantle (more fusible).

5.4. Volatile characteristics of the El Hierro mantle

Determining the volatile element character of the source region of basalts is challenging. Both CO$_2$ and H$_2$O in our MIs have been modified through degassing, decrepitation and/or diffusion. However, the Ba concentrations of the most primitive MIs can be used alongside published CO$_2$/Ba values for the primitive mantle to estimate undegassed carbon contents for the primary magmas. We used three estimates of primitive mantle carbon content (241 ppm, [Hirschmann (2016)]; 600 ppm, [Rosenthal et al. (2015)]; 2803 ppm, [Marty (2012)]) and calculated melting curves for these compositions (Fig. 8). We then selected the MIs with the highest MgO and lowest ILE concentrations from each sampled location, and used source CO$_2$/Ba estimates of 40, 60, 80 and 100 (lighter to darker colour circles in Fig. 8) to estimate a range of potential original magmatic CO$_2$ contents. Minimum and maximum initial CO$_2$ contents for El Hierro magmas are estimated at 0.9% and 4.2% respectively. These values correspond to mantle CO$_2$ between 203 and 675 ppm, similar to estimated carbon contents for OIB mantle (Rosenthal et al., 2015) and bulk silicate Earth (Hirschmann, 2016). Using the reconstructed MI CO$_2$ contents together with CO$_2$ melting models (Fig. 8), a more conservative estimate of 120-300 ppm source CO$_2$ is derived, which also overlaps with the Hirschmann (2016) estimate (Fig. 8).

Our magmatic CO$_2$ estimates of 0.9-4.2 wt% indicate that a typical El Hierro eruption would emit 9-42 g CO$_2$ per kg of erupted magma. This is up to two orders of magnitude larger than the estimate for MORB magmas (0.27-3.9 g/kg, [Cartigny et al. (2008)]), and
also larger than the 5.7 g/kg calculated for the 2014 Holuhraun eruption (Bali et al., 2018) or the 7.5 g/kg for the 1783 Laki eruption (Hartley et al., 2014), Iceland. However, it is comparable to the estimates of 3.5±1.4 wt% CO$_2$ (21-49 g/kg) for Piton de la Fournaise, Réunion (Boudoire et al., 2018). These results emphasise that volatile emissions from volcanoes are not uniform globally: relatively smaller systems, such as ocean islands with enriched mantle source signatures (e.g. Canary Islands, Cape Verde, Cook Islands, St. Helena, Azores) can contribute disproportionately more to global CO$_2$ fluxes than their size would indicate.

If we assume that the sulfur contents of the most primitive MIs (Fig. 5) represent undegassed melts, then the primary melt is estimated to contain 3500-4500 ppm S. This melt S content can be modelled by 2-8% melting of a mantle with 265-450 ppm S, if a bulk distribution coefficient $D_{\text{peridotite/melt}}^S = 0.062$ is used. This value is calculated assuming S has distribution coefficients similar to Dy in olivine, orthopyroxene and clinopyroxene (McKenzie and O’Nions, 1991), and is incompatible ($D=0.001$) in garnet. We note that mineral/melt partitioning is unlikely to dictate S behaviour during melting, which is more likely controlled by the availability of accessory sulfides and oxygen fugacity. A lower estimate of 240-340 ppm S in the source mantle can be calculated from the highest S/Dy measured in the MIs (370-530) and assuming a Dy concentration of 0.6378 ppm (Hofmann, 1988). Most estimates of primitive mantle sulfur fall between 120 and 310 ppm (Palme and O’Neill, 2003; Lyubetskaya and Korenaga, 2007), while DMM contains around 90-150 ppm S. Our calculations suggest that the El Hierro mantle source represents the S-rich end of primitive mantle estimates, or could be even more enriched.

