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1 Introduction

Supersymmetric quantum mechanics on a compact Riemannian manifold X has a beautiful
geometric interpretation [1] in which supersymmetric ground states correspond to de Rham
cohomology classes and the Witten index coincides with the topological Euler character
χ(X ). In this paper we will present a comparable geometric interpretation for the index of
superconformal quantum mechanics (SCQM) [2] (See also [3] and references therein). If
M is a hyper-Kähler cone, supersymmetric quantum mechanics on M admits an osp(4∗|4)
superconformal algebra [4]. Assuming a spectrum consisting of unitary irreps of this algebra,
one can define a superconformal index which counts (semi-)short multiplets [5]. These
special irreps contain BPS states which saturate a Bogomol’nyi bound. However, this
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definition is somewhat formal due to the singularity at the tip of the cone. To make progress
it is necessary to regulate the quantum mechanics by resolving this singularity. For this
reason we focus on hyper-Kähler cones M which have an equivariant symplectic resolution1

M̃ → M . A large class of such spaces is provided by Nakajima quiver varieties. These
spaces can be constructed as hyper-Kähler quotients and can also be realised as complex
algebraic varieties. The resolution is typically characterised by one or more real parameters
ξR with superconformal invariance recovered in the limit ξR → 0.

In the first part of this paper, we will give an explicit definition for the superconformal
index. In particular, we study a certain supersymmetric quantum mechanics denoted
S̃QM , defined on the resolved space M̃ which reduces to SCQM on M as the resolution
parameters are take to zero. We define a Witten index for S̃QM which counts BPS states
on M̃ and compute it using standard localisation methods. The index of S̃QM turns
out to be independent of the resolution parameters and provides a sensible definition of
the superconformal index. Consistency of this definition with the osp(4∗|4) symmetry of
the conformal point is not immediate, but we will prove two necessary conditions for this
below. The index on M̃ counts BPS states annihilated by Q,Q† where Q is the Dolbeault
operator twisted by the moment map of a certain holomorphic Killing vector on M̃ . Direct
computation of the index using localisation shows that it equals the equivariant χy genus
of M̃ as proposed in [7]. For projective manifolds, the BPS states defined by Q naturally
biject with harmonics forms of degree p, q which also naturally biject with Hq(Ωp) taken in
the Zariski topology. Hence the agreement between the corresponding indices in that case
can be explained by this bijection. Although we do not know of a proof, it seems possible
that such a bijection exists for the class of non-compact manifolds considered in this paper.

In the special case where M = MK,N , the moduli space of SU(N) Yang-Mills K-
instantons with a partial Uhlenbeck compactification, these BPS states can be provisionally
identified with the microstates of a supersymmetric AdS pp-wave black hole constructed
in [8]. For N � 1, the asymptotic growth of the index degeneracy with K and other charges
reproduces the Bekenstein-Hawking entropy of the black hole. In the second part of the
paper we estimate this growth rigorously for the special case N = 1 where the resolved
space M̃ coincides with the Hilbert scheme of K points on C2. Although not directly
related to gravity, this simple model exhibits an exponential growth in the index degeneracy
of states which is quite similar to the case of general N . It therefore provides a useful
toy model in which we can test the methods used in [8]. Moreover, the technique used in
the proof works for a large class of examples corresponding to plethystic exponentials of
rational functions. The authors hope it will lead to more rigorous results in the theory of
asymptotics. Previous works related to the asymptotic of the index includes [9, 10]. In the
remainder of this section we will briefly state the main results of the paper with details
relegated to the subsequent sections.

Any hyper-Kähler cone M is equipped with a triholomorphic homothetic vector D
whose Lie derivative serves as the dilation operator in superconformal quantum mechanics
(SCQM) on M . We choose a preferred complex structure I and the vector field V = ID is

1For a review of the geometry of these spaces see section 2 of [6].
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a holomorphic killing vector field under which the holomorphic symplectic form coming
from the hyperkahler structure has weight two. As we review below, the statement about
V is also true for the equivariant symplectic resolution M̃ . These conditions allow us to
write down a Lagrangian [11] for particle motion on M̃ with N = (2, 2) supersymmetry
with in which the norm of V (which equals norm of D) appears as a potential:2

L(φ, ψ, ψ̄) = 1
2(φ̇, φ̇) + (ψ̄, ψ̇)− 1

4R(ψ,ψ, ψ̄, ψ̄)− 1
2(D,D)− i∇iDjψ

iψ̄j (1.1)

In the general setting described above, the potential term in the Lagrangian grows asymp-
totically in all directions. Thus, although M̃ is non-compact, the resulting supersymmetric
quantum mechanics, denoted S̃QM , has a discrete energy spectrum bounded below by zero.

States in S̃QM are represented by differential forms on M̃ . They carry a conserved
charge QV corresponding to the eigenvalue of −iLV acting on forms. All states obey a
Bogomol’nyi bound E ≥ |QV | where E is the eigenvalue of the Hamiltonian. The so-called
BPS states saturating this bound are annihilated by Q,Q† where

Q = ∂̄ + ∂̄C∧

is a twisted Dolbeault operator and C denotes the moment map of V , defined up to a
constant. Assuming that the simuiltaneous eigenspaces of {Q,Q†} and QV in the full
Hilbert space are all finite dimensional, one can show using a hodge-type decomposition that
the BPS states biject with Q-cohomology classes, provided we restrict to states with definite
quantum number under QV . Note that the osp(4∗|4) superconformal invariance of SCQM
is broken to a conventional N = (2, 2) supersymmetry algebra in S̃QM . The Bogomol’nyi
bound discussed here is the one corresponding to the latter algebra. Nevertheless both the
bound and the corresponding BPS states reduce to those of the full superconformal algebra
as the resolution parameters vanish.

As usual we can define an index which only receives contributions from BPS states,

Z[t, y, zi] = Tr((−1)F exp(−µ{Q,Q†})tLtyLyzLi
i ), µ > 0 (1.2)

Here zi are the fugacities corresponding to the additional holomorphic killing vector fields
Zi which generate U(1) isometries on M̃ . The product over i in the trace is implicit. The
conserved charges are defined as follows:

F = p+ q − dimC M̃

2 , Lt = −iLV −
(
p− dimC M̃

2

)
, Ly = p− dimC M̃

2 , Li = −iLZi

Here p and q respectively denote the holomorphic and anti-holomorphic degrees of differen-
tial forms.

Using standard techniques of supersymmetric quantum mechanics we can localise the
index to the fixed points of a generic group action on M̃ . The resulting formula,

Z[t, y, zi] =
∑
P

(−ŷ)− dimC M̃/2∏
i

1− ŷχ−1
i (P )

1− χ−1
i (P )

(1.3)

2Here φ and ψ denote bosonic and fermionic degrees of freedom on M̃ . See section 2 for notation and
further details.
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with ŷ: = y/t, expresses the index as a sum over fixed points. The contribution of each
fixed point P is given in terms of the one dimensional characters χi(P ), i = 1, . . . , dimC M̃

(depending on t and the zi) of the group action on the tangent space to the manifold at P .
As we discuss further below, this formula for the index agrees with equivariant χy genus
of M̃ .

By construction, the index Z[t, y, . . .] provides a regularised version of the superconfor-
mal index. However, such an interpretation requires that the index takes the form of a sum
over the contributions of irreducible representations of osp(4∗|4) superconformal algebra [5].
This in turn demands several non-trivial properties of the index which are not immediately
obvious from the definition or the localisation formula. In particular the index must be
invariant under y → 1/y and must have a finite limit as t→ 0 and a Taylor expansion in
nonnegative powers of t. In section 2, we prove these properties directly from the geometric
definition of the index.

In the remaining sections of the paper we analyse the special case where M̃ is the Hilbert
scheme of K points on C2 which coincides with the moduli space of K non-commutative
abelian instantonsMK,1. This space has an additional U(1) holomorphic isometry with
charge Lx which can be used to grade the index. Our analysis in the general case guarantees
the index has a Taylor expansion of the form,

ZK(t, x, y) =
∑

Lt≥0,Ly ,Lx

C(Lt, Ly, Lx,K)tLtyLyxLx

and that the coefficents C ∈ Z appearing in this expansion correspond to an a certain
alternating sum of BPS states. It also corresponds to a certain alternating sum of sheaf
cohomology classes with definite grade:

C(Lt, Ly, Lx,K) =
∑
q≥0

(−1)qd(q, Lt + Ly, Lx,K)

where d(q, Lt + Ly, Lx,K) denotes the dimension of the tLt+LyxLx weight space of
Hq(Ωp, M̃ =MK,1), p = Ly + dimC M̃/2. Later in the paper ZK and coefficient C differ
from these definition by an overall sign. Since we are only interested in the growth of |C|
the overall sign is not a problem.

In recent work [8] we studied the growth of the index coefficients C for X = MK,N

using electromagnetic duality and other physics input. Our main result was an asymptotic
formula for the exponential growth of these coefficents. In this paper we give a rigorous
derivation of this asymptotic in the N = 1 case where the relevant moduli space is the
Hilbert scheme described above. In particular, we prove that when L/K is fixed (and ≥ 4),

C(L,0,0,K) = exp
(
2π24−1/4√LK1/4+. . .

)(
cos

(
2π24−1/4√LK1/4+. . .

)
+o(1)

)
,K→∞

(1.4)
where . . . denote subleading terms3 which are real polynomials in K, log(K) when K/L

is fixed. In this paper A = O(B) means there is a universal constant C > 0 so that
3We will not compute the exact coefficients in the subleading corrections.
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|A| ≤ C|B|. OK/L(B) means there is a constant C which depends only on K/L so that
|A| ≤ C(K/L)|B|. removed a sentence here

The proof relies on an a exact resummation of the generating function,

∞∑
K=0

ZK [t, y, x] qKτ = exp

∑
n≥1

1
n

qnτ
1− qnτ

ŷ−n(1− ŷnqn1 )(1− ŷnqn2 )
(1− qn1 )(1− qn2 )

 (1.5)

which has been rigorously proven [12]. We then extract the coefficient C using an contour
integral, and applies the Hardy-Ramanujan saddle point [13] method to compute the
asymptotic. We also performed numerical check of the asymptotic formula up to L ≈ K ≈ 60
and found good agreement.

2 Superconformal quantum mechanics on hyperkahler cones

In this section we review superconformal quantum mechanics on general hyperkahler cones
and explain the superconformal index and its computation.

A hyperkahler cone is a connected hyperkahler manifold (away from the singularities)
(M, g, I, J,K) with an additional triholomoprhic homothetyD (a vector field onM) such that

LDI = LDJ = LDK = 0,LDg = 2g

where I, J,K are the three complex structures and g is the hyperkahler metric [7]. L denotes
lie derivative. We further assume that ID, JD,KD generate U(1) isometries in the sense
that the flow along any of these three vector fields by 2π is the identity. We also assume the
existence of a function C:M → R so that D2 = 2C,Di = ∇iC. In the simplest example of
flat R4N with the standard Euclidean metric, the vector field D = xi∂xi and C = 1

2
∑
i |xi|2

where xi are flat coordinates of R4N . It can be shown that a supersymmetric particle on a
hyperkahler cone with Lagrangian

L(φ, ψ, ψ̄) = 1
2(φ̇, φ̇) + (ψ̄, ψ̇)− 1

4R(ψ,ψ, ψ̄, ψ̄)

with SUSY transformation law

δφ = εψ + ε̄ψ̄, δψ = −ε̄φ̇, δψ̄ = −εφ̇

has osp(4∗|4) symmetry [14], where ∗ denotes a real form of osp(4|4). The bosonic part of
the real form is so(2, 1) ⊕ su(2) ⊕ so(5). φ is a map R → M and ψ is an odd section of
the complexified pullback tangent bundle via φ. ( , ) is the Riemannian metric g and dot
means time derivative. The Hilbert space of the quantum mechanics consists of complex
differential forms on M which decay at infinity.

