Flow of buoyant granular materials along a free surface

Zhong Zheng1,2,3 †, Herbert E. Hupper1,4,5, Nathalie M. Vriend1, Jerome A. Neufeld1,2,3, and P. F. Linden1

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
2BP Institute, University of Cambridge, Cambridge, CB3 0EZ, UK
3Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, UK
4Faculty of Science, University of Bristol, Bristol BS2 6BB, UK
5School of Mathematics and Statistics, University of New South Wales, NSW 2052, AU

(Received January 10, 2018; revised ?; accepted ?. - To be entered by editorial office)

We study experimentally the flow of light granular material along the free surface of a liquid of greater density. Despite a rich set of related geophysical and environmental phenomena, such as the spreading of calved ice, volcanic ash, debris and industrial wastes, there are few previous studies on this topic. We conduct a series of lock-release experiments of buoyant spherical beads into a rectangular tank initially filled with either fresh or salt water, and record the time evolution of the interface shape and the front location of the current of beads. We find that following the release of the lock the front location obeys a power-law behaviour during an intermediate time period before the nose of beads reaches a maximum runout distance within a finite time. We investigate the dependence of the scaling exponent and runout distance on the total amount of beads, the initial lock length, and the properties of the liquid that fills the tank in the experiments. Scaling arguments are provided to collapse the experimental data into universal curves, which can be used to describe the front dynamics of buoyant granular flows with different size and buoyancy effects and initial lock aspect ratios.

Key words: granular media, geophysical and geological flows, gravity currents

1. Introduction

Inspired by aspects of the runout of granular materials such as ice from glacier calving, debris from land slides, dredged materials, industrial wastes, volcanic ash and snow-laden air and similar phenomena, we study the flow of granular material along the upper surface of a liquid. Key open questions include the generation of tsunami waves once the granular materials hit the surface of an ocean, lake or river, and how the granular materials spread after the initial impact. Here we investigate the case of the flow of buoyant granular material in a channel containing a liquid of a greater density, so that the granular material floats near the air-liquid interface. Such flows have only been considered for simple fluids, for example, in the viscous limit in the context of oil spreading in the sea, and ice shelf and grounding lines dynamics (see, e.g., Hoult 1972; Lister & Kerr 1989; Pegler & Worster 2013). Similar phenomena also appear in freshwater rivers flowing into

† Email address for correspondence: zzheng@alumni.princeton.edu
salt-water oceans and intrusive gravity currents entering stratified environments (see, e.g., Holyer & Huppert 1980; de Rooij et al. 1999; Maurer et al. 2010; Carazzo & Jellinek 2012).

Related previous studies on this topic also include the collapse of heavy beads along an inclined substrate into a shallow layer of water, inspired by the landslide process (see, e.g., Viroulet et al. 2014; Zitti et al. 2016). The major focus of Viroulet et al. (2014) and Zitti et al. (2016) is on the generation of tsunami waves caused by the impact of the granular material on the shallow water. The spreading of heavier granular materials into a water-filled channel has also been investigated through a series of experiments with different initial conditions and granular materials (Hallworth & Huppert 1998; Pailha et al. 2008; Rondon et al. 2011) and through theoretical models (see, e.g., Pailha & Pouliquen 2009) and numerical simulations (Topin et al. 2012). Similar to the situation of dry granular spreading, investigated experimentally (Lube et al. 2004, 2005; Balmforth & Kerswell 2005; Thompson & Huppert 2007) and theoretically (Savage & Hutter 1989; Pouliquen & Hutter 2002; Staron & Hinch 2005; Larrieu et al. 2006; Staron & Hinch 2007), in experiments of granular collapse within a liquid of lower density, a final profile shape was observed at late times with a finite runout distance of the granular material. However, when the viscosity of the ambient liquid becomes important, the dynamics of granular collapse is modified from the case of dry granular collapse (du Pont et al. 2003; Pailha & Pouliquen 2009; Topin et al. 2012).

Another related topic concerns particle-laden gravity currents driven by the density difference between the particles and the ambient liquid (see, e.g., Bonnecaze et al. 1993, 1995). In these flows there is also a finite runout distance, because the heavy particles settle out from the current so that the bulk density difference eventually becomes zero and the current stops. The speed of particle sedimentation is typically determined by a balance between the gravitational force and viscous drag (Bonnecaze et al. 1993). We also note that the particle concentrations in these particle-laden flows are typically much lower than the particle concentrations in the granular collapse experiments of Hallworth & Huppert (1998) and the granular intrusion experiments described in the current work.