Our melt inclusion Cl/K values of 0.04-0.10 are consistent with melts derived from a primitive mantle source, which are expected to have Cl/K=0.11±0.05 (Palme and O’Neill, 2003). However, our MI F/Nd values of 18-57 are higher than the 19±7 expected for primitive mantle-derived melts (Palme and O’Neill, 2003). Assuming K=258 ppm and
Nd=1.19 ppm for the primitive mantle (Hofmann, 1988), we calculate F and Cl concentrations of 20-67 ppm and 13-26 ppm, respectively, for the El Hierro mantle source.

5.4.1. Volatile recycling beneath the western Canary Islands

Our data demonstrate that El Hierro eruptions are fed by magmas that are C-, S- and F-rich in comparison with other oceanic islands like Hawaii (Moussallam et al., 2016; Anderson and Poland, 2017), and have volatile concentrations that closely resemble magmas erupting at intra-continental rift settings such as Erebus or the East African rift system (Oppenheimer et al., 2011; Moussallam et al., 2014; Hudgins et al., 2015).

Our calculated F content for the El Hierro mantle source, 20-63 ppm, is elevated compared to primitive mantle. This F enrichment is accompanied by relatively low source Cl of 13-26 ppm, which rules out crustal or seawater assimilation. We suggest that the F enrichment is best explained by the presence of a recycled crustal component in the source. This is in accordance with previous results from HIMU-type OIBs from the Pacific Ocean (Cabral et al., 2014) and from the Azores (Rose-Koga et al., 2017), where elevated F/Nd in MIs was interpreted as a signature originating from recycled material in the mantle source. Subducting slabs tend to retain most of their F during dehydration, while Cl is fluid-mobile and is typically lost to escaping fluids (Kendrick et al., 2014). Recycled lithospheric components in the mantle should therefore have high F/Cl, which is then reflected in melts produced from this lithology. The sulfur concentration in the mantle source might be less important than fO_2 in controlling melt sulfur contents. El Hierro magmas have been suggested to be more oxidised than typical OIB mantle (Longpré et al., 2014, 2017), which could be a key factor in controlling the S content of the primitive melts.

Our upper estimate of 675 ppm CO$_2$ in the El Hierro mantle falls within the 600±200 ppm estimated for an OIB mantle source (Rosenthal et al., 2015). However, our estimate of mantle carbon is based on CO$_2$/Ba ratios of 40-100 in the source, lower than the CO$_2$/Ba
of 133±44 suggested by Rosenthal et al. (2015) for OIB mantle. It is therefore possible that the El Hierro mantle could be significantly enriched in carbon. Excess carbon could originate from recycled subducted components, which would be consistent with Os and O-isotopic data indicating the presence of altered basalts and gabbros in the source region beneath the western Canary Islands (Day et al. 2009). Carbon could be present in the source mantle as recycled carbonates like magnesite or Ca-rich dolomites, which have been suggested to be stable during slab subduction (Dasgupta and Hirschmann 2010; Dorfman et al. 2018). Recycled carbonates are thought to melt around ∼300 km, forming carbon-rich fluids which induce silicate melting in recycled oceanic crustal material. The silicate and carbonatite melts produced then enrich the surrounding mantle in ILEs and volatiles, ultimately forming a heterogeneous, volatile- and carbon-rich mantle source beneath El Hierro. These results strongly strengthen previous observations at other OIBs (Cabral et al., 2014), that the character of the mantle source plays a crucial role in influencing volcanic volatile fluxes from OIBs: similar levels of CO₂ and S enrichment are expected at other OIBs with enriched trace element and isotopic composition both in the case of neighbouring islands chains (Cape Verde, Azores, St. Helena) and globally (e.g. Cook Islands).