Our goal is to compute a Witten type index of the form Tr((−1)F exp(−µ{Q,Q†}) . . .)
using localisation, where F is a Fermion number and Q is a supercharge, both of which will
be defined below. The . . . denotes the insertion of conserved charges associated with an
isometric torus action of M . Most hyperkahler cones are singular. As a result, localisation
computation is difficult as the fixed locus of the torus action is usually singular. As a
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result, we consider a regularized version of the quantum mechanics S̃QM which lives on a
resolved space M̃ →M where M̃ is smooth. We regard M as a Kahler manifold by picking
the complex structure I. The manifold M̃ is also Kahler and the Kahler metric on M̃

should asymptotically agree with the Kahler metric on M near infinity. We also assume
the existence of a vector field D on M̃ so that ID generates a U(1) Kahler isometry of
M̃ and the resolution M̃ → M is U(1) equivariant. D is usually not a homothety on M̃
and quantum mechanics on M̃ is usually not conformal. We define the function C as the
moment map associated with ID on M̃ : dC(·) = −ω(ID, ·) where ω is the Kahler form of
M̃ . Equivalently, ∇iC = Di. Hence C is defined up to an overall constant. Finally, we
also assume the existence of a hyperkahler structure4 on M̃ extending the Kahler structure.
The hyperkahler structure naturally defines a holomorphic symplectic form ωC on M̃ which
we assume to have weight two under D: LDωC = 2ωC. Such a resolution M̃ → M is
usually called an equivariant symplectic resolution. A common way of constructing such a
resolution is to use twisted GIT quotient. When M is an ordinary GIT quotient X//G (the
set of Zariski closed G-orbit in X where X an affine variety and G a reductive algebraic
group), we can replace the quotient by a twisted GIT quotient X//χG, where χ:G→ C is
a character. The twisted GIT quotient is often nonsingular and there is a natural projective
map X//χG→ X//G which resolves the singularity in M = X//G [15]. In this work, M
is a hyperkahler quotient with real FI parameters ξR and such resolution is the same as
setting ξR to be nonzero.

We study supersymmetric quantum mechanics with target space M̃ and regard it as
a regularized version of quantum mechanics on M . Its classical Lagrangian is the usual
Riemannian supersymmetric quantum mechanics with a superpotential [11]

L(φ, ψ, ψ̄) = 1
2(φ̇, φ̇) + (ψ̄, ψ̇)− 1

4R(ψ,ψ, ψ̄, ψ̄)− 1
2(D,D)− i∇iDjψ

iψ̄j (2.1)

with SUSY transformation law

δφ = εψ + ε̄ψ̄, δψ = −ε̄(φ̇− iD), δψ̄ = −ε(φ̇+ iD)

and supercharges
QRiem = i(φ̇− iD, ψ̄), QRiem = −i(φ̇+ iD, ψ)

Under the SUSY transformation law the Lagrangian changes by a total derivative

δL = d

dt
(ε̄ψ̄, φ̇)− iε d

dt
(D,ψ)

The Hilbert space is the space of smooth differential forms on M̃ which decay at infinity.
The Riemannian supercharge and the Hamiltonian are

QRiem = d+ dC∧, H = 1
2{Q,Q

†} = 1
2{d, d

†}+ 1
2 |dC|

2 + 1
2LD + 1

2L
†
D

Since V : = ID is a holomorphic killing vector field by assumption, the Lagrangian (2.1)
has a U(1)×U(1) R-symmetry and hence (2, 2) supersymmetry. The supercharges are

Q = ∂̄ + ∂̄C∧, Q̃ = ∂ + ∂C∧, Q+ Q̃ = QRiem

4The map M̃ →M does not need to preserve the full hyperkahler structure.
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And the commutators are

{Q,Q†} = H + iLID, {Q̃, Q̃†} = H − iLID, {Q, Q̃} = {Q, Q̃†} = 0

Since {Q,Q†} ≥ 0, {Q̃, Q̃†} ≥ 0 we have the BPS bound

H ≥ |iLV |

The Hamiltonian simplifies on the unresolved space. In this case the lie derivative term
LieD + Lie†D can be expressed using form degree

LD + L†D = 2(p+ q)− 1
2 dimC(M̃)

where p, q are the holomorphic and antiholomorphic degrees. Hence we can rewrite the
BPS bound as the following:

1
2{d, d

†}+ 1
2 |dC|

2 ≥ |iLID| − (p+ q) + 1
4 dimC M̃

States which are annihilated by both Q and Q† are known as BPS states. We are only
interested in the states with definite quantum numbers under global symmetries. Since
Q = exp(−C) ◦ ∂̄ ◦ exp(C), BPS states with antiholomorphic degree q = 0 are of the form
ω exp(−C) where ω is an algebraic differential forms with at most polynomial growth at
infinity. The exponentially decaying factor exp(−C) ensures the normalizability of these
states. Rigorous results concerning the operators Q can be found in [16].

Our goal is to count the alternating sum of these BPS states using a superconformal
index [7]

Z[t, y, zi] = Tr((−1)F exp(−µ{Q,Q†})tLtyLyzLi
i ), µ > 0 (2.2)

Here zi are the fugacities corresponding to additional holomorphic killing vector fields Zi
which generate U(1) isometries on M̃ . The product over i is implicit in the index. The
conserved charges are defined as follows:

F = p+ q − dimC M̃

2 , Lt = −iLV −
(
p− dimC M̃

2

)
, Ly = p− dimC M̃

2 , Li = −iLZi

We assume that t, y, zi ∈ U(1). Later we will see that the index can be resummed to a
rational function and hence the domain of t, y, zi can be enlarged. The usual argument
shows that the index is independent of µ and receives contribution from BPS states only:

Z[t, y, zi] = TrBPS((−1)F tLtyLyzLi
i )

Now we discuss a symmetry of this index. y is the Cartan generator of an su(2)
R-symmetry: the other two generators of su(2) (more precisely its complexification) are
ωC∧, (ωC∧)† with commutators[

p− dimC M̃/2, ωC∧
]

= 2ωC∧[
p− dimC M̃/2, (ωC∧)†

]
= −2(ωC∧)†[

ωC∧, (ωC∧)†
]

= 4
(
p− dimC M̃

2

)
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The last identity follows from the hyperkahler structure of the manifold. As a result we
have a unitary action of the following real lie algebra

su(2)︸ ︷︷ ︸
ωC∧

p−dimC M̃/2
(ωC∧)†

⊕u(1)︸︷︷︸
LID

⊕u(1)︸︷︷︸
LZ1

⊕ . . .

We can expand the superconformal index as a product of characters of this real lie algebra.
Since the su(2) characters are invariant under y → y−1, it follows that the index is also
invariant under y → y−1.

Now let us derive an explicit localisation formula for the index. We introduce a new
variable ŷ = y/t which makes our future computation easier. The index written using ŷ is

Z[t, ŷ, zi] = Tr((−1)q exp(−µ{Q,Q†})t−iLIDz
−iLZi

i (−ŷ)p−dimC /2) (2.3)

The superconformal index can be computed using a direct path integral manipulation
as in [17]. Here we briefly sketch the details. First, we write the Witten index (without the
insertion of the conserved charges) Tr((−1)F exp(−µ{Q,Q†})) (formally) as a path integral
(up to a sign (−1)dimC M̃/2)∫

dφdψdψ̄ exp
(
−
∫ µ

0
L̃(φ, ψ, ψ̄)

)
, L̃ = L−∇iVjψiψ̄j (2.4)

with periodic boundary conditions

φ(µ) = φ(0), ψ(µ) = ψ(0), ψ̄(µ) = ψ̄(0)

The Witten index is ill-defined in our setting since there are infinitely many states
annihilated by both Q and Q†. As a result, this path integral is ill-defined. It becomes well-
defined after we insert the conserved charges. This procedure is equivalent to changing the
boundary conditions of fields in the path integral: when we compute 〈p| exp(−µH)U−1|p〉
for p ∈ M̃ , the Euclidean transition amplitude between U−1|p〉 and 〈p|, we need to integrate
over paths which start at U−1p and end at p. Here U :M̃ → M̃ is a Kahler isometry which
also acts on the Hilbert space as a unitary operator. In our case U−1 = t−iLIDz

−iLZi

i When
we take trace over p the boundary condition becomes φ(µ) = Uφ(0), ψ(µ) = U∗ψ(0), where
U∗ is the derivative of U . The power of ŷ contains the holomorphic degree only so we rotate
the (1,0) part of ψ by ŷ:

ψ0,1(µ) = ψ0,1(0), ψ1,0(µ) = exp(iγ)ψ1,0(0), ψ = ψ1,0 + ψ0,1, ŷ = exp(iγ)

where I have decomposed ψ into its (1, 0) and (0, 1) part. In summary, the correct boundary
condition for (2.3) should be

φ(µ) = Uφ(0), ψ0,1(µ) = U∗ψ
0,1(0), ψ1,0(µ) = U∗ exp(iγ)ψ1,0(0)

Now we take µ → 0. If a path φ starts at p ∈ M̃ and ends at Up ∈ M̃ , the time scales
as µ and so the velocity scales as 1/µ and the action scales as velocity square times time

– 8 –
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µ−2µ ∼ µ−1. And hence as a long as Up 6= p the action would diverge and its exponential
would tend to zero. The only paths whose action do not diverge are when Up = p and the
path is constant. For generic t, zi the fixed points of U agree with the fixed points of torus
action generated by V,Zi. We assume that there are only finitely many fixed points. The
path integral localizes to constant paths at these fixed points. We assume that it localizes
to ψ = 0 because the SUSY variation δφ = 0 when ψ = 0.

It remains to compute the quadratic fluctuations around these saddle points. Let P be
a fixed point. We diagonalize the action of U∗ on the tangent space of M̃ at P :

U∗(TP M̃) = diag(exp(iθ1), exp(iθ2), . . . , exp(iθdimC M̃ ))

So the tangent space is a direct sum of one dimensional complex vector spaces. We will
focus on the first summand and later take product over all the summands. The index is
invariant under rescaling the potential C by λC whenever λ > 0 and so we can let λ→ 0
in our computation and discard the function C. We also scale the time variable θ = 2πt/µ
so that θ ∈ [0, 2π].

The quadratic fluctuations consist of the bosonic determinant det(−d2/dθ2) and two
fermionic determinants det(d/dθ)0,1 and det(d/dθ)1,0 coming from the quadratic fluctuations
of ψ1,0 and ψ0,1 respectively. The final result is (up to a constant which depends only on µ):

det(d/dθ)0,1 det(d/dθ)1,0(det(−d2/dθ2))−1/2 (2.5)

To compute the bosonic determinants we use the following real eigenbasis for −d2/dθ2:
(φ(θ) = P + δφ(θ))

δφ = exp
(
inθ + iθ1

2π θ
)
, n ∈ Z

δφ = i exp
(
inθ + iθ1

2π θ
)
, n ∈ Z

One can easily check that all the eigenfunctions satisfy the boundary condition δφ(2π) =
U∗δφ(0) = exp(iθ1)δφ(0). Now we take the product of the eigenvalues of −d2/dθ2:

det
(
− d2

dt2

)
|θ1 =

∏
n∈Z

(
n+ θ1

2π

)2 (
n+ θ1

2π

)2
=

 θ1
2π

∏
n≥1

(
θ2

1
(2π)2 − n

2
)4

∝ sin(θ1/2)4

where we have ignored an infinite proportionality constant. We have only computed the
determinant restricted to the θ1 summand of the tangent space. To compute the full
determinant we need to take product over all the summands:√

det
(
− d2

dt2

)
=
∏
i

√
det

(
− d2

dt2

)
|θi

=
∏
i

sin(θi/2)2

For the fermionic determinant we use the basis

ψ0,1 = exp
(
inθ + i

θ1
2πθ

)
, n ∈ Z

ψ1,0 = exp
(
inθ + i

θ1 + γ

2π θ

)
, n ∈ Z
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Hence

det
(
− d

dt

)
0,1

det
(
− d

dt

)
1,0

=
∏
n∈Z,i

(
n+ θi

2π

)(
n+ θi + γ

2π

)
=
∏
i

sin(θi/2) sin((θi + γ)/2)

So the final result for the quadratic fluctiation (2.5) is

∏
i

sin((θi + γ)/2
sin(θi/2) =

∏
i

exp(−iγ/2)1− exp(iθi)ŷ
1− exp(iθi)

One can rewrite this expression in a different way using the character of torus action
U(1)× U(1)× . . . generated by −V,−Z1,−Z2, . . . (note the minus sign). We decompose
the tangent space at P into one dimensional weight spaces of the torus. We denote the one
dimensional characters as χi(t, zi) where i labels the one dimensional weight spaces and
(t, zi) ∈ U(1)×U(1)× . . .. Then the contribution from P can be rewritten as

ŷ− dimC M̃/2∏
i

1− ŷχ−1
i (P )

1− χ−1
i (P )

Now let us add the overall sign (−1)− dimC M̃/2. The full superconformal index is sum over
the fixed points

Tr((−1)F exp(−µ{Q,Q†})tLtyLyzLi
i ) =

∑
P

(−ŷ)− dimC M̃/2∏
i

1− ŷχ−1
i (P )

1− χ−1
i (P )

(2.6)

For some M and M̃ , and certainly for the instanton moduli spaces, this index equals
the equivariant χy genus of M̃ . To explain this concept, we recall that there is a torus
action on M̃ . The torus action naturally lifts to an action on Hq(Ωp, M̃) taken in the
Zariski topology. Our convention is that if ω ∈ H0(Ωp, M̃) is a global differential form
then the action is via inverse pullback (t, zi) · ω = (t−1z−1

i )∗ω. Assuming the character ch
of the torus action on Hq(Ωp, M̃) is a well-defined infinite Laurent series in t, zi then the
equivariant χy genus is defined as∑

p,q

(−1)q(−ŷ)p−dimC M̃/2chHq(Ωp, M̃) =
∑
p

(−ŷ)pχ(Ωp) (2.7)

where the equivariant Euler characteristic χ(Ωp) =
∑
q(−1)qchHq(Ωp) is an alternating

sum of the characters of Hq(Ωp). The equivariant χy genus is an infinite Laurent series
in t, zi and is known to resum to (2.6) for the resolved instanton moduli spaces [18]. The
characters are well-defined for all the examples we consider in this paper. In fact, under
the following assumptions which are satisfied by the resolved instanton moduli spaces:

1. M is affine.

2. The weight spaces of H0(Ω0,M) under t action generated by −V = −ID are all finite
dimensional.

3. The t-weights of H0(Ω0,M) are nonnegative and the only element with zero weight is
the identity function.
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4. π:M̃ →M is a t, zi equivariant projective morphism. Here we assume that zi also act
on M in a natural way.