In this study we focus on the temporal evolution of relatively light beads spreading from a lock into a relatively denser ambient liquid. We describe a series of experiments of interfacial granular intrusions into a water tank in § 2. We interpret the major observations on the time-dependent profile shape, front location and runout distance in § 3. We also provide scaling arguments to rescale and collapse the experimental data into universal curves, which capture the major physics during the spreading process. We summarize the major findings in § 4, and comment on open questions and future directions and the major differences between the interfacial granular intrusion and three other related problems: the intrusive gravity current, the particle-laden gravity current and the dry granular collapse problems.

2. Experimental Design

We examine the spreading of a constant volume of buoyant particles, floating on a liquid of relatively greater density. The experiments were conducted in a rectangular tank of length $l_t = 2.09 \pm 0.01$ m, width $w_t = 0.15 \pm 0.01$ m and depth $d_t = 0.57 \pm 0.01$ m, as sketched in figure 1. Before each experiment, the tank was filled with either fresh water, density $\rho_w = 998$ kg·m$^{-3}$, or saturated sodium chloride solution, density $\rho_{sw} = 1,180$ kg·m$^{-3}$. The water depth d_t was set to $d_t = 15$ or 20 cm. A lock gate of small thickness (2.5 mm) was placed at a location x_i (i.e., the lock length), measured from one end of the tank (i.e., from the origin at $x = 0$), as shown in figure 1a. The gap between the lock gate and
the origin was filled with a mass m of spherical polypropylene beads (McMaster Carr, 1974K2) of radius $r = 1.6$ mm and density $\rho = 910$ kg m$^{-3}$. The beads were carefully maintained in an initial rectangular shape before the removal of the lock gate (figure 1a).

To start the experiments, we quickly (within 0.1 s) lifted the lock gate vertically and the beads spread horizontally along the surface of the liquid (figure 1b). A digital camera was used to take videos from either the side or above the tank. Digiflow software (Dalziel 2005) and MATLAB image processing toolbox were used to analyse videos and extract the interface shape between the beads and water and the location of the front of the current of beads. In order to explore buoyancy effects, we used either fresh water or saturated salt water as the ambient liquid in the tank. We also varied the depth of the liquid d and the total amount of beads m. In addition, to explore the influence of the initial aspect ratio of the beads, we kept the mass of beads m constant but varied the initial lock length x_i. The experimental parameters are given in table 3 and the results are summarized in table 4 in Appendix A. The error estimates on the measured parameters in table 3 and thereafter come from the standard deviation of repeated experiments.

3. Experimental Results

3.1. Interface shape

Side and top views of two representative experiments are shown in figures 2 and 3, respectively. In these two experiments with identical parameters, the tank was filled with saturated salt water of depth $d = 15 \pm 0.1$ cm, the lock length was $x_i = 10$ cm, and the total mass of the beads was $m = 765 \pm 1$ g.

As can be seen from figure 2, the current of beads (soaked in water) propagates along the free surface and culminates in a very shallow front which is one or two beads in thickness. Eventually the front of the beads reaches a maximum location, all motion stops and the interface shape stays unchanged at later times. From the top view, shown in figure 3, we observe that the propagating front of the light beads remains almost planar across the width of the tank. The top-view pictures also indicate that the front can become irregular towards the end of the experiments when the spreading rate is very
Figure 2. Side views of the spreading beads in a representative experiment (Expt 2a in table 3). The pictures were taken at $t = \{0, 0.6, 1.8, 6.0, 10, 20, 30\}$ s. The tank was filled with saturated salt water of depth $d = 15 \pm 0.1$ cm, $m = 765 \pm 1$ g, and $x_i = 10$ cm. The pictures show the initial spreading with time followed by the front coming to a halt.
Figure 3. Top view of the spreading beads in a representative experiment. The propagating front remains almost uniform across the width of the tank until the current is close to its final length. The pictures are taken at $t = \{0, 0.6, 1.8, 6.0, 10, 20, 30\}$ s. The experimental parameters are the same as the experiment in figure 2.
Figure 4. For small initial lock lengths (e.g., $x_i \leq 10$ cm), the interface shape exhibits an almost constant slope near the origin between $t = 0.6$ s and $t = 2.2$ s before decreasing to a smaller angle at the end. Shear-driven instabilities also appear at the interface at the beginning of the experiments. This experiment (not included in table 3) was conducted using saturated salt water of depth $d = 15 \pm 0.1$ cm, $m = 765 \pm 1$ g, and $x_i = 5$ cm.
Flow of buoyant granular materials along a free surface

Figure 5. For large initial lock lengths (e.g., $x_i \geq 20$ cm), there exists a “frozen” region near the origin where the interface shape stays unchanged. This experiment (not included in table 3) was conducted using saturated salt water of depth $d = 15 \pm 0.1$ cm, $m = 765 \pm 1$ g, and $x_i = 25$ cm.
slow, and the effects of surface tension, ambient viscosity and sidewall friction may have become significant. Nevertheless, in general, the roughness of the front is small compared with the length of the current, so we neglect the variations of the front across the channel width, and define the front location $x_f(t)$ based on the side view pictures, shown in figure 2.