6. Conclusions

Olivine- and clinopyroxene-hosted melt inclusions from young El Hierro basanites show considerable variability in trace element contents and ratios, and some of the highest CO₂, S and F contents measured in MIs from oceanic islands to date. Major element systematics show that MIs are trapped at all stages along the crystallization path. Some primitive eruptions carry Fo-rich olivines hosting high-MgO MIs, while others produced more evolved clinopyroxene- and oxide-saturated magmas. Melt inclusion incompatible trace element ratios like La/Yb are significantly variable even within single eruptions, in-
indicating that MIs were trapped from several magma batches that evolved separately from one another (Fig. 9). Trace element variability likely formed by mantle processes, e.g., variable melting degree of the mantle source. Since the variability in trace element ratios occurs in MIs with similar major element compositions and does not decrease with decreasing host olivine Fo content or clinopyroxene Mg#, they must represent melt batches formed either by different melting degrees, or by melting a heterogeneous mantle source. We propose a magmatic system comprising multiple interconnected sills (Stroncik et al., 2009; Klügel et al., 2015) whereby, during eruptions, multiple sills are tapped and mixed to produce a magma with a crystal cargo hosting MIs with highly variable trace element characteristics.

In this extensive plumbing system, various processes influence volatile systematics of the melt, both within the whole system and inside the melt inclusions. Up to 85% of melt inclusion CO$_2$ may be sequestered into inclusion-hosted bubbles formed by post-entrapment degassing during storage. Reconstructed total MI CO$_2$ concentrations (glass plus bubble) are >1.0 wt%, corresponding to volatile saturation pressures up to 700 MPa. Melt inclusion CO$_2$/Ba values of <31 are significantly lower than expected for undegassed, mantle-derived magmas, indicating that El Hierro magmas exsolved considerable CO$_2$ prior to inclusion trapping. Original melt CO$_2$ contents are likely between 0.9 and 4.2 wt%, with the precise value dependent on the mantle carbon content and melting degree. El Hierro MIs have high F concentrations and F/Nd values, which we suggest reflects a mantle source enriched in F relative to primitive mantle, most probably a recycled oceanic lithospheric component. Calculated sulfur and carbon contents for the mantle source are at the upper limit of published estimates for primitive mantle. Recycled C and S in the Canary Island mantle would provide a possible explanation for the formation of a trace element-enriched, heterogeneous mantle source beneath El Hierro, whereby volatile-induced melting of recycled crustal eclogites or pyroxenites metasomatises and enriches
the asthenospheric mantle. Original melt CO$_2$ estimates presented here indicate eruptions
of El Hierro, and more widely small oceanic islands where the presence of recycled crustal
material in the mantle source is common, can contribute disproportionately more volatiles
than their Icelandic or MORB counterparts. Our results demonstrate the usefulness of melt
inclusions as a tool for tracing volatile recycling into the mantle, the importance of alka-
line basaltic volcanism to fluxes of deep volatiles into the environment, and the influence
of subduction-related volatile recycling to the mantle on global oceanic island volatile
emissions.