It can be shown that [18]

1. The t-weight spaces of Hq(Ωp, M̃) are all finite dimensional

2. The t-weights of Hq(Ωp, M̃) are all bounded below

We briefly sketch the argument here. First we pushforward the sheaves Ωp on M̃ to obtain
the higher direct image sheaves Rqπ∗Ωp on M . Since M is affine, the global sections
H0(Rqπ∗Ωp,M) ∼= Hq(Ωp, M̃). Since the map π is projective, Rqπ∗Ωp are all coherent
sheaves on M and hence H0(Rqπ∗Ωp,M) is a finitely generated module over H0(Ω0,M).
Hence Hq(Ωp, M̃) is also finitely generated over H0(Ω0,M). We can pick generators
x1, . . . , xn ∈ Hq(Ωp, M̃) and any element of Hq(Ωp, M̃) can be obtained by acting on these
xi with elements of H0(Ω0,M). Since H0(Ω0,M) has only positive t-weights, we deduce that
the weights of Hq(Ωp, M̃) is bounded below. Since the only element of H0(Ω0,M) with zero
t-weight is the identity, we see that t-weight spaces of Hq(Ωp, M̃) are all finite dimensional.

These results suggest that we should Taylor expand the rational function at t = 0 to
recover the infinite Laurent series (2.7). We define the integer valued function C(Lt, Ly, Li)
as the coefficients before tLtyLyzLi

i = tLt+Ly ŷLyzLi
i in the Taylor expansion, then it can be

written as
C(Lt, Ly, Li) = (−1)Ly

∑
q≥0

(−1)qd(q, Lt + Ly, Li)

where d(q, Lt+Ly.Li) denotes the dimension of the tLt+LyzLi
i weight space ofHq(Ωp, M̃), p =

Ly + dimC M̃/2. In this paper we are interested in the growth of C when Lt is large with
Ly = 0.

Finally we are ready to prove that the index has a finite limit as t→ 0 predicted by
the osp(4∗|4) symmetry. To prove this proposition we use the geometric intepretation of
this index ∑

p≥0

(
−y
t

)p−dimC(M̃)/2
χ(Ωp) (2.8)

Each χ(Ωp) is a rational function in t, zi:

χ(Ωp) =
∑
P

∑
i1<i2<...,<ip χi1(P ) . . . χip(P )∏

i(1− χi(P ))

The sum is over all fixed points P under the torus action t, zi. First we show that all χ(Ωp)
have finite limits as t → 0. There are three possible limits for each χi as t → 0: finite,
infinite or zero. In all cases both (1− χi(P ))−1 and χi(P )(1− χi(P ))−1 have finite limits.
Since each term is a product of (1− χi(P ))−1 and χi(P )(1− χi(P ))−1 we see that χ(Ωp)
also has a finite limit as t→ 0.

This result immediately implies half of the proposition: when the holomorphic degree
p ≤ dimC(M̃) the term (

−y
t

)p−dimC(M̃)
χ(Ωp)
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has a finite limit as t → 0. Now let us use the y → y−1 symmetry to prove that when
p > dimC(M̃) this expression also has a finite limit. The y → y−1 symmetry implies(

−y
t

)p−dimC(M̃)/2
χ(Ωp) +

(
−y
t

)p′−dimC(M̃)/2
χ(Ωp′)

is invariant under y → y−1 whenever p+ p′ = dimCM . Hence(
−1
t

)p−dimC(M)/2
χ(Ωp) =

(
−1
t

)p′−dimC(M)/2
χ(Ωp′)

which implies
χ(Ωp′) = χ(Ωp)tp′−p

We know | dimC(M)/2− p′| = 1
2 |p
′ − p| and so if p′ > p

χ(Ωp′)tdimC(M)/2−p′ = χ(Ωp)tdimC M̃/2−p → 0

as t→ 0. Hence every term in the superconformal index (2.8) has a finite limit as t→ 0.

3 Quantum mechanics on the Hilbert scheme

In this section we specialize to the case M̃ = HilbK(C2) of Hilbert scheme of K-points on
C2, denoted. It resolves the singularity of M = SymK(C2) the Kth symmetric product of
C2. The Hilbert scheme of K-points is described by the following ADHM data [15]

[X, X̃] = 0,
[
X,X†

]
+ [X̃, X̃†] +QQ† − Q̃†Q̃ = ξ > 0 (3.1)

quotient by the action of U(K) given by

(X, X̃,Q)→ (gXg−1, gX̃g−1, gQ, Q̃g−1), g ∈ U(K)

where X, X̃ are K by K matrices and Q ∈ CK is a column vector. Q̃ ∈ CK is a row vector.
The case ξ = 0 corresponds to M = SymK(C2). This is a hyperkahler quotient and so
HilbK(C2) has a natural hyperKahler metric which is the restriction of the metric

|δX|2 + |δX̃|2 + |δQ|2 + |δQ̃|2

to the orthogonal complement to the U(K) orbit in the (3.1). It is also known that this
Hilbert scheme is isomorphic (via the identity map for any ξ) to the following noncompact
(in the Euclidean topology) algebraic variety:

[X, X̃] = 0/(X, X̃,Q) ∼ (gXg−1, gX̃g−1, gQ), g ∈ GL(k; C)

subject to the stability condition: the span of
〈
XnX̃mQ,m, n ≥ 0

〉
= CK . In this repre-

sentation the complex structure of the Hilbert scheme is manifest.
The potential C has the following form:

C = 1
2(|X|2 + |X̃|2 + |Q|2 + |Q̃|2)

– 12 –
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It is U(K) invariant and descends to a well-defined function on HilbK(C2) and SymK(C2).
The dilation vector field D on SymK(C2) is just the flat space homothetic vector field.

In addition to t, there is another global U(1) isometric action called x and action of t
and x are given by:

(X, X̃,Q, Q̃) 7→ (t−1xX, t−1x−1X̃,Q, t−2Q̃)

To make our calculation easier we introduce the notation (q1, q2) ∈ U(1)2:

q1 = tx, q2 = t/x

The corresponding quantum numbers are naturally interpreted as the two angular momenta
of the supersymmetric particle.

To compute the superconformal index (2.6) we need to know the fixed points of the
U(1)2 action and the characters at the fixed points. The fixed points are parametrized by
young tableaux with K boxes [15]. The appendix summarizes our convention for young
tableaux. The character at a fixed point Y (a young tableaux) is given by:∑

s∈Y
q
−L(s)−1
1 q

A(s)
2 + q

L(s)
1 q

−A(s)−1
2

Substitute in the localisation formula (2.6) the superconformal index is (up to an overall
sign (−1)dimC M̃/2)

ZK(q1, q2, ŷ) =
∑
|Y |=K

(1− ŷqL(s)+1
1 q

−A(s)
2 )(1− ŷ−1q

L(s)
1 q

−A(s)−1
2 )

(1− qL(s)+1
1 q

−A(s)
2 )(1− qL(s)

1 q
−A(s)−1
2 )

(3.2)

And the function C (again up to an overall sign which will not be important since we are
only interested in |C|) is the Taylor coefficients of ZK written in variables t, x, y:

ZK(t, x, y) =
∑

Lt≥0,Ly ,Lx

C(Lt, Ly, Lx,K)tLtyLyxLx

In this paper we investigate the asymptotic of C(L, 0, 0,K) in the Cardy limit L,K →∞
with L/K fixed. The main tool we will use is the following generating function:

Z(qτ , q1, q2, ŷ) =
∑
K≥0

qKτ ZK(q1, q2, ŷ)

The numbers C(Lt, Lx, Ly,K) are the Taylor coefficients of the expansion

Z(qτ , q1, q2, ŷ) =
∑

Lt≥0,Ly ,Lx,K≥0
C(Lt, Lx, Ly,K)tLtxLxyLyqKτ

The generating function admits the following resummation [12] which will be essential to
our proof:

Z(qτ , q1, q2, ŷ) = exp
(

1
n

qnτ
1− qnτ

ŷ−n(1− ŷnqn1 )(1− ŷnqn2 )
(1− qn1 )(1− qn2 )

)
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The infinite sum inside the exponential converges to a holomoprhic function in the following
domain:

|qτ | < 1, |q1| < 1, |q2| < 1, |<(m̂)| < 3
4<(β), ŷ = exp(−m̂), qτ = exp(−β) (3.3)

It can actually be analytically continued to a large domain but throughout this paper we
will only work with this domain. The factor 3/4 is chosen because later in our proof <(m̂)
cannot be too close to <(β). We will extract the Taylor coefficients C using a contour
integral

C(2L, 0, 0,K) = 1
(2πi)4

∫
dqτ

qK+1
τ

dq1

qL+1
1

dq2

qL+1
2

dŷ

ŷ
exp

(
1
n

qnτ
1− qnτ

ŷ−n(1− ŷnqn1 )(1− ŷnqn2 )
(1− qn1 )(1− qn2 )

)

Then we will apply the saddle point method to compute its asymptotic. Notice that we
have replaced L with 2L because when the power of x is zero, the power of t is always even.
The saddle point method predicts that in the limit L,K � 1, the integral of C is dominated
by a saddle point near qτ = q1 = q2 = 1, ŷ = −1 and the leading order growth of C is the
value of the integrand at the saddle point. The prediction is:

C(2L, 0, 0,K) ∼ exp
(
2
√

2π
√
LK1/424−1/4

)
≈ exp

(
4.0146

√
LK1/4

)
(3.4)

as K,L→∞ when K/L fixed. A nonrigorous derivation of this asymptotic will appear in
the next section. In this paper we will prove a more precise version of the asymptotic

C(2L, 0, 0,K) = exp
(
2
√

2π24−1/4√LK1/4 + P
) (

cos
(
2
√

2π24−1/4√LK1/4 +Q
)

+ o(1)
)

(3.5)
where P,Q are real polynomials in K, log(K) for fixed K/L and satisfy the following bound

P = OK/L(K2/4), Q = OK/L(K2/4)

The o(1) term goes to zero as K →∞. We will prove (3.5) under the assumption L/K is
fixed and at least 2. Notice that there is an oscillating cosine factor. As a result, C can be
both positive and negative which is confirmed by numerical data. We are unable to bound
the cosine from below but we believe that for generic choice of K/L and for sufficiently
many K the cosine should not be too small and hence the exponential term should dominate
the growth.

4 A nonrigorous derivation of the asymptotic

In this section we present a nonrigorous derivation of the asymptotic based on the saddle
point method originally used by Hardy and Ramanujan [13] in their study of the partition
functions. Recall that we have expressed our coefficients C as a contour integral.

C(2L, 0, 0,K) = 1
(2πi)4

∫
dqτ

qK+1
τ

dq1

qL+1
1

dq2

qL+1
2

dŷ

ŷ
Z[qτ , q1, q2, ŷ]
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where the contours for q1, q2, qτ are circles centred at the origin with radii less than one.
The contour for ŷ is the unit circle. All contours are traversed counterclockwise. To make
our computation easier, we perform a change of variables

qτ = exp(−β), q1 = exp(−ε1), q2 = exp(−ε2), ŷ = exp(−m̂) (4.1)

and rewrite the contour integral as

C(2L, 0, 0,K) = 1
(2πi)4

∫
dε1dε2dm̂dβ exp(log(Z) +Kβ + Lε1 + Lε2) (4.2)

Hereafter log(Z) always means

log(Z) =
∑
n≥1

1
n

qnτ
1− qnτ

ŷ−n(1− ŷnqn1 )(1− ŷnqn2 )
(1− qn1 )(1− qn2 )

The contours for ε1, ε2, β are straight vertical lines with positive real parts. We will specify
the real parts later. The imaginary parts go from −iπ to iπ. The contour for m̂ is [0, 2πi].
Hereafter closed intervals represent straight lines on the complex plane.