In addition, from the top view (figure 3), we observe that the propagating front of the light beads remains almost planar across the width of the tank. The front can become irregular near the end of the experiments, and the effects of surface tension may have become significant. Nevertheless, we neglect the variations of the propagating front across the channel width, and define the front location $x_f(t)$ based on the side view pictures (figure 2) and provide a detailed quantitative description for the time evolution of the front location $x_f(t)$ in § 3.2.

When the lock length is small ($x_i \leq 10$ cm) and hence, the initial depth is large, near the origin the interface shape contains a region with an almost constant slope (figure 4). This is different from the observations in the fixed-volume lock-release experiments of Newtonian liquids spreading along a free surface in which the slope remains zero at the origin (Lister & Kerr 1989). We also note, for small lock lengths, that a shear-driven instability typically appears along the bottom of the current at the beginning of the experiments (figure 4).

When the lock length is large ($x_i \geq 20$ cm) and the initial depth is small, the interface shape contains a “frozen region” near the origin, with an interface shape that remains almost unchanged from its initial state during the entire flow (figure 5). Similar phenomena have also been observed in the fixed-volume lock-release experiments of dry granular materials along a horizontal substrate and the deposits look like a “Mexican hat” (Lube et al. 2004; Lajeunesse et al. 2004). We also note that a shear-driven instability typically appears at the interface of the water and beads at the beginning of the experiments (figure 4), when the initial lock length is small.

Figure 6. Time evolution of the propagating front in a representative experiment (Expt 1a in table 3). (a) The flow is arrested at long times and a runout distance x_∞ can be defined. (b) A constant slope β is observed during an intermediate period in the log-log plot, which suggests the scaling of $x_f(t) \propto t^\beta$, with $\beta \approx 0.6$ in this example.
Flow of buoyant granular materials along a free surface

3.2. Propagating front

The time evolution of the location of the propagating front $x_f(t)$ for a representative experiment, shown in (figure 6). After an initial acceleration from rest, we observed a constant slope β in the log-log plot during an intermediate time period ($1 \, s \leq t \leq 5 \, s$), as shown in figure 6b, which indicates a scaling behaviour for the front location $x_f(t) \propto t^\beta$. Then, the spreading slowed down, and the front location approached a final value x_∞, defined as the run-out distance, as shown in figure 6a, which corresponds to the final arrested state.

Figure 7. Time evolution of the propagating front $x_f(t)$ in different experiments, which demonstrates the influence of the lock length. In these experiments, the tank was filled with saturated salt water of depth $d = 15 \pm 0.1 \, \text{cm}$, $m = 765 \pm 1 \, \text{g}$, and $x_i \approx \{7, 10, 16, 21, 26\} \, \text{cm}$. The influence of the lock length x_i on the runout distance x_∞ in the arrested state, and scaling exponent β in the intermediate period can be observed.

Figure 8. Time evolution of the propagating front $x_f(t)$ in different experiments, indicating the influence of the density of the ambient liquid. The tank was filled with either water or salt water of depth $d = 15 \pm 0.1 \, \text{cm}$, $m = 765 \pm 1 \, \text{g}$, and $x_i = 5 \, \text{cm}$ in both experiments. During the intermediate period, when $x_f(t) = \alpha t^\beta$, the scaling exponent β in both experiments was found to be almost the same, while the prefactor α differed. The runout distance x_∞ in the two experiments were also slightly different.
Figure 9. The scaling exponent β in $x_f(t) = \alpha t^\beta$ from different experiments during an intermediate period after the removal of the lock gate: (a) raw data and (b) rescaled data. The rescaled data collapse to a universal curve and the dashed curve represents a best power-law fit. The definition of the scaling exponent β is demonstrated in figure 6b. The dimensionless lock length is $X_i \equiv x_i/l_c$ with the characteristic length scale l_c defined in (3.1), which accounts for the total mass of the beads m.