Acknowledgements

This work was supported by NERC studentship NE/L002469/1 to ZT, and NERC grant
IMF600/1016. We thank Alex Nichols and two anonymous reviewers for their constructive
and helpful reviews, which greatly improved the quality of this manuscript. We thank
Cees-Jan de Hoog at the Edinburgh Ion Microprobe Facility for his assistance during the
ion probe analyses; Jonathan Fellowes for the assistance with the electron miroprobe in
Manchester; Iris Buisman for assistance with electron microprobe work in Cambridge;
and Heath Bagshaw and Mehul Chavda for assistance with Raman spectrometry. MH and
ME acknowledge Conny Spelbrink and Paul Hartley for assistance with various aspects of
the field work and sample collection.
Figures and figure captions
Figure 1. (A) Topographic map of the Canary Islands constructed using GeoMapApp (https://www.geomapapp.org/), showing the locations of post-1500 CE eruptions: 13 eruptions occurred in the last 500 years, the last being the submarine eruption 2 km south off the coast of El Hierro in 2011-2012. As seen in (A), the southern arm of the El Hierro rift system extends several kilometres into the Atlantic Ocean. (B) Simplified geological map of El Hierro, modified after Carracedo et al. (2001) with digital elevation model from GeoMapApp. The map shows the erupted products from the three main volcanic edifices (Tiñor, El Golfo and the rift volcanics) that have built the island, and the sample locations for this study.
Figure 2. (A) Transmitted and (B) reflected light images of olivine crystals from El Hierro, each containing several melt inclusions. The inclusions are dominantly glassy, and may contain bubbles and crystals of Ti-rich magnetite and, rarely, clinopyroxene. The inclusion-hosted oxides are interpreted as being captured during multi-phase entrapment of melt and solid, since the volumetric proportion of oxide in the inclusions (typically >10 vol.%) is much larger than expected for post-entrapment formation of daughter crystals. Small, globular sulfides, such as in the lower exposed inclusion in (A), probably precipi
tated after inclusion trapping in response to the decrease in S solubility that accompanies
diffusive Fe loss from the trapped melt (Danyushevsky et al., 2002).
Figure 3. Major element contents of melt inclusions (filled symbols) and matrix glasses (open symbols), together with literature data from El Hierro (gray and black circles; Carracedo et al. [2001]; Abratis et al. [2002]; Stroncik et al. [2009]; Longpré [2009]; Day et al. [2010]; Klügel et al. [2011]; Martí et al. [2013a]; Longpré et al. [2017]). Black dotted lines are liquid lines of descent (LLDs) calculated from primitive lava compositions.
from El Hierro using Petrolog3 (Danyushevsky and Plechov, 2011). The red dashed line is a LLD calculated from sample EH18 (Longpré, 2009), an olivine-phyric (FO90) alkaline basalt thought to represent a composition close to the primary melt; this sample is not thought to be affected by crystal accumulation. LLDs are calculated assuming 1 wt% initial H2O and a Fe3+/Fe2+ ratio of 0.35. Red crosses along this LLD represent 5% steps in crystallisation. Total crystallisation amount varies considerably between LLDs from 37% to 63%. Thin solid lines indicate the predicted positions of clinopyroxene, magnetite and plagioclase saturation on the liquidus, in order of decreasing MgO content. Symbol size is larger than the 1σ standard deviation.
Figure 4. (A) Multi-element diagram for El Hierro matrix glasses and melt inclusions. Concentrations are normalised to primitive mantle (Hofmann, 1988). Samples fall within the range of previously measured whole-rock analyses from El Hierro (the grey shaded area includes alkali basalts and trachytes, Carracedo et al. (2001); Abratis et al. (2002); Day et al. (2010); Klügel et al. (2011); Martí et al. (2013a)) and show similar patterns.
to whole-rock samples and MIs from the 2011-2012 eruption. (B) Melt inclusion Zr and (C) La/Yb vs. Mg# of the host mineral (olivine Fo mol% or clinopyroxene Mg#). Error bars are 1σ and mostly smaller than the symbol size. The dashed coloured lines show the average La/Yb for MIs from single locations. Grey circles show MIs from the 2011-2012 eruption (Longpré et al. 2017). The broad overall increase in Zr with decreasing host Mg# is consistent with crystal fractionation, but the variation in Zr and La/Yb at constant host Mg# cannot be explained by crystallisation of a single initial melt composition. This may instead indicate that the magmatic systems beneath El Hierro is fed by variably enriched primary melts.
Figure 5. H$_2$O, CO$_2$ and S concentrations in the studied melt inclusions on CO$_2$ vs. H$_2$O (A), S vs. H$_2$O (B) and CO$_2$ vs. S (C). Literature data are MIs from the 2011-2012 eruption by Longpré et al. (2017). Dashed lines show isobars calculated for the H-C-O-S-Fe system using D-Compress (Burgisser et al., 2015). Isobars were calculated using a magma composition close to clinopyroxene saturation of the Tanganasoga ankaramite (43.5 % SiO$_2$, 4.4 TiO$_2$, 12.7 % Al$_2$O$_3$, 13.1 % FeO, 8.8 % MgO, 12.8 % CaO, 2.96