The saddle point method tells us that the large K asymptotic of the function
C(2L, 0, 0,K) is dominated by the integral around the maximum of the integrand
exp(log(Z) +Kβ + Lε1 + Lε2). A saddle point is a point at which the first derivatives of
the integrand vanish. We do not know a priori where the maximum is attained and so
we make a guess: we assume that the integrand is maximized near q1 = q2 = qτ = 1. For
general q1, q2, qτ , ŷ the function log(Z) is complicated. However, when q1 ≈ 1, q2 ≈ 1, qτ ≈ 1
we can make the following approximations:

1− ŷnqn1 ≈ 1− ŷn, 1− ŷnqn2 ≈ 1− ŷn

1− qnτ ≈ nβ, 1− qn1 ≈ nε1, 1− qn2 ≈ nε2
As a result we can approximate5

log(Z) ≈
∑
n≥1

1
n

ŷ−n(1− ŷn)2

n3ε1ε2β
= −m̂

2(m̂− 2πi)2

24ε1ε2β
(4.3)

And so we are looking for the maximum of

exp
(
−m̂

2(m̂− 2πi)2

24ε1ε2β
+Kβ + Lε1 + Lε2

)
(4.4)

We take partial derivatives with respect to ε1, ε2, β, m̂ and set all the partial derivatives to
be zero. The saddle point equations are:

m̂2(m̂− 2πi)2

24ε21ε2β
+ L = 0

m̂2(m̂− 2πi)2

24ε1ε22β
+ L = 0

m̂2(m̂− 2πi)2

24ε1ε2β2 +K = 0

∂m̂
m̂2(m̂− 2πi)2

24ε1ε2β
= 0

5Identities involving polylogarithms are summarized in the appendix.
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There are two solutions and the phases of ε1, ε2, β are π/4 in one of the solutions and −π/4
in the other solution. In other words,

ε1 = <(ε1)± i<(ε1), ε2 = <(ε2)± i<(ε2), β = <(β)± i<(β), m̂ = iπ (4.5)

where the real parts are given by:

<(β) = π
√
LK−3/424−1/42−1/2 (4.6)

<(ε1) = <(ε2) = K

L
<(β) = πK1/4L−1/224−1/42−1/2. (4.7)

We see that the saddle point values of ε1, ε2, β ∼ K−1/4 → 0 as K → ∞. Now we can
deform our contours to pass through these saddle points. In other words, we take the
integration contours for ε1, ε2, β, m̂ to be the following straight vertical lines:

ε1 ∈ [<(ε1)− iπ,<(ε1) + iπ]
ε2 ∈ [<(ε2)− iπ,<(ε2) + iπ]
β ∈ [<(β)− iπ,<(β) + iπ]
m̂ ∈ [0, 2πi]

where the real parts are given in (4.6). Now we just need to replace ε1, ε2, β, m̂ in (4.4)
by (4.5) to obtain the desired asymptotic (3.4).

In order to make this calculation rigorous, we need to answer the following questions:

1. Is there any other saddle point away from q1, q2, qτ ≈ 1 which contribute to the leading
asymptotic?

2. What is the error in the approximation (4.3) and does it affect the leading asymptotic
at the saddle point?

3. The first derivative of log(Z) +Kβ + Lε1 + Lε2 at the saddle point (4.5) is not zero
due to higher correction terms. If we expand the integrand around the saddles we get
linear fluctuations in addition to quadratic fluctuations. Are these linear fluctuations
around the saddle points significant?

In this paper we will see that the answers to first two questions are both no. The answer to
the last question is yes and we need to deform the contours to pass through more accurate
saddle points.

5 Outline of the Proof

Now we outline the proof of the asymptotic (3.5) under the assumption L/K ≥ 2. There
are several steps:

1. Step 1: We bound the growth away from the two saddle points. We divide the range
of integration into

|=(ε1)| < 100<(ε1), |=(ε2)| < 100<(ε2), |=(β)| < 100<(β) (5.1)
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which contains the two saddle points and its complement. In this region, the imaginary
parts =(ε1),=(ε2),=(β) are comparable to the real parts <(ε1),<(ε2),<(β) and we
hope to approximate log(Z) by its leading asymptotic (4.3). In the complement
we will show that the integral is bounded by O(exp(3.38K1/4L1/2)) which decays
exponentially relative to the predicted leading order growth (3.5). Notice that the
range of m̂ is still [0, 2πi]. Once we prove this bound, the integral over the complement
of (5.1) is absorbed into the o(1) term in (3.5). Hence we only need to study the
integral over (5.1). And in this region the same method allows us to discard the
integral when m̂ ∈ [0, iπ/4] or [7iπ/4, 2πi] by bounding the integral in that region by
O(exp(3.93K1/4L1/2)). This is as far as we can prove using this method. In particular
we are not able to restrict the contour of m̂ to an arbitrarily small neighborhood of
iπ at this stage. We will be able to do so after we compute an asymptotic for log(Z)
in the saddle region.

2. Step 2: In the region

|=(ε1)| < 100<(ε1), |=(ε2)| < 100<(ε2), |=(β)| < 100<(β), m̂ ∈ [iπ/4, 7iπ/4] (5.2)

We will compute the asymptotic of the integrand and prove the following

log(Z) = −m̂
2(m̂− 2πi)2

24βε1ε2︸ ︷︷ ︸
∼K3/4

+ f1(m̂)
βε1

+ f2(m̂)
βε2

+ f3(m̂)
ε1ε2︸ ︷︷ ︸

∼K2/4

+E(β, ε1, ε2, m̂)︸ ︷︷ ︸
OK/L(K1/4)

(5.3)

for some holomorphic functions f1(m̂), f2(m̂), f3(m̂) (7.5) chosen in a way so that
E is the second subleading correction. We will bound the error term E(β, ε1, ε2, m̂)
and its derivative ∇E. The bound on |E| allows us to show that the leading order
asymptotic does indeed come from the −m̂2(m̂− 2πi)2/(24βε1ε2) term. We will show
that |∇E| is small so that the first derivatives of log(Z) can be well approximated by
the first derivatives of the three terms f1/(βε1), f2/(βε2), f3/(ε1ε2).

Here are the estimates:

|E| = OK/L(K1/4), ∂m̂E = OK/L(K1/4 logK), ∂ε1,ε2,βE = OK/L(K2/4) (5.4)

The notation ∂ε1,ε2,βA = O(B) means ∂βA = O(B), ∂ε1A = B, ∂ε2A = O(B). In other
words, all three derivatives satisfy the same bound O(B). Inuitively, E should be
well approximated by a linear sum of 1/ε1, 1/ε2, 1/β with coefficients depending on
m̂. Hence differentiating with respect to any one of ε1, ε2, β increases the growth of
E by K1/4. However, differentiating with respect to m̂ does not change the growth
of E by any polynomial power K (so logK is allowed). We will also need to show
that this bound holds when m̂ has a small real part or when the real parts of ε1, ε2, β
undergo a small perturbation.

3. Step 3: Now we study the leading asymptotic inside the exponential

− m̂2(m̂− 2πi)2

24βε1ε2
+Kβ + Lε1 + Lε2 (5.5)
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and find the maximum of its real part in the region (5.1). Since we will eventually
take the exponential of this expression, the real part controls the modulus of the
exponential. We show that the two saddle points are precisely the location at which
the real parts are maximized. We also compute the Hessian of the real part at these
two saddle points and show that they are both negative definite. To simplify the
notation we perform a change of variable

ε1 = <(ε1)σ1, ε2 = <(ε2)σ2, β = <(β)σ3, m̂ = σ4

so that σi are all order 1 variable. The contours for σ1, σ2, σ3 all have real part equal
to 1 and imaginary part in [−100, 100]. We temporarily allow the contour of m̂ = σ4
to be [0, 2πi] to make the calculation simpler. If we can find the maximum over a
larger region and the maximum lies in the smaller region we are interested in, then
we know the maximum over the smaller region. The two approximate saddle points
σ± are

σ1 = σ2 = σ3 = 1± i, σ4 = iπ (5.6)

The leading asymptotic has vanishing first derivative at (5.6). However, once we take
into account subleading corrections, the derivative of log(Z) + Kβ + Lε1 + Lε2 is
nonzero at (5.6). As a result, if one tries to perform Taylor expansions around the
saddle points and compute the Gaussian fluctuation, one gets an additional linear
term in the integral which leads to difficulties. As a result we will deform the contour
to pass through a pair of more accurate saddle points σ̃±. The linear terms at the
new saddles points are negligible.

4. Step 4: In this step we compute the more accurate saddle points σ̃± using the leading
term and the first subleading correction:

−m̂
2(m̂− 2πi)2

24βε1ε2
+ f3(m̂)

ε1ε2
+ f1(m̂)

βε1
+ f2(m̂)

βε2
+Kβ + Lε1 + Lε2

The subleading correction is small compared with the leading term in the limit when
|ε1|, |ε2|, |β| � 1 and therefore one can apply the implicit function theorem to show
the existence of the saddle points to this function. The result is that leading order
shift of the saddle point value of m̂ depends on ε1, ε2 only:

m̂ = iπ − (ε1 + ε2)/2 = iπ − ε1

In the second equality we used ε1 = ε2 at the saddle point. The saddle point of
m̂ needs to lie within the domain of definition of m̂ (3.3). As a result, we require
<(τ) ≥ <(ε1)/2 and so L/K ≥ 2. We denote the two new saddle points as σ̃±.
They are complex conjugate to each other σ̃+ = σ̃−. For m̂ complex conjugation is
accompanied by an addition of 2πi.

5. Step 5: We deform the contours for σ1, σ2, σ3, σ4 so that they pass through σ̃±. The
first derivative at σ̃± are now small enough so we can safely perform Taylor expansion
around the saddle points and ignore the linear terms. We will focus on the contribution
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from small balls around the two saddle points and bound the errors away from the
two balls. Inside the two balls we replace the integrand by its Taylor expansions
to second order around the saddle points σ̃±. As long as the radii of the two small
balls tend to zero when K →∞, the Taylor expansions are guaranteed to be good
approximations inside the two balls. Outside the two small balls, the integrands are
bounded by their values on the boundaries of the two balls. The negative definiteness
of the two Hessiansplays an essential role in this bound.

6. Step 6: In the last step, we compute the saddle point value of the integrand and
show that (log(Z) +Kβ + Lε1 + Lε2)(σ̃±) are indeed polynomials in K, log(K). The
technique used in this step comes from the paper [19].

6 Step 1: Error away from the saddle point

In this section we begin our proof of the asymptotic (3.5). First we bound the error in the
region away from the saddle points:

{|=(ε1)| > 100|<(ε1)|} ∪ {|=(ε2)| > 100|<(ε2)|} ∪ {|=(β)| > 100<(β)} (6.1)

The number 100 can be replaced by any other positive integer provided it is sufficiently
large. The idea of the proof already apppeared in [19]: when we compute the asymptotic of
the infinite series with ŷ = −1 and q1, q2 = 1 in the numerator:

log(Z) ≈
∑
n≥1

1
n4

(−1)n(1− (−1)n)2

βε1ε2
≈ −4.05871

βε1ε2

We notice that the n = 1 term already contributes −4(βε1ε2)−1. Due to the 1/n4 decay the
sum from n = 2 . . .∞ contributes only a tiny amount to the final asymptotic. As a result
we will estimate the term n = 1 and the terms n ≥ 2 separately. We will not place a strong
estimate on the terms n ≥ 2 because their contribution is very small. However we will place
a strong estimate on the n = 1 term because it dominates the asymptotic.