The influence of the lock length x_i on the front location $x_f(t)$ is shown in figure 7. The data show that for a fixed amount of beads, an increase in the initial local length x_i corresponds to a decrease in both the scaling exponent β during the intermediate period and the runout distance x_∞ at the final arrested state. We note that the decrease in the runout distance x_∞ appears progressively weaker, and x_∞ eventually approaches a constant, as we further increase the lock length x_i beyond a critical value. We also note that the capillary effects appear to become increasingly significant when we continue to increase the lock length x_i, as suggested by an irregular propagating front (which contains only one layer of beads) from the top view.

The influence of the fluid density on the front location $x_f(t)$ is shown in figure 8. During the intermediate period, when the front location obeys $x_f(t) = \alpha t^\beta$, the scaling exponent β in both experiments appears to be the same, while the prefactor α differs, and a stronger buoyancy effect corresponds to a greater prefactor α. In addition, the runout distances x_∞ in the two experiments are slightly different, which is not statistically significant.

3.2.1. Scaling exponent β

The scaling exponent β is plotted against the lock length in figure 9a. Within the parameter range we considered, the experiments show a negligible influence of water depth d, and buoyancy $\Delta \rho g$. On the other hand, for a fixed amount of beads m, the scaling exponent β decreases as the lock length x_i increases, as mentioned before. In addition, the total amount of beads m has a systematic influence on the scaling exponent β: an increase in m corresponds to an increase in β, and the same dependence holds for experiments in both water and salt water.

In order to address the effect of initial mass, we define a dimensionless lock length as
The prefactor \(\alpha \) in \(x_f(t) = \alpha t^\beta \) from different experiments during an intermediate period after the removal of the lock gate: (a) raw data and (b) rescaled data. The dashed curve is a best exponential fit. The dimensionless lock length is \(X_i \equiv x_i/l_c \) with the characteristic length scale \(l_c \) defined in (3.1), which accounts for the total mass of the beads \(m \). The dimensionless prefactor \(A \equiv \alpha/\alpha_c \) with the characteristic scale \(\alpha_c \) defined in (3.3), includes the effects of both the total mass of beads \(m \) and the buoyancy \(\Delta \rho g \).

\[X_i \equiv x_i/l_c \], based on a characteristic length scale \(l_c \) defined by

\[
l_c = \left[\frac{m}{\rho_b u_1 (1 - \phi)} \right]^{1/2} = (x_i h_i)^{1/2}, \tag{3.1}\]

where \(\rho_b \) is the density of the beads, \(h_i \) is the initial vertical extent of the beads in the lock and \(\phi \) is the porosity of the packed beads (the volume fraction occupied by liquid). We assume that initially the beads are closely packed spheres of equal size and take \(\phi = 0.37 \) (Acton et al. 2001).

From the definitions of \(l_c \) and \(X_i \), we obtain that \(X_i = (x_i/h_i)^{1/2} \), which measures the inverse aspect ratio (height/length) of the initial arrangement of beads. The power law exponent \(\beta \) is plotted versus \(X_i \) in figure 9b. This produces a collapse of the data and shows that \(\beta \) decreases as the lock aspect ratio decreases. A least squares best fit of \(\beta \) as a power of \(X_i \) gives

\[\beta = 0.581 X_i^{-0.769}, \quad \text{for } 0.6 \leq X_i \leq 3.8, \tag{3.2} \]

with \(R^2 = 0.96 \), and is shown as the dashed curve in figure 9b. Other fits to the experimental data are provided in Appendix B.

3.2.2. **Prefactor \(\alpha \)**

The prefactor \(\alpha \) is plotted against \(x_i \) in figure 10a. The value of \(\alpha \) increases with \(x_i, m \) and \(\Delta \rho g \). Clearly, there is a systematic dependence on the initial lock length \(x_i \), the total mass of beads \(m \), and the buoyancy \(\Delta \rho g \). To address these effects, we rescale the lock length \(x_i \) based on the length scale \(l_c \), defined in (3.1). To find an appropriate characteristic scale for \(\alpha \), we assume that it depends only on the length scale \(l_c \) and the reduced gravity \(g' \equiv \Delta \rho g/\rho_l \), where \(\rho_l \) is the density of the liquid in the tank and \(\rho_l = \rho_w \) or \(\rho_{sw} \), respectively. Dimensional analysis suggests that we can define a dimensionless
Figure 11. Measurements of the front location rescaled according to $X_f(T) = AT^\beta$. We observe good data collapse in an intermediate time period (approximately $2 \leq T \leq 20$). The approach toward and departure from the scaling behaviour are also demonstrated. The black ($m = 765 \pm 1 \text{ g}$) and red ($m = 383 \pm 1 \text{ g}$) symbols indicate experiments in salt water and the blue ($m = 765 \pm 1 \text{ g}$) symbols represent experiments in fresh water. The detailed experimental parameters are listed in table 3.