% Na$_2$O, 0.8 % K$_2$O), at a temperature of 1200 °C. fO_2 of ΔNNO=1.5 was used in the calculations. Degassing paths were calculated using D-Compress with the same input melt composition and temperature, a starting CO$_2$ of 3500 ppm, and water contents between 1 and 3 wt%. Black- and red-outlined symbols show volatile concentrations measured in the glass phase. Larger symbols with blue outlines show reconstructed total CO$_2$ contents, i.e. glass plus bubble. Error bars for reconstructed MI CO$_2$ contents are 1σ standard errors derived from the Raman peak fitting process. 1σ error bars for glass are mostly smaller than the symbol size. Volatile contents in our melt inclusions are similar to those of MIs from the 2011-2012 eruption (grey circles). Maximum volatile saturation pressures derived from glass CO$_2$ contents are 250-350 MPa. Using total inclusion CO$_2$ (glass plus bubble), maximum saturation pressures exceed 700 MPa. Isobars plotted in H$_2$O-S space (Fig. 5B) are much less pressure-sensitive, hence there are large uncertainties on their position.
Figure 6. Volatile/trace element ratios of melt inclusions: (A) CO_2/Ba vs. $\text{H}_2\text{O}/\text{Ce}$ (note the log10 x-axis), and (B) F/Nd vs. Cl/K. Symbols are the same as in Fig. 5. Literature estimates of volatile concentrations in primitive mantle (PM) and depleted MORB mantle (DMM) are taken from Saal et al. (2002), Palme and O’Neill (2003), Salters and Stracke (2004), Rosenthal et al. (2015) and Hirschmann (2016), while trace element concentrations are from Palme and O’Neill (2003) and Salters and Stracke (2004). Rosenthal et al. (2015) did not estimate mantle water concentrations; hence we show their CO_2/Ba range as bar outside of the x-axis instead of a field in (A). Error bars are 1 σ. All the El Hierro melt inclusions have lower CO_2/Ba than would be predicted for melts derived from a PM source. Melt inclusions have Cl/K just below the expected range for PM, but have elevated F/Nd compared to both DMM and PM. This could indicate the presence of a high-F/Cl component in the mantle source.
Figure 7. Mantle melting models compared with our MI dataset and whole-rock samples and melt inclusions from the 2011-2012 eruption, shown on a La/Y vs. Sm/Y diagram. Melt inclusions and literature data are shown using the same symbols as Fig 3. The primitive mantle (PM) composition is from [Hofmann] (1988). Enriched mantle compositions were calculated by adding 5 and 10% eclogite-derived melt to PM. Symbols on the model curves indicate the partial melt fraction (same fractions for every curve). Most El Hierro whole-rock and melt inclusion compositions fall along the garnet-bearing primitive
mantle source curve. This indicates melting depth is restricted below 80 km, i.e. below the garnet-spinel transition, which is in accordance with the presence of a >90 km-thick Jurassic lithosphere beneath the island (Fullea et al., 2015).
Figure 8. Estimates of original melt inclusion CO$_2$ contents, calculated using measured Ba concentrations and assuming a range of CO$_2$/Ba values (40, 60, 80 and 100) for primary mantle-derived melts, plotted against measured La/Y values. Assuming a primitive mantle Ba content of 6.75 ppm, these CO$_2$/Ba ratios correspond to source CO$_2$ contents of 270, 405, 540 and 675 ppm respectively. The melt inclusion dataset is plotted in grey, where darker shade means a higher source CO$_2$/Ba ratio was used to calculate the undegassed melt CO$_2$ content. Large, coloured symbols with black outlines (symbols as in Fig. 3) show calculated CO$_2$ contents for the least-evolved melt inclusions from each sample location, identified by their high MgO, low ILE contents and high host olivine Fo mol%. Higher CO$_2$ at identical La/Y means higher input CO$_2$/Ba values for these points.
Large symbols with blue outlines show measured CO$_2$ and La/Y for melt inclusions with reconstructed (glass plus bubble) total CO$_2$ contents. Black curves show primary melt CO$_2$ concentrations produced by melting a primitive mantle source, calculated using different published mantle carbon concentrations ([Marty] 2012; [Rosenthal et al.] 2015; [Hirschmann] 2016); labelled triangle symbols show the partial melt fraction. The shaded coloured fields for each melting model represent the uncertainty in the starting mantle carbon content.
Figure 9. Schematic cartoon summarising the melt generation and evolution of El Hierro basalts. Primary melts form in the asthenospheric mantle, sampling a heterogeneous source containing a recycled oceanic lithospheric component that is enriched in incompatible lithophile elements (ILE), F, and possibly C and S. These melts ascend through the lithospheric mantle and start exsolving CO$_2$ at pressures >1 GPa. Partially degassed magmas are then stored within a multi-level storage system of interconnected sills. The sills can store magmas that are variably enriched in ILEs and volatiles, represented by boxes 1a and 1b (orange to dark red colours represent enrichment). Melts evolve separately within their storage reservoirs, trapping melt inclusions with differing La/Y. As the
liquids evolve they become saturated in Ti-rich magnetite and clinopyroxene (box 2) and continue to degas CO₂ together with H₂O and S. Eruptions are eventually fed by melts pooled from multiple sills, which carry a crystal cargo that hosts melt inclusions trapped from variably degassed melts and with highly variable ILE ratios (box 3).
References