For n ≥ 2 we bound the numerator using |ŷ−n(1 − ŷnqn1 )(1 − ŷnqn2 )| < 4 since |ŷ| =
1, |q1| < 1, |q2| < 1. This bound may seem weak but it sufficies for our purpose. For the
denominator we use the following inequality∣∣∣∣ 1

1− exp(−n<(β)− in=(β))

∣∣∣∣ ≤ ∣∣∣∣ 1
1− exp(−n<(β))

∣∣∣∣
which is proved by drawing a circle centred at the origin with radius exp(−n<(β)) in the
complex plane and minimize the distance between the circle and the point 1. One can write
down similar estimates with β replaced by ε1, ε2. Hence we obtain the following:∣∣∣∣∣∣<

∑
n≥2
− 1
n

qnτ
1− qnτ

ŷ−n(1− ŷnqn1 )(1− ŷnqn2 )
(1− qn1 )(1− qn2 ) + Lε1 + Lε2 +Kβ

∣∣∣∣∣∣ (6.2)

≤
∑
n≥2

1
n

4 exp(−n<(β))
(1− exp(−n<(β)))(1− exp(−n<(ε1)))2 + L<(ε1) + L<(ε2) +K<(β)
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Now we still need to bound the first term on the right hand side. To simplify the notation,
let us write x = n<(β) > 0. The function

exp(−x)
(1− exp(−x))(1− exp(−xK/L))2 = L2

K2x3 +OK/L(x−2) (6.3)

as x→ 0. This OK/L(x−2) bound is valid in a neighborhood of 0. We want to show that it
is valid everywhere. Since the function decays exponentially as x→∞ and x−3 decay faster
than x−2 we see that the bound (6.3) is valid for all x > 0. Hence (6.2) is bounded by

∑
n≥2

4L2

n4<(β)3K2 +OK/L(<(β)−2) +K<(β) + L<(ε1) + L<(ε2)

Next let us bound the term n = 1. When |=(ε1)| ≥ 100<(ε1) we have

|1− q1| ≥ |=(1− q1)| = | exp(−<(ε1)) sin(=(ε1))| ≥ 99
100=(ε1) ≥ 99<(ε1)

when K is sufficiently large. Hence in the region =(β) ≥ 100<(β) we have the following
bound on the n = 1 term∣∣∣∣∣qτ ŷ−1(1− ŷq1)(1− ŷq2)

(1− qτ )(1− q1)(1− q2)

∣∣∣∣∣ ≤ 4
99<(β)<(ε2)<(ε1) (6.4)

Again the numerator is bounded by 4: |qτ ŷ−1(1− ŷq1)(1− ŷq2)| < 4. The same bound (6.4)
remains valid in the region |=(ε2)| ≥ 100<(ε2) and |=(β)| ≥ 100<(β) by the same argument.
Hence away from the saddle point (6.1) the real part of the expression inside the expontial
<(log(Z) +Kβ + Lε1 + Lε2) is bounded by the following

4
99<(β)<(ε2)<(ε1) +

∑
n≥2

4L2

n4<(β)3K2 +OK/L(<(β)−2) +K<(β) + L<(ε1) + L<(ε2)

Since <(β)−2 grows slower than 1/(<(β)<(ε2)<(ε1)). We can ignore this term after replacing
99 by 98 in the first term. We also substitute in <(ε1) = <(ε2) = K<(β)/L and bound the
expression above by 4

98 +
∑
n≥2

4
n4

 1
<(β)<(ε1)<(ε2) +K<(β) + L<(ε1) + L<(ε2)

Now we replace <(β),<(ε1),<(ε2) by (4.5) and the expression becomes

3.37 . . .
√
LK1/4 < 3.38

√
LK1/4

And so the integral over this region is bounded by exp(3.38
√
LK1/4) times a positive

constant (the volume of the integration region and factors of 2πi). The integral over
this region decays exponentially relative to the predicted growth exp(4.0146

√
LK1/4) and

contributes to the o(1) factor of the asymptotic (3.5).
Hence from now on our region of integration will be (5.1). Notice that the contour for

m̂ is still [0, 2πi]. The functions f1, f2, f3 in (5.3) develop singularities at m̂ = 0 and could
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be problematic. Hence in this section we will restrict the contour for m̂ from [0, 2πi] to
[iπ/4, 7iπ/4]. We follow exactly the same method, separating the sum over n into n = 1 and
n ≥ 2. The sum from n ≥ 2 is still bounded by (up to a subleading correction OK/L(K2/4)
which can be neglected in the large K limit)∑

n≥2

4
n4

1
<(β)<(ε1)<(ε2)

However the estimates for n = 1 is different. We need the fact that q1, q2, qτ ≈ 1. The
estimate for the denominator is

1
(1− qτ )(1− q1)(1− q2) ≤

1.01
<(β)<(ε1)<(ε2)

To estimate the numerator we notice that it converges to ŷ−1(1− ŷ)2. The function |(1− ŷ)2|
when m̂ ∈ [0, iπ/4] or [7iπ/4, 2πi] is bounded by |(1− exp(iπ/4))|2 ≈ 0.58. Therefore, when
K is large

|qτ ŷ−1(1− ŷq1)(1− ŷq2)| < 0.59

Hence in the region

|=(β)| ≤ 100|<(β)|, |=(ε2)| ≤ 100|<(ε2)|, |=(ε1)| ≤ 100|<(ε1)|, m̂ ∈ [0, iπ/4] ∪ [7iπ/4, 2πi]

when K is sufficiently large, |<(log(Z)) +K<(β) + L<(ε1) + L<(ε2)| is bounded by0.59× 1.01 +
∑
n≥2

4
n4

 1
<(β)<(ε1)<(ε2) +K<(β) + L<(ε1) + L<(ε2) ≈ 3.92K1/4√L

which also decays exponentially relative to the predicted growth exp(4.01
√
LK1/4). Hence

we can restrict the contour for m̂ to [iπ/4, 7iπ/4] from now on.

7 Step 2: Asymptotic of the integrand near saddle point

In the previous section we have shown that the integral away from the saddle point region
is negligible. So it remains to compute the integral in the saddle point region. The function
log(Z) is complicated. However near the saddle point log(Z) can be approximated by some
simple rational function (5.3) in ε1, ε2, β. In this section we show that this approximation
is valid for suitable choice of f1, f2, f3 and the error term E is indeed subleading. In other
words, we will prove (5.4). We write log(Z) as the sum of four terms and compute error
estimates for each one of them:

log(Z) =
∑
n≥1

1
n

qnτ ŷ
−n + qnτ ŷ

nqn1 q
n
2 − qnτ qn1 − qnτ qn2

(1− qnτ )(1− qn1 )(1− qn2 ) (7.1)

Now the numerator is a sum of four terms so log(Z) is also a sum of four term. We will
compute the asymptotic of the first term near q1 = q2 = qτ = 1 as an example:

∑
n≥1

1
n

qnτ ŷ
−n

(1− qn1 )(1− qn2 )(1− qnτ )
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We do not make any approximation of the numerator because qnτ creates the decay in n
when n is large. If we perform any Taylor expansion of qnτ we would lose this decay and
our estimates would not be valid due to the divergence of the series. Therefore we keep
the numerator as it is and approximate the denominator. The function (1− exp(−β))−1 is
holomorphic in the annulus 0 < |β| < 2π and hence can be expanded in a Laurent series in
this annulus

1
1− exp(−β) = 1

β
+ 1

2 + . . .

where . . . denotes higher order terms in β. Now we do the same for (1− exp(−ε1))−1 and
(1− exp(−ε2))−1 and multiply the three infinite Laurent series together.

1
(1− qτ )(1− q1)(1− q2) = 1

βε1ε2
+ 1

2ε1β
+ 1

2ε2β
+ 1

2ε1ε2
+ f(ε1, ε2, β)

The function f is an infinite series and total degree of each monomial in f is at most one.
Now we use the fact that the ratio |ε1/ε2|, |ε1/τ | are both bounded above and below by
nonzero constants depending on L/K. As a result the function f is bounded by

|f | = OK/L(ε−1
1 ), |∇f | = OK/L(ε−2

1 ) (7.2)

whenever |ε1| < 1, |ε2| < 1, |ε3| < 1. The number 1 can be replaced by any other number
less than 2π. When n|ε1| < 1, n|ε2| < 1, n|β| < 1 we can write

1
n

qnτ ŷ
−n

(1− qnτ )(1− qn1 )(1− qn2 ) = qnτ ŷ
−n

n4βε1ε2
+ qnτ ŷ

−n

2n3ε1β

+ qnτ ŷ
−n

2n3ε2β
+ qnτ ŷ

−n

2n3ε1ε2
+ qnτ ŷ

−nf(nε1, nε2, nβ) 1
n

(7.3)

Now it is time to identify the contribution to the error term E. The last term∑
n≥1

qnτ ŷ
−nf(nε1, nε2, nβ) 1

n

clearly contributes to E. The error E also receives contribution from other terms. The
numerators qnτ ŷ−n in the other four terms is not a function of m only. In (5.3) we want the
numerators to be a function of m̂ only. So one must perform additional Taylor expansion
at τ = 0. This would also contribute to E. Let us write it in equation

E(ε1, ε2, β,m) =
∞∑
n=1

qnτ ŷ
−nf(nε1, nε2, nβ) 1

n
+ . . .

where . . . denotes contribution from the first four terms in (7.3) which is easy to dealt with.
Let us deal with this first. Let us rewrite the sum over the first four terms as polylogarithms.

∞∑
n=K1/4

qnτ ŷ
−n

n4βε1ε2
+ qnτ ŷ

−n

2n3ε1β
+ qnτ ŷ

−n

2n3ε2β
+ qnτ ŷ

−n

2n3ε1ε2

= Li4(−β + m̂)
βε1ε2

+ Li3(−β + m̂)
2βε1

+ Li3(−β + m̂)
2βε2

+ Li3(−β + m̂)
2ε2ε1

= Li4(m̂)
ε1ε2β

+ Li3(m̂)/2− Li′4(m̂)
ε1ε2

+ Li3(m̂)
2β

( 1
ε1

+ 1
ε2

)
+OK/L(K1/4)
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To go from the first line to the second line we use the definition of the polylogarithms
(see the appendix). To go from the second line to the third line we use the fact that the
polylogarithm is holomoprhic in a neighborhood of the interval [iπ/4, 7iπ/4]. Therefore one
can subtitute in the Taylor expansion

Li3(−β + m̂) = Li3(m̂) +O(β), Li4(−β + m̂) = Li4(m̂)− βLi′4(m̂) +O(β2)

and deduce the OK/L(K1/4) bound which contributes to E.
It is equally easy to bound the derivatives of the expression in the first line. If we

differentiate with respect to m̂, we just need to replace all the polylogarithms in the second
and the third line with their derivatives and the error term OK/L(K1/4) remain unchanged.
If we differentiate with respect to ε1, ε2, β increases the bound to OK/L(K2/4). So the
contribution from the first four terms on the right hand side in (7.3) to E satisfies the
desired bound (5.4).

Now let us bound ∞∑
n=1

qnτ ŷ
−nf(nε1, nε2, nβ) 1

n

The obvious thing to do is to use the bound on f (7.2). However this bound is only valid
when n|ε1| < 1, n|ε2| < 1, n|β| < 1. We split the sum into two halves so that in the first
half the condition n|ε1| < 1, n|ε2| < 1, n|β| < 1 is satisfied. In the second half the condition
is not satisfied so we will do something else.

∞∑
n=1

=
1/(200<(β))∑

n=1
+

∞∑
n=1/(200<(β))+1

Here <(β) refers to the real part in (4.6). We have chosen the number 1/(200<(β)) because
|=(β)| ≤ 100<(β) so if n is less than this number n|β| < 1. Since <(β) is bigger than
<(ε1),<(ε2) we also have n|ε1| < 1, n|ε2| < 1.

Now we are ready to bound the error term E coming from the sum n = 1 . . . 1/(200<(β)).
First, using the inequality |qnτ ŷ−n| < 1, we have

|qnτ ŷ−nf(nε1, nε2, nβ)| = OK/L(n−1ε−1
1 )

∂m(qnτ ŷ−nf(nε1, nε2, nβ)) = nOK/L(n−1ε−1
1 )

To estimate the derivative in β, ε1, ε2 we use the second equation in (7.2)

∇f(ε1, ε2, β) = OK/L(ε−2
1 )⇒ ∂β,ε1,ε2(f(nε1, nε2, nβ)) = nOK/L(n−2ε−2

1 )

Again, the notation ∂ε1,ε2,βA = O(B) means ∂βA = O(B), ∂ε1A = B, ∂ε2A = O(B). Now
we include the factor qnτ ŷ−n:

∂β(qnτ ŷ−nf(nε1, nε2, nβ)) = nOK/L(n−1ε
−1/4
1 ) + nOK/L(n−2ε−2

1 )

The first term comes from differentiating the qnτ and the second term comes from differenti-
ating f . Similarly we can bound the derivative with respect to ε1, ε2

∂ε1,ε2(qnτ ŷ−nf(nε1, nε2, nβ)) = nOK/L(n−2ε−2
1 )
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Finally we are ready to write down the bounds for the first half of the sum.