Prefactor $A \equiv \alpha/\alpha_c$, where

$$\alpha_c \equiv g' \beta l_c^{-2} = \left(\frac{\Delta \rho g}{\rho l} \right)^{\frac{\alpha}{2}} \left(\frac{m}{\rho w_l(1 - \phi)} \right)^{\frac{1}{2} - \frac{\alpha}{2}}.$$

We plot the rescaled prefactor A as a function of the rescaled lock length X_i in figure 10b. This scaling collapses the data and shows that α decreases as the aspect ratio of the initial bead configuration increases (figure 10b). A best exponential fit for the data is

$$A = 0.645 \ e^{0.49X_i}, \quad \text{for } 0.6 \leq X_i \leq 3.8,$$

with $R^2 = 0.95$, and is shown as the dashed curve in figure 10b. Other best-fits using different functional forms of A vs X_i are shown in Appendix B.

3.2.3. Propagation law

The length scale l_c and reduced gravity g' provide a characteristic time scale

$$l_c \equiv \left(\frac{l_c}{g'} \right)^{\frac{1}{2}} = \left(\frac{\Delta \rho g}{\rho l} \right)^{-\frac{1}{2}} \left[\frac{m}{\rho w_l(1 - \phi)} \right]^{\frac{1}{2}}.$$

Defining a dimensionless time $T \equiv t/l_c$ and a dimensionless front location $X_f(T) \equiv x_f/l_c$, the time evolution of the front location $x_f(t) = \alpha t^\beta$ can be rewritten in a dimensionless form

$$X_f(T) = AT^\beta.$$

The front locations rescaled according to (3.6) are shown in figure 11. As expected the data collapse during the period of power law spreading ($2 \leq T \leq 20$). The approach toward and departure from the scaling behaviour are also demonstrated in figure 11.
3.3. Runout distance x_∞

The final runout distance x_∞ is shown in figure 12a. For short lock lengths x_∞ decreases with increasing x_i, but is almost independent of lock length for $x_i > 15$ cm. There is only a small difference between the fresh and salt water data, but x_∞ increases with m.

Since the extension of the current occurs during the inertial spreading phase, a runout length scale l_∞ can be defined as

$$l_\infty \equiv \alpha t_c^\beta = A t_c = A \left[\frac{m}{\rho v_f (1 - \phi)} \right]^{\frac{1}{2}}. \quad (3.7)$$

We define a dimensionless runout distance $X_\infty \equiv x_\infty / l_\infty$, and plot X_∞ as a function of the dimensionless lock length X_i in figure 12b. This scaling collapses the data and shows that X_∞ increases with the initial aspect ratio of the bead configuration, and is independent of the buoyancy of the beads. The best power-law fit, shown as the dashed curve in figure 12b, is given by

$$X_\infty = 8.16 X_i^{-1.09}, \quad \text{for } 0.6 \leq X_i \leq 3.8, \quad (3.8)$$

with $R^2 = 0.98$. Other data fitting results, using different functional forms of X_∞ vs X_i, are also provided in Appendix B.

Although viscous and surface tension effects may be expected to become important when the spreading rate is slow as the current approaches its final arrested position, collapse of the data shown in figure 12b suggests that the runout distance x_∞ is determined during the inertial-dominated period. We also note that the two dimensional effects, i.e., the irregularity of the propagating front across the channel width are larger with increasing lock length x_i, decreasing m, and decreasing buoyancy $\Delta \rho g$.
3.4. Maximum thicknesses

The time evolution of the maximum thicknesses, defined at the back wall of the lock as the distances between the water level and the top surface h_{ot} and the bottom surface h_{ob} of the beads, respectively, are shown in figure 13. For small lock lengths $x_i < 15$ cm (e.g. Expt 1a and Expt 2a) both h_{ot} and h_{ob} initially decreased and then became constant as

Figure 13. (a,c,e) Profile shapes at $t = 0.6$ s for three representative experiments, and the definition of the maximum thicknesses h_{ot}, h_{ob}, and h_0. (b,d,f) Time evolution of the corresponding h_{ot}, h_{ob}. The tank was filled with saturated salt water of depth $d = 15 \pm 0.1$ cm, $m = 765 \pm 1$ g, and (a,b) $x_i = 10$ cm, (c,d) $x_i = 15$ cm, and (e,f) $x_i = 20$ cm.
the current approached its final arrested state. For longer lock length $x_i \geq 20\text{cm}$ (Expt 3a) both h_{00} and h_{0b} remained close to their initial values, which corresponds to the existence of the “frozen” region near the origin, as shown in figure 5.