Cartigny, P., Pineau, F., Aubaud, C., Javoy, M., 2008. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H₂O/Ce, δD, CO₂/Nb) in the North

Métrich, N., Rutherford, M.J., 1998. Low pressure crystallization paths of H₂O-saturated basaltic-Hawaiitic melts from Mt Etna: Implications for open-system degassing of

Steele-Macinnis, M., Esposito, R., Bodnar, R.J., 2011. Thermodynamic model for the effect of post-entrapment crystallization on the H₂O–CO₂ systematics of vapor-

Figure 1

- Active islands (erupted since 1500 CE)
- 100 km
- 5 km

- Tiñor volcanics (1.11 - 0.76 Ma)
- El Golfo volcanics (0.546 - 0.017 Ma)
- PFE-rift lavas (<20 ka)

- Mercade (S El Hierro)
- Montañita Negra (SW El Hierro)
- Montañas de Julán (S El Hierro)
- Sabinosa (W El Hierro)
- Tamaduste (E El Hierro)
- Tanganasoga (Central El Hierro)
Figure 3

- Whole-rock, literature data
- MI, literature data
- Matrix glass, literature data
- Olivine-hosted
- Clinopyroxene-hosted
- Matrix glass
- Mercade (S El Hierro)
- Montañita Negra (SW El Hierro)
- Montañas de Julán (S El Hierro)
- Sabinosa (W El Hierro)
- Tamaduste (E El Hierro)
- Tanganasoga (Central El Hierro)
- Calculated LLDs
- LLD (composition EH18)
- Saturation of new phase
Figure 4
Figure 5

Reconstructed MI, Tanganasoga
Reconstructed MI, Sabinosa
Isobars calculated in D-Compress
Degassing paths, closed system
Degassing paths, open system
Mercade (S El Hierro)
Montañita Negra (SW El Hierro)
Montañas de Julán (S El Hierro)
Sabinosa (W El Hierro)
Tamaduste (E El Hierro)
Tanganasoga (Central El Hierro)
MI, literature data
Figure 8
Melting of a heterogeneous asthenospheric mantle containing ILE, C and F enriched fluid-metasomatised domains

- Melts with different levels of trace element enrichment are stored in separate sills.
- Mixing of melts with differing trace element enrichments; crystallisation of ol+cpx+Ti-mgt; entrapment of cpx-hosted inclusions.
- Mixing to form magmas with an olivine and clinopyroxene cargo carrying melt inclusions with diverse compositions.

ILE-enriched melt (La/Yb > 40-50)
Average ILE-enriched melt (La/Yb ~ 15-40)
ILE-poor melt (La/Yb < 15)

Spinel-garnet boundary
Atlantic Ocean
Lithospheric mantle
Oceanic crust (gabbro & basalt)
Asthenospheric mantle (with fluid-metasomatised domains)

Figure 9