1/(200<(β))∑
n=1

qnτ ŷ
−nf(nε1, nε2, nβ) 1

n
=

1/(200<(β))∑
n=1

1
n
OK/L

( 1
nε1

)
= OK/L(K1/4)

1/(200<(β))∑
n=1

∂m

(
qnτ ŷ
−nf(nε1, nε2, nβ) 1

n

)
= OK/L(K1/4 logK)

1/(200<(β))∑
n=1

∂β,ε1,ε2

(
qnτ ŷ
−nf(nε1, nε2, nβ) 1

n

)
= OK/L(K2/4)

where we have used the fact that

1/(200<(β))∑
n=1

1
n2 <

∞∑
n=1

1
n2 <∞,

1/(200<(β))∑
n=1

1
n

= OK/L(log(K))

It is indeed the correct bound on the error term.
Next we bound the error term in the sum from n = 1/(200<(β)) to ∞. Instead of

estimating the f -term directly, let us estimate

1
n

qnτ ŷ
−n

(1− qnτ )(1− qn1 )(1− qn2 )

and
qnτ ŷ
−n

n4βε1ε2
+ qnτ ŷ

−n

2n3ε1β
+ qnτ ŷ

−n

2n3ε2β
+ qnτ ŷ

−n

2n3ε1ε2
(7.4)

Since f can be written as the difference of the two we obtain the desired estimates
on f . To bound the former, we notice that when n > 1/(200<(β)) the real parts of
nε1, nε2, nβ are all bounded below by some positive constants depending on K/L. Hence
(1− qnτ )−1(1− qn1 )−1(1− qn2 )−1 = OK/L(1) is bounded by OK/L(1) when n > 1/(200<(β)).

so we can write

1
n

qnτ ŷ
−n

(1− qnτ )(1− qn1 )(1− qn2 )
= OK/L(1)K−1/4 ∑

n≥(1/200<(β))
|qτ ŷ−1|n

= O(K/L)K−1/4 |qτ ŷ−1|1/(200<(β))

1− |qτ ŷ−1|
= OK/L(1)K−1/4OK/L(1)K1/4 = OK/L(1)

The K−1/4 comes from the 1/n factor in the first line. To go from the second to the third
line we simply sums a geometric series. The go from the third to the last line we use the
assumption |<(m)| < 3<(β)/4 and hence

|qτ ŷ−1|1/(200<(β)) ≤ 1, (1− |qτ ŷ−1|)−1 = OK/L(K1/4)

The estimates for the derivatives are very similar and we omit the details.
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To bound (7.4), we use the following fact:
∞∑

n=1/(200<(β))

1
n4 = OK/L(K−3/4)

∞∑
n=1/(200<(β))

1
n3 = OK/L(K−2/4)

Therefore
∞∑

n=1/(200<(β))

qnτ ŷ
−n

n4βε1ε2
≤

∞∑
n=1/(200<(β))

1
βε1ε2n4 = OK/L(K−3/4)OK/L(K3/4) = OK/L(1)

and similarly for the other three terms. We can finally write
∞∑

n=1/(200<(β))

qnτ ŷ
−n

n4βε1ε2
+ qnτ ŷ

−n

2n3ε1β
+ qnτ ŷ

−n

2n3ε2β
+ qnτ ŷ

−n

2n3ε1ε2
= OK/L(1)

The estimates for the derivatives are again similar and we omit the details. To summarize,
if we write ∑

n≥1

1
n

qnτ ŷ
−n

(1− qnτ )(1− qn1 )(1− qn2 )

=Li4(m̂)
ε1ε2β

+ Li3(m̂)/2− Li′4(m̂)
ε1ε2

+ Li3(m̂)
2β

( 1
ε1

+ 1
ε2

)
+ E1(m̂, ε1, ε2, β)

then E1 obeys the same bound as (5.4): The computation for the other three terms∑
n≥1

1
n

qnτ ŷ
nqn1 q

n
2

(1− qnτ )(1− qn1 )(1− qn2 )∑
n≥1

1
n

qnτ q
n
1

(1− qnτ )(1− qn1 )(1− qn2 )∑
n≥1

1
n

qnτ q
n
2

(1− qnτ )(1− qn1 )(1− qn2 )

is almost identical and we just record the result∑
n≥1

1
n

qnτ ŷ
nqn1 q

n
2

(1− qnτ )(1− qn1 )(1− qn2 )

= Li4(−m̂)
βε1ε2

+ Li3(−m̂)
−2βε1

+ Li3(−m̂)
−2βε2

+ Li3(−m̂)− 2Li′4(−m̂)
2ε1ε2

+ . . .

And for the other two terms∑
n≥1

1
n

qnτ q
n
1

(1− qnτ )(1− qn1 )(1− qn2 ) = ζ(4)
βε1ε2

− ζ(3)
2βε2

+ ζ(3)
2βε1

− ζ(3)
2ε1ε2

+ . . .

∑
n≥1

1
n

qnτ q
n
2

(1− qnτ )(1− qn1 )(1− qn2 ) = ζ(4)
βε1ε2

+ ζ(3)
2βε2

− ζ(3)
2βε1

− ζ(3)
2ε1ε2

+ . . .

where . . . denotes terms which satisfy the same bound as (5.4). We just add them all up
and this proves (5.4). The explicit expressions for the functions fi are given by:

f1(m̂) = f2(m̂) = Li3(m̂)− Li3(−m̂)
2 , f3(m̂) = −Li3(m̂) + Li3(−m̂)

2 + ζ(3) (7.5)
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8 Step 3: Saddle point of the leading asymptotic

Now we have obtained a good approximation to log(Z) in the saddle point region, the next
task is to find its saddle points. Our previous computation in section 4 shows that there
are two saddle points with |=(ε1)| = <(ε1), |=(ε2)| = <(ε2), |=(β)| = <(β). In this section
we prove a stronger result: the real part of the leading asymptotic

−m̂
2(m̂− 2πi)2

24βε1ε2
+Kβ + Lε1 + Lε2

is indeed maximized at the two saddle points. This is what we need since we will even-
tually exponentiate the leading asymptotic and the real part controls the modulus of the
exponential. In this section, the domain for ε1, ε2, β is just the saddle point region:

|=(ε1)| ≤ 100<(ε1), |=(ε2)| ≤ 100<(ε2), |=(β)| ≤ 100<(β)

However we allow the domain for m̂ to be slightly bigger m̂ ∈ [0, 2πi] to make our calculation
simpler. If we can maximize the real part over a larger domain and the maximum lies in
the smaller domain, then we would know the maximum in the smaller domain.

Before proceeding with our computation, let us introduce some variables σi, i = 1, 2, 3, 4
which will be order 1 in the large K limit:

ε1 = <(ε1)σ1, ε2 = <(ε2)σ2, β = <(β)σ3, m̂ = σ4

These order 1 variables will make this computation easier. There is a Jacobian factor
coming from change of variable in the integral. The Jacobian is a monomial in K,L and
can be absorbed into P in (3.5). So from now on we ignore this Jacobian. Using these new
variables we can write

− m̂2(m̂− 2πi)2

24βε1ε2
+Kβ + Lε1 + Lε2

= C(K,L)
(
−m̂

2(m̂− 2πi)2

24σ1σ2σ3
+ π4

96(σ1 + σ2 + σ3)
)

:= C(K,L)S(σ1, σ2, σ3, σ4 = m̂) (8.1)

where
C(K,L) = (<(β)<(ε1)<(ε2))−1 = 63/4K1/48

√
L

π3

The domain for σ1, σ2, σ3, σ4 is [1 − 100i, 1 + 100i]3 × [0, 2πi]. This is a compact set
so <(S) attains its maximum (possibly at more than one point) either on the boundary
or in the interior. We first show that <(S) cannot attain its maximum on the boundary
by comparing its boundary value with <(S)(σ±) = π4/24. The boundary of the domain
[1− 100i, 1 + 100i]3 × [0, 2πi] is the union of four pieces, each of which is the product of an
endpoint of an interval and the other three intervals. If m̂ = 0, 2πi then <(S) = π4/36 <
π4/24. When =(σ1) = 100<(σ1), <(S) ≤ π4/36 + π4/(100× 24) < π4/24 and similarly for
σ2, σ3. So <S cannot attain its maximum on the boundary.
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To compute the maximum in the interior, let us differentiate with respect to σ1, σ2, σ3, σ4
along purely imaginary directions and set the real part of the derivatives to be zero.
Differentiating with respect to the imaginary direction is the same as i times the usual
holomorphic derivative. So we set

<(i∂σ1S) = <(i∂σ2S) = <(i∂σ3S) = <(i∂m̂S) = 0

We will postpone the discussion of m̂-derivative. Let us look at the derivative with respect
to σ1, σ2, σ3 first: which implies

=
(
m̂2(m̂− 2πi)2

σ2
1σ2σ3

)
= =

(
m̂2(m̂− 2πi)2

σ1σ2
2σ3

)
= =

(
m̂2(m̂− 2πi)2

σ1σ2σ2
3

)
= 0

Hence σ2
1σ2σ3, σ1σ

2
2σ3, σ1σ2σ

2
3 are all real. They are nonzero since they are products of

nonzero numbers. So the ratios σ1/σ2, σ2/σ3 are both real. Since σ1, σ2, σ3 have the same
real part, we have σ1 = σ2 = σ3. Since σ2

1σ2σ3 is real, there are only three possible solutions:
σ1 = σ2 = σ3 = 1 + i, 1− i, 1. The solution σ1 = σ2 = σ3 = 1 does not maximize the real
part because <(S) < π2/32 at that point. It remains to consider σ1 = σ2 = σ3 = 1± i. Now
we maximize with respect to m̂. Since m̂2(m̂− 2πi)2 is maximized at m̂ = iπ so <(S) is
maximized at σ1 = σ2 = σ3 = 1± i, m̂ = iπ. The two saddle points are complex conjugate
to each other. (For m̂ one needs to add 2πi after complex conjugation).

The only remaining task in this section is to compute the Hessian ∂σi∂σjS(σ±)and
shows that it is negative along purely imaginary directions. We just record the result: (the
columns are from left to right: σ1, σ2, σ3, σ4 = m̂)

H[σ+
i ] = − π4

24(1 + i)5


2 1 1 0
1 2 1 0
1 1 2 0
0 0 0 8i/π2

 , H[σ−i ] = H[σ+
i ] (8.2)

And we see that locally the second derivative of the real part is negative definite along the
four contours:

<(ivTH(σ+
i )iv) < 0, ∀v ∈ R4 6= 0

where the purely imaginary column vector iv represents fluctuation of σi along the four
contours [1− 100i, 1 + 100i]3× [0, 2πi]. The negative definiteness follows because the metrix
[2, 1, 1; 1, 2, 1; 1, 1, 2] is positive definite (its eigenvalues are 4, 1, 1) and the real part of
−(1 + i)−5 is positive. For the m̂-component, the real part of −(π4/(24(1 + i)5))(8i/π2)
is positive.

9 Step 4: Saddle point of the leading and the first subleading asymptotic

At this point one might be tempted to perform quadratic fluctuation of log(Z) around the two
approximate saddle points σ±i . It does not work at this stage because log(Z)+Kβ+Lε1+Lε2
has a nonzero first derivative at σ±i and the nonzero first derivative leads to difficulties if
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one tries to compute Guassian integrals around the two saddle points. To see why, let us
write the integrand as

exp (C(K,L)FK,L(σi))) , FK,L(σ1, σ2, σ3, σ4) = log(Z) +Kβ + Lε1 + Lε2
C(K,L) (9.1)

The function F depends on K,L but we will soon suppress this dependence to make the
notation less cumbersome. The notation σi means σ1, σ2, σ3, σ4. In the limit K →∞

FK,L(σ1, σ2, σ3, σ4)→ S(σi) = −m̂
2(m̂− 2πi)2

24σ1σ2σ3
+ π2

96(σ1 + σ2 + σ3)

From now we will not write the subscripts in F but one must keep in mind that F
depends on K,L. We perform a Taylor expansion around the saddle point σ+

F (σi) = F (σ+) + ∂iFδσi + 1
2∂i∂jFδσiδσj + . . . , σi = σ+

i + δσi

The function F can be expanded in a Taylor series in K−1/4. The zeroth order term is
the function S defined in (8.1) which has zero derivative at σ±. However the order K−1/4

term has non-vanishing derivative at σ± so ∂iF is of order K−1/4. When we compute the
Guassian fluctuation around the saddle point σ+ we need to define new variables to absorb
the C(K,L) into the second derivative. In other words, we define

χi =
√
C(K,L)δσi ∼ K3/8δσi

The integrand is written schematically as

exp
(
K3/4(F (σ+) +K−1/4δσ − δσδσ − . . .)

)
= exp

(
K3/4F (σ+) +K1/8χ− χχ+ . . .

)
where I have omitted the various constant factors wchih depends only on L/K. When we
perform the Gaussian integral∫

dχ1dχ2dχ3dχ4 exp(K1/8χ− χχ+ . . .)

The divergent linear factor K1/8χ means one cannot naively apply Lebesgue dominated
convergence to get what we want.