The final thickness $h_{\infty} \equiv h_0(t \to \infty)$ at the rear wall of the lock is plotted in figure 14a as a function of initial height $h_i \equiv h_0(t = 0)$ (figure 13). The solid line in the figure indicates the limit that h_0 remains unchanged during an experiment, which corresponds to the existence of a near origin “frozen” regime, as shown in figure 5.

The final thickness shows a systematic increase with the mass of beads m (figure 14a). In order to account for this we define dimensionless final thickness as $H_\infty \equiv h_\infty/l_c$ and initial height as $H_i \equiv h_i/l_c = 1/X_i$, and plot the dimensionless H_∞ versus H_i in figure 14b. This reduces the variation associated with different m, and a universal curve of H_∞ vs H_i is obtained, which can be approximated by

$$H_\infty = \begin{cases} H_i, & 0.3 \leq H_i \leq 0.6; \\ 0.6 - 0.3(H_i - 0.6), & 0.6 \leq H_i \leq 1.7. \end{cases} \quad (3.9)$$

This relationship is plotted in figure 14b. The solid line indicates that the maximum thickness H_0 remains unchanged when $0.3 \leq H_i \leq 0.6$ ($1.7 \leq X_i \leq 3.8$), while the dashed line provides a reasonable approximate for H_∞ for $0.6 \leq H_i \leq 1.7$ ($0.6 \leq X_i \leq 1.7$). There appears to be a weaker but systematic buoyancy effect, i.e., an increase in H_∞ with $\Delta \rho g$, which is not captured by the current scaling.

More details of the experiments are provided in Appendix A. The Reynolds numbers Re based on the current thickness or an individual bead were $Re \gg 1$ during the intermediate time period (e.g., $1 \leq t \leq 5 \text{s}$), when the front propagates according to a power-law behaviour, indicating that the current is inertial during this phase. Also, motivated by the front constraining condition of a high Reynolds number gravity current, we computed the Froude number Fr for the experiments, e.g., based on the bead layer thickness at the origin, and we found that, after a short initial transition (e.g., 1s), Fr decreases as.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Physical Meaning</th>
<th>Representative Experimental Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>scaling exponent</td>
<td>$\beta = 0.581 X_i^{-0.769}$, for $0.6 \leq X_i \leq 3.8$</td>
<td>figure 9</td>
</tr>
<tr>
<td>A</td>
<td>prefactor</td>
<td>$A = 0.645 e^{0.491 X_i}$, for $0.6 \leq X_i \leq 3.8$</td>
<td>figure 10</td>
</tr>
<tr>
<td>X_∞</td>
<td>runout distance</td>
<td>$X_\infty = 8.16 X_i^{-1.09}$, for $0.6 \leq X_i \leq 3.8$</td>
<td>figure 12</td>
</tr>
<tr>
<td>H_∞</td>
<td>maximum thickness</td>
<td>$H_\infty = H_i$, for $0.3 \leq H_i \leq 0.6$</td>
<td>figure 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H_\infty = 0.6 - 0.3 (H_i - 0.6)$, for $0.6 \leq H_i \leq 1.7$</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Summary of the major findings for the time-dependent non-dimensional front location X_f, the runout distance X_∞, and the final thickness at the origin H_∞. We note that some of the fitted powers are close to rational fractions. *We only show representative set of data-fitting results that can be used to describe the universal behaviour observed in the experiments. In principle, the experimental data can be fitted using different functional forms, as shown in figure 21 and in Appendix B.

As time progresses, and $Fr < 0.5$ during the majority of the time evolution. This suggests that the condition for an inertial current, that the frontal Froude number is constant and of order one (see, e.g., Simpson 1982) is not appropriate in this situation. In addition, based on the side-view pictures, we calculated the time evolution of the intruding area A_i, measured between the and the propagating front $x_f(t)$. We observe that A_i first increases, following the removal of the lock gate, and gradually reaches a constant at long times (e.g., $t = 30$ s). However, to within fairly coarse resolution we are unable to constrain any variations in the mean porosity of the current, and therefore cannot speculate further as to the evolution of the effective rheology of the current during the course of the experiments.

4. Summary and Discussions

4.1. Summary

In this paper, we investigated the dynamics of a current of spreading beads upon release from behind a lock gate into a liquid of greater density. There are few previous studies on such granular flows despite a rich set of related geophysical and environmental phenomena such as debris flows, industrial waste outputs and volcanic ash spreading. We focused on the time evolution of the front location and the interface shape between the current of beads and the ambient liquid and provided a systematic experimental exploration on the effects of lock length, total amount of beads, and the density of the ambient liquids. We presented scaling arguments to address the major physics that controls the time-dependent front location, the finite runout distance and maximum thickness of the bead layer. The rescaled experimental data collapse to universal curves, which can be used to...
Flow of buoyant granular materials along a free surface

<table>
<thead>
<tr>
<th>Category</th>
<th>Runout Distance x_∞</th>
<th>Final Thickness h_∞</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry collapse</td>
<td>$x_\infty \propto a$, $a \leq 1.8$, $a^{2/3}$, $a \geq 2.8$.</td>
<td>$h_\infty \propto a$, $a \leq 1.15$, $a^{2/5}$, $a \geq 1.15$.</td>
<td>Lube, et al (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry collapse</td>
<td>$x_\infty \propto a$, $a \leq 3$, $a^{1/2}$, $a \geq 3$.</td>
<td>$h_\infty \propto a$, $a \leq 0.7$, $a^{1/3}$, $a \geq 0.7$.</td>
<td>Lajeunesse, et al (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry collapse</td>
<td>$x_\infty \propto a^0.6$, wide slot, $a^{0.65}$, narrow slot.</td>
<td>$h_\infty \propto a^0.6$, wide slot, $a^{0.5}$, narrow slot.</td>
<td>Balmforth, et al (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfacial intrusion</td>
<td>$x_\infty \approx 8.73 a^0.633$, $0.07 \leq a \leq 2.8$.</td>
<td>$h_\infty \approx a^{1/2}(0.78 - 0.3 a^{1/2})$, $0.36 \leq a \leq 2.8$.</td>
<td>current study</td>
</tr>
</tbody>
</table>

Table 2. A summary of previous and current experimental measurements on the runout distance x_∞ and final thickness at the origin h_∞ in dry granular collapse and granular intrusion problems. Here $a \equiv h_i/x_i$, which represents the initial aspect ratio. Note we have rewritten the experimental results of the current study in terms of the aspect ratio in the table, and we have used $A \approx 1.07 X_i^{0.824}$ (Appendix B) instead of $A \approx 0.926 e^{-0.455 X_i}$ for the runout distance.

describe the dynamic behaviour of these flows. The major findings are summarized in table 1. We note that some of the fitted powers are close to rational fractions.

While we provide experimental and scaling results for the front dynamics, further theoretical work is necessary to investigate the detailed functional forms of the dependence of the scaling exponent β, the prefactor A, the runout distance X_∞ and the maximum thickness H_∞ on the initial lock length X_i, respectively. Theoretical work is also needed to address the time evolution of the profile shape of the current of beads, the packing efficiency, and the existence of the irregular front patterns (figure 3), the shear-driven instability (figure 4), and the “frozen” region (figure 5) in different flow situations.

4.2. Discussion

The study has shed light on a category of problems that address the flow of granular materials along a free surface of a liquid, and is expected to motivate further research in the future. Before we close the paper, it is worthwhile to note some major differences between this flow and three other related phenomena: dry and immersed granular collapses in liquids of lower density, the intrusive gravity current, and the particle-laden gravity current. We provide a brief summary in this section.

- A granular density current along a free surface differs in a number of aspects from the dry granular collapse or immersed granular collapse in liquids of lower density. For example, there is no basal friction in the flow along the free surface, although surface tension may play a role, particularly as the current comes to rest. The runout distance of the experiments in this study can be estimated as the maximum horizontal extension of the intermediate period (3.7), during which the location of the spreading front follows
Figure 15. Experimental measurements for the (a) runout distance and (b) final thickness for immersed granular collapse (Rondon et al. 2011) and interfacial granular intrusion (current study). The expressions for the fitting curves are shown in table 2.

...
the particles do not pack and are often assumed to distribute homogeneously within the current because of mixing effects. The buoyancy-driven flow eventually stops because the density of the current (an “average” of the particle-fluid system) continues to decrease due to the fall-out of the particles, and the sedimentation speed is often determined by a balance between buoyancy and viscous drag (see, e.g., Bonnecaze et al. 1993).

Acknowledgement
Z.Z. is grateful for the support of a David Crighton Fellowship from the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge. J.A.N. is supported by a Royal Society University Research Fellowship. N.M.V. is supported by a Royal Society Dorothy Hodgkin Fellowship. We appreciate the helpful discussions with T. Ball, S. Dalziel, N. O’Keeffe, B. Rallabandi, J. M. F. Tsang, and A. Thomas. We also thank M. Hallworth, D. Page-Croft, and the technicians in the GK Batchelor Laboratory in DAMTP for their help with the set-up of the experimental apparatus.

Appendix A. Additional experimental details
We provide more details on the experiments in this section. We first summarize the experimental parameters and results in tables 3 and 4. We calculate the time evolution of the Reynolds number Re and Froude number Fr in different flow situations in §A.1. We also provide the change of effective porosity ϕ_e and intruding area A_i between the location of the lock gate and the front of the bead layer in §A.2.

A.1. On Reynolds number Re and Froude number Fr

The time evolution of the Reynolds number Re during the experiments is shown in figure 16. In particular, based on the thickness h_i of the bead layer at the location of the lock, x_i, and the diameter of the beads, $2r$, we define a Reynolds number by

$$Re_i \equiv \frac{uh_i}{\nu}, \quad \text{and} \quad Re_b \equiv \frac{2ur}{\nu},$$

where u is the speed of the propagating front, and ν is the kinematic viscosity of the liquid. We note that when the front location follows a power-law behaviour (e.g., $1 \leq t \leq 5$ s), the $Re \gg 1$, which suggests that the flow can be considered inviscid during this intermediate period.

We also calculate the time evolution of the Froude number Fr in representative experiments. The definition of the Fr depends on where we measure the thickness of the current of beads. In particular, since it is difficult to identify a head region and a corresponding thickness near the front of the current of beads, we provide two calculations based on the thickness of beads $h_i(t)$ at the location of the lock gate $x = x_i$ and the thickness $h_0(t)$ at the origin $x = 0$, as shown in figure 17. The definitions of the Fr are

$$Fr_i \equiv \frac{u}{\sqrt{g'h_i}}, \quad \text{and} \quad Fr_0 \equiv \frac{u}{\sqrt{g'h_0}},$$

where u represents the propagating speed of the front of the current of beads and g' is the reduced gravity. The representative experiments are identical to those shown in figure 7 and were all conducted in salt water with depth $d = 15 \pm 1$ cm. The total mass of beads is $m = 765 \pm 1$ g, while the lock length was varied as $x_i \approx \{5, 10, 15, 20, 25\}$ cm. The calculation indicates that after a short initial transition (e.g., 1 s), the Fr decreases
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Liquid Type</th>
<th>Fluid Density ρ [103 kg·m$^{-3}$]</th>
<th>Fluid Depth d [m]</th>
<th>Beads Mass w_t [kg]</th>
<th>Lock Length x_i [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.765</td>
<td>0.066/0.072/0.066</td>
</tr>
<tr>
<td>2a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.765</td>
<td>0.101/0.109/0.096</td>
</tr>
<tr>
<td>3a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.765</td>
<td>0.159/0.151/0.154</td>
</tr>
<tr>
<td>4a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.765</td>
<td>0.208/0.208/0.196</td>
</tr>
<tr>
<td>5a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.765</td>
<td>0.257/0.254/0.245</td>
</tr>
<tr>
<td>6a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.574</td>
<td>0.052/0.058/0.051</td>
</tr>
<tr>
<td>7a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.574</td>
<td>0.100/0.093/0.099</td>
</tr>
<tr>
<td>8a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.574</td>
<td>0.150/0.142/0.140</td>
</tr>
<tr>
<td>9a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.574</td>
<td>0.195/0.189/0.206</td>
</tr>
<tr>
<td>10a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.574</td>
<td>0.239/0.257/0.252</td>
</tr>
<tr>
<td>11a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.383</td>
<td>0.055/0.043/0.055</td>
</tr>
<tr>
<td>12a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.383</td>
<td>0.090/0.090/0.094</td>
</tr>
<tr>
<td>13a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.383</td>
<td>0.159/0.140/0.141</td>
</tr>
<tr>
<td>14a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.383</td>
<td>0.193/0.196/0.202</td>
</tr>
<tr>
<td>15a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.015</td>
<td>0.383</td>
<td>0.233/0.228/0.232</td>
</tr>
<tr>
<td>16a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.020</td>
<td>0.765</td>
<td>0.065/0.070/0.076</td>
</tr>