Therefore we will slightly shift the saddle points σ± to a new set of saddle points σ̃±

and the derivatives of log(Z) +Kβ +Lε1 +Lε2 at σ̃± do not grow as fast as the derivatives
at σ±. To compute the lcocation of σ̃± we need to use subleading terms in log(Z): In other
words σ̃± are the stationary points of

S̃ = −m̂
2(m̂− 2πi)2

24βε1ε2
+Kβ + Lε1 + Lε2 + f3(m̂)

ε1ε2
+ f2(m̂)

β1ε2
+ f1(m̂)

βε1
(9.2)

where I have included the first subleading corrections. I have also temporarily switched
back to the original set of variables ε1, ε2, β, m̂ to make the computation easier. The change
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of variable formula (4.1) remains the same. After writing everything using the new variables
σi the three subleading terms decay like K−1/4 relative to the order one term. And hence
the implicit function theorem implies that σ̃± exist when K is large and converges to σ± as
K →∞. Moreover when K is sufficiently large the difference σ̃± − σ± can be written as
a power series in K−1/4. This fact will be important when we prove the polynomiality of‘
subleading terms in (3.5). The news saddle points σ̃± can be written using ε1, ε2, β, m̂ or
σ1, σ2, σ3, σ4.

Proving the existence of σ̃± is not enough. We still need to deform the contours
to pass through σ̃±. Therefore, we must ensure that σ̃± lie in the domain of definition
|<(m)| < 3<(β)/4. So let us compute σ̃±4 , the new saddle point location for m̂. We
write m̂ = iπ + δm̂ and differentiate with respect to δm̂. We anticipate that the new
saddle point σ̃± is attained at δm̂ small but nonzero so we perform Taylor expansion
of (9.2) at m̂ = iπ and keep only the leading order terms in δm̂. For example we write
m̂2(m̂− 2πi)2 = π4 + 2π2δm̂2 +O(δm̂4). When we differentiate with respect to δm̂ in this
term we would get a factor of δm̂/(βε1ε2) ∼ K2/4.

We also need to linearise the three subleading terms containing f1, f2, f3 at m̂ = iπ and
keep terms which grow like K2/4 after differentiating with respect to δm̂. For f3/(ε2ε1) the
whole term can be discarded because f ′3(iπ) = 0 and hence the term can be approximated
(up to a term independent of m̂) as f ′′3 (iπ)δm̂2/(2ε2ε1). if we differentiate with respect to
δm̂ the derivative would grow at most like K1/4 and so can be safely discarded. The other
two subleading terms cannot be discarded and we arrive at the following equation for δm̂
at σ±:

−4π2δm̂

24βε1ε2
+ f ′1(iπ)

βε1
+ f ′2(iπ)

βε2
= 0

which implies
σ̃±4 = iπ − ε1 + ε2

2 +OK/L(K−2/4)

Here ε1, ε2 refer to the leading saddle point values of ε1, ε2:

ε1 = <(ε1)± i<(ε1), ε2 = <(ε2)± i<(ε2) = ε1

and <(ε1),<(ε2) are given by (4.6) and the choice of ± agrees with the choice of ± in σ̃±.
Hence if we set <(ε1) < <(β)/2 this saddle point value of m̂ lies in the domain of definition
|<(m)| < 3<(β)/4. We also note that σ̃± are complex conjugate to each other since S̃
in (9.2) satisfies

S̃[β̄, ε̄1, ε̄2, ¯̂m] = S̃[β, ε1, ε2, m̂]

And the complex conjugation of a stationary point is also a stationary point. We have
achieved our goal for this section: the first derivative of log(Z) + Lε1 + Lε2 +Kβ at σ̃±

receives contribution from E only and satisfies the bound (5.4). Hence and the derivatives
of F are bounded by

∂σ1,σ2,σ3,m̂=σ4F (σ̃±) = OK/L(K−2/4 log(E))

So we have improved the bound on ∇σiF from K−1/4 to K−2/4 log(K) by shifting the
saddle points to σ̃±.
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10 Step 5: Computation around the saddle points

Now we have two new saddle points σ̃± so one can deform the four contours slightly to pass
through σ̃±. In other words, we deform the contour of m̂ to pass through σ̃±4 , we deform the
contour of ε1 to pass through σ̃±1 and similarly for the other two variables. The contours for
σi are also deformed according to (4.1). From now on we will exclusively use the variables
σi. To be more precise: choose a smooth function φ defined on [7iπ/4, iπ/4] so that φ = 0
in a neighborhood of iπ/4 and a neighborhood of 7iπ/4 and φ = 1 in a neighborhood of iπ.
In addition, φ is monotonic on the two intervals on which it smoothly connects 0 and 1.
The contours for m̂ is parametrized by t 7→ t+ φ(t)<(σ+

4 ) for t ∈ [iπ/4, 7iπ/4].
The next step in the saddle point method is to zoom in small neighborhoods of the

saddle points and perform Gaussian integrals in the two neighborhoods. First, let us specify
the neighborhoods:

B̃±: =
{ 4∑
i=1
|σi − σ̃±i |

2 < K−1/50
}

and we require that σi lie on the deformed contour. So we have two balls B̃± centred
at the two saddle points σ̃± and the radii of the two balls tend to zero very slowly like
K−1/100. Here is why: we will soon approximate the integrand Z in the two balls by its
Taylor expansion to second order. If the radii do not tend to zero, the approximation does
not get better as K →∞. On the other hand, if the radii go to zero too rapidly we would
not be able to bound the error away from the two balls. The power −1/50 can be replaced
by any other number provided it is sufficiently small.

Before computing the Gaussian fluctuations inside the two balls, let us first bound the
errors away from the two balls. Let us write down the integral again using the variables σi:∫

dσi exp
(
C(K,L)(S(σi) + S−1/4(σi) + S−2/4(σi))

)
where

F = S + S−1/4 + S−2/4

S(σi) = −m̂
2(m̂− 2πi)2

24σ1σ2σ3
+ π2

96(σ1 + σ2 + σ3)

S−1/4(σi) = <(ε2)f2(σ4)
σ3σ1

+ <(ε1)f1(σ4)
σ3σ2

+ <(β)f3(σ4)
σ1σ2

S−2/4 = E(<(ε1)σ1,<(ε2)σ2,<(β)β, σ4)
C(K,L)

The notation S(σi) means we regard S as a function of σ1, σ2, σ3, σ4. The measure dσi
means dσ1dσ2dσ3dσ4. Again we have omitted the factor of 2πi outside the integral and
the Jacobian factor coming from change of variable to σi. Both of them can absorbed into
the function P in (3.5). The subscripts indicate the decay rate as K →∞. S(σi) does not
decay. S−1/4 decays like K−1/4 and S−2/4 = OK/L(K−2/4).

The predicted asymptotic is exp(#K3/4) (# denotes some positive number) so when
we bound the growth away from the two balls we can ignore any term that grows like
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exp(#K2/4) or slower. In particular, we can ignore S−1/4 and S−2/4 in this estimate. So it
remains to bound S on the complement of the two balls B̃±. In this region we will show that
<(S) is bounded by its value on ∂B̃± and then use the negative definite of the Hessian to
produce a bound on S. We have shown in one of the previous sections that on the original
contours <(S) has vanishing derivatives at only two points. This remains true when the
contours are slightly perturbed. Since everything is analytic in K−1/4, the implicit function
theorem implies that the two stationary points of <(S) would converge to σ± like K−1/4. In
particular when K is large the two new stationary points would lie inside B̃±. As a result
there is no stationary point for <(S) in the complement of B±. Hence in the complement
of B̃±, <(S) attains its maximum either on ∂B̃± or when one of the variables reaches the
boundary of its contour. Our analysis in Step 3 (after only a minor change because now
the contour for m̂ is [iπ, 7iπ/4]) shows that the second scenario does not occur when K is
sufficiently large. Hence <(S) attains its maximum on ∂B̃±. To estimate <(S) on ∂B̃±

we use the negative definiteness of the real part of the Hessian. Actually, it is easier to
estimate <(S) on ∂B± where

B±: =
{ 4∑
i=1
|σi − σ̃±i |

2 < K−1/50
}
,<(σ4) = 0,<(σ1) = <(σ2) = <(σ3) = 1

B̃± → B± as K →∞. The difference between <(S) on ∂B̃± and ∂B± is of order K−1/4

so it sufficies to estimate <(S) on ∂B±.

<(S)(∂B±) ≤ <(S)(σ±)− 1
2λ(K−1/100)2

where λ > 0 is a bit less than the smallest eigenvalue of minus the real part of the Hessian
of S. The predicted leading order growth is exp(C(K,L)<(S)(σ±)) and therefore

exp(C(K,L)<(S)(∂B±))
exp(C(K,L)<(S)(σ±)) ≤ exp(C(K,L)(−1/2)λK−1/50)

decays exponentially like exp(−#K3−1/50) and is clearly o(1).
Finally we can restrict our contour integral to just the two balls B̃±. We will study

the case of B̃+ and the other case B̃− is completely analogous. We perform a change of
variables

σi = σ̃i + χi√
C(K,L)

,
4∑
i=1

χ2
i < C(K,L)K−1/50

So the radius square of the domain of integration of χi grows like K3−1/50 and tends to
infinity as K →∞.

It remains to approximate F by its Taylor expansion to second order in the two balls.
Again we do the case of σ̃+ first.

F (σi) = F (σ̃+) + ∂iF (σ̃+) χi√
C(K,L)

+ 1
2∂i∂jF (σ̃+) χiχj

C(K,L) +
supB̃+(∇3F )OK/L(χ3)

C(K,L)3/2

After we multiply both sides by C(K,L), the first derivative term goes to zero pointwise in
χ since ∂iF = OK/L(K−2/4 logK) and the third derivative term goes to zero provided we
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can bound ∇3F over the whole ball B̃+. We also need to show that the second derivative
term converges pointwise. These two estimates use the same technique developed in the
previous section and the reader can refer to the appendix for more details.

So now we can rewrite the integral in the ball B+

I(K,L) :=
∫
dχexp(C(K,L)F (σi)) =

∫
dχexp

(
C(K,L)F (σ̃+)+ 1

2∂i∂kF (σ̃+)χiχj + . . .

)
where the measure dχ = dχ1dχ2dχ3dχ4 where . . . denotes terms which converge to zero
pointwise in χ.

We apply Lebesgue dominated convergence to∫
dχ exp

(1
2∂i∂jF (σ̃+)χiχj + . . .

)
(10.1)

to conclude
I(K,L) = exp(C(K,L)F (σ̃+))(C + o(1))

where the constant C is the Gaussian integral∫
dχ exp

(1
2H(σ+)χiχj

)
(10.2)

where H is given by (8.2). The negative definiteness of the Hessian guarantees the existence
of the integral. The dominating function we used is

| exp
(1

4H(σ+)χiχj
)
| (10.3)

The object I(K,L) equals C(2L, 0, 0,K) times a suitable power of 2πi and a Jacobian which
is a monomial in K,L. Hence to prove (3.5), it suffices to prove that the saddle point value
F (σ̃±) are polynomials in K, log(K).

11 Step 6: Asymptotic of the saddle point value

The only remaining task in this paper is to compute the asymptotic value of the integrand
at the saddle points exp(F (σ̃+)) as K →∞. We will only analyze the saddle point σ̃+ and
σ̃− is similar. The following method is originally due to Newman [19]. In this section we
switch to the original variables ε1, ε2, β, m̂. Let

δ = K−1/4, ε1 = R1δ, ε2 = R2δ, β = R3δ, m̂ = iπ +R4δ

At σ̃+, R1, R2, R3, R4 are all bounded below and above by positive constants depending
on K/L. It turns out that terms which include ŷ and terms which do not include ŷ have
different asymptotic so we need to study them separately:

log(Z) =
∑
n≥1

1
n

qnτ (qn1 + qn2 )
(1− qnτ )(1− qn1 )(1− qn2 )︸ ︷︷ ︸

F1

+
∑
n≥1

1
n

qnτ ŷ
−n + qnτ ŷ

nqn1 q
n
2

(1− qnτ )(1− qn1 )(1− qn2 )︸ ︷︷ ︸
F2
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We will study F1 first. We write F1 as a function of δ,R1, R2, R3, R4

F1 = δ
∑
n≥1

1
nδ

exp(−(R3 +R1)nδ) + exp(−(R3 +R2)nδ)
(1− exp(−nR3δ))(1− exp(−nR1δ))(1− exp(−nR2δ))

This is the Riemann sum of the following function:

G1(x) = 1
x

exp(−(R3 +R1)x) + exp((R3 +R2)x)
(1− exp(−R3x))(1− exp(−R1x))(1− exp(−R2x))

on the interval [0,∞). We will approximate the Riemann sum F1 by the Riemann sum of
another function G̃1:

G̃1(x) = P1(Ri)
x4 + P2(Ri)

x3 + P3(Ri)
x2 + exp(−x)P4(Ri)

x

The notation P1(Ri) means P1(R1, R2, R3, R4). Its Riemann sum is

δ
∑
n≥1

P1(Ri)
n4δ4 + P2(Ri)

n3δ3 + P3(Ri)
n2δ2 + exp(−nδ)P4(Ri)

nδ
(11.1)

The coefficients P1, P2, P3, P4 are given by the Taylor expansion of G1 at x = 0:

G1(x) = P1(Ri)
x4 + P2(Ri)

x3 + P3(Ri)
x2 + P4(Ri)

x
+OK/L(1), 0 < x < 1

This choice of Pi ensures the regularity of G1 − G̃1 at x = 0. Since both G1 and G̃1 decay
at least like x−2 when x → ∞. Their difference G1 − G̃1 is integrable on [0,∞) and the
difference of their Riemann sums tends to zero. The approximate Riemann sum (11.1) can
be rewritten as a linear sum of δ−3, δ−2, δ, log(δ) and o(1). Here is why: the Ri all tend to
their limiting values when δ → 0 and can be expanded as a Taylor series in δ. The term∑

n≥1

exp(−nδ)
n

= − log(1− exp(−δ)) = − log(δ) +O(1)

This proves that F1 can be expressed as a linear sum of δ−3, δ−2, δ, log(δ), 1, o(1).
The similar method works for F2. However there is one important difference. When we

write F2 in terms of δ,R1, R2, R3, R4 we get an extra factor of (−1)n:

F2 = δ
∑
n≥1

1
nδ

(−1)n exp(−(R3 −R4)nδ) + exp(−(R3 +R4 +R1 +R2)nδ)
(1− exp(−nR3δ))(1− exp(−nR1δ))(1− exp(−nR2δ))

Due to the (−1)n this is not a Riemann sum but a difference between two Riemann sums
corresponding to n even/odd. We approximate F2 by

δ
∑
n≥1

(−1)n
(
Q1(Ri)
n4δ4 + Q2(Ri)

n3δ3 + Q3(Ri)
n2δ2 + exp(−nδ)Q4(Ri)

nδ

)
(11.2)

where Qi are determined by the Taylor expansion of

G2(x) = 1
x

exp(−(R3 −R4)x) + exp(−(R1 +R2 +R3 +R4)x)
(1− exp(−R3x))(1− exp(−R1x))(1− exp(−R2x))
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Its Taylor expansion at x = 0 is

G2(x) = Q1(Ri)
x4 + Q2(Ri)

x3 + Q3(Ri)
x2 + Q4(Ri)

x
+OK/L(1) (11.3)

We have F2 — (11.2) tends to zero. Due to the (−1)n (11.2) can be written as a sum of
δ−3, δ−2, δ−1, 1, o(1) and there is no log(δ) term because

∑
n≥1

(−1)n exp(−nδ)
nδ

= − log(1 + exp(−δ)) (11.4)

is smooth at δ = 0. In summary the saddle point value exp(C(K,L)F (σ̃+) equals:

exp
(
2
√

2π24−1/4√LK1/4(1+ i)+A2K
−2/4 +A3K

−1/4 +A4 log(K)+A5 +o(1)
)

(11.5)

for some complex numbers A2, A3, A4, A5. The two balls contribute complex conjugate
saddle point values. Hence we just need to take twice the real part. Absorbing the (2πi)−4

into A5 and the Jacobian into A4 we finally obtain the desired conclusion (up to an overall
factor of 2 which can be absorbed into the exponential)

C(2K,0,0,L) = exp
(
2
√

2π24−1/4√LK1/4 + . . .
)(

cos
(
2
√

2π24−1/4√LK1/4 + . . .
)

+o(1)
)

(11.6)
where the two . . . denote the real and imaginary parts of A2K

−2/4+A3K
−1/4+A4 log(K)+A5

respectively.

12 Computational results

In this section we present and explain the numerical data for C(L, 0, 0,K)

(2L,K) C(2L, 0, 0,K)
(24, 25) -4548136426
(26, 26) 7935209206
(28, 27) 88800402896
(30, 28) -4887654890
(32, 29) -1425581403152
(40, 45) 7337290205677620
(42, 46) 23800263998384620
(44, 47) -51625798313702826
(46, 48) -429211479407800616
(48, 49) -288354194415296772
(50, 50) 4773158006473089778
(52, 51) 14870285533157146362
(54, 52) -21630735101481854366

IF we only take the leading order term in (3.5), the convergence is slow. So we will take into
account subleading corrections. The analysis in the previous section shows that subleading
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correction of log |C| can take K2/4,K1/4, log(K) or OK/L(1). For small K it turns out that
log(K) contributes more than the other terms. Part of the contribution from log(K) comes
from the quadratic determinant which is easy to compute. The determinant of the second
derivative of (5.5) at (4.5) is

− 32i
√

6K3/2L3

π4 (12.1)

and we can apply the formula for quadratic fluctuation to deduce

|C(2L, 0, 0,K)| ≈ 2

∣∣∣∣∣∣<
 1

(2πi)4

√
2π4√

32i
√

6K3/2L3/π4
exp

(
2
√

2π24−1/4K1/4√L
)∣∣∣∣∣∣

≈ 0.04K−3/4L−3/2 exp
(
4.0146K1/4√L

)
(12.2)

The 1/(2πi)4 comes from the original 1/((2π)4) outside the contour integral. The
√

2π4 in
the numerator comes from the four variables we need to integrate over. The denominator is
simply the square root of the determinant of the Hessian at the saddle point. Let us check
this formula against numerical data. Take 2L = 50,K = 50. The logarithm of the exact
result is

log(4773158006473089778) ≈ 43 (12.3)

The prediction is

log(0.0450−3/425−3/2) + 4.0146501/4√25 ≈ 42.3959 (12.4)

The error is within the predicted range: the next leading order term contributing the
logarithm is of order K2/4 when K ≈ 50 it could contribute

√
50 ≈ 7 to the error. With

some more work one can determine a more accurate constant prefactor (0.04 in (12.2)) ([8]
page 45)

A Polylogarithms

In this appendix we collect some basic facts about polylogarithms needed in this paper.
The polylogarithm is defined as follows when <(θ) < 0, s ∈ Z>0:

Lis(θ) =
∑
n≥1

exp(nθ)
ns

. (A.1)

This is an absolutely convergent series. Throughout this paper we require that =(θ) 6= 2πZ.
This is the same as requiring exp(θ) to be never real and positive. Our first goal is to
perform analytic continuation from <(θ) < 0 to <(θ) ∈ R. First, when s = 1 we recognize
it as the Taylor series of − log(1− exp(θ)):

Li1(θ) = − log(1− exp(θ)) (A.2)

(we choose the branch of log so that log(x) is real and positive when x ∈ (1,∞)). Hence
Li1(θ) is analytic whenever exp(θ) 6∈ [1,∞) which includes the whole domain <(θ) ∈
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R,=(θ) 6= 2πZ. To perform analytic continuation for higher polylogarithms we use the
identity Li′s(θ) = Lis−1(θ), s ≥ 2,<(θ) < 0 and hence Lis(θ) can be analytically continued
to <(θ) ∈ R.

Next we collect the sum formula for Lis(θ) valid for 0 < =(θ) < 2π. First we note

Li1(θ)− Li1(−θ) = − log 1− exp(θ)
1− exp(−θ) = − log(− exp(θ)) = −(θ − iπ) (A.3)

Now we keep using the identity Li′s(θ) = Lis−1(θ), s ≥ 2 to deduce identities for higher
polylogarithms. For example

d

dθ
(Li2(θ) + Li2(−θ)) = θ − iπ ⇒ Li2(θ) + Li2(−θ) = −1

2(θ − iπ)2 − π2

6 (A.4)

And similarly

Li3(θ)− Li3(−θ) = −1
6(θ − iπ)3 − π2

6 θ + iπ3

6 (A.5)

Li4(θ) + Li4(−θ) = π4

45 −
θ2(θ − 2πi)2

24 (A.6)

We do not need higher polylogarithms in this paper.

B Estimates on the second and third derivative of F

In this section we fill in a missing detail in “Step 5: Computation around the saddle points”.
We prove a bound on the third derivative of F in (9.1): ∇3F = OK/L(logK) in the two
balls B̃±. The derivatives are taken with respect to σi. Using this bound one can prove
that the Guassian integral approximation in the two balls are indeed valid and quadratic
form in (10.1) tends to a constant. We will do the case of third partial derivative with
respect to m̂ and the other third partial derivatives can be analyzed using a similar method.
We again split F into four terms as in (7.1). Let us study the first term as an example, we
want to prove the following:

∂3
m̂

∞∑
n=1

1
n

qnτ ŷ
−n

(1− qn1 )(1− qn2 )(1− qnτ ) = OK/L(K3/4 logK) (B.1)

To do this we split the sum over n into n = 1 . . . 1/(200<(β)) and n = 1/(200<(β)) . . .∞.
The estimate for the former is:

1/(200<(β))∑
n=1

= n2qnτ ŷ
−n

(1− qn1 )(1− qn2 )(1− qnτ ) =
1/(200<(β))∑

n=1

n2O(1)
nε1nε2nβ

= OK/L(K3/4 logK) (B.2)

Here I have used the fact that |qτ ŷ−1| < 1 and |(1− exp(−nε1)| = OK/L((nε1)−1) whenever
|nε1| < 1. The estimate for the latter is:

∞∑
n=1/(200<(β))

n2qnτ ŷ
−n

(1−qn1 )(1−qn2 )(1−qnτ ) =OK/L(1)
∞∑

n=1/(200<(β))
n2 exp(−(<(β)−|<m̂|)n

=OK/L(K3/4)
(B.3)
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where I have use the bound |(1− qnτ )|−1 = OK/L(1) for this range of n and one can explicitly
evaluate the second infinite sum to obtain the desired inequality.

Next we show that the Hessian of F at σ̃± converges to (8.2). We will compute the m̂
derivative first

∂2
m̂

∞∑
n=1

1
n

qnτ ŷ
−n

(1− qn1 )(1− qn2 )(1− qnτ ) = − π2

12βε1ε2
+OK/L(K2/4 logK) (B.4)

This implies that once we divide by C(K,L), the second derivative with respect to m̂ at
σ̃± converges to a finite limit as K →∞. To prove this estimate we write

1
(1− qn1 )(1− qn2 )(1− qnτ ) = 1

n3βε1ε2
+ g(nε1, nε2, nβ) (B.5)

where the function g satisfies g(ε1, ε2, β) = OK/L(ε−2
1 ) whenever |ε1| < 1, |ε2| < 1, |β| < 1.

We again split the sum into n = 1, . . . , 1/(200<(β)) and n = 1/(200<(β)), . . . and in the
former case we estimate
1/(200<(β))∑

n=1
nqnτ ŷ

−ng(nε1,nε2,nβ) =
1/(200<(β))∑

n=1

qnτ ŷ
−n

nε21
=OK/L(logKε−2

1 ) =OK/L(K2/4 logK)

(B.6)
In the latter case we estimate

∞∑
1/(200<(β))

nqnτ ŷ
−n

(1− qn1 )(1− qn2 )(1− qnτ ) = OK/L(1)
∞∑

1/(200<(β))
nqnτ ŷ

−n = OK/L(K2/4) (B.7)

and
∞∑

1/(200<(β))

qnτ ŷ
−n

n2βε1ε2
=
OK/L(K−1/4)

βε1ε2
= OK/L(K2/4) (B.8)

Hence

∂2
m̂

∞∑
n=1

1
n

qnτ ŷ
−n

(1− qn1 )(1− qn2 )(1− qnτ ) =
∞∑
n=1

qnτ ŷ
−n

n2βε1ε2
+OK/L(K2/4 logK) (B.9)

Now we can rewrite the r.h.s. using polylogarithms and deduce the desired estimate. The
analysis for the other three terms in (7.1) and other derivatives are similar and we omit
the details.

C Young tableaux

In this appendix we set out our conventions for partitions and young tableaux. A partition
λ is a finite sequence of nonincreasing positive integers λ1 ≥ λ2 ≥ λ3 . . . ≥ λl(λ) > 0 where
l(λ) is called the length of the partition. One usually visualizes a partition by drawing the
associated Young diagram Y (λ). The young diagram is made up of adjacent boxes. The
top row of the young diagram has λ1 boxes, the second row has λ2 boxes, and the pth row
has λp boxes. Henceforth any operation on a young diagram induces an operation on the
associated partition and vice versa. A box s in a young diagram Y (λ) is labelled by its
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cooordinates (p, q) where p = 1, . . . , l(λ) is the vertical coordinate and q = 1, . . . , λp is the
horizontal coordinate. The arm length a(p, q) of a box s = (p, q) is defined as the number
of boxes to the right of s. The leg length l(p, q) of s is the number of boxes below s.

a(s) = a(p, q) = λp − q, l(s) = l(p, q) = λTq − p (C.1)

where the transpose of a partition is the reflection of the partition by the 45 degree axis from
top left to bottom right. For example the transpose of λ1 = 3, λ2 = 2, λ3 = 2 is the partition
λ1 = 3, λ2 = 3, λ3 = 1. The length of the transposed partition is given by l(λT ) = λ1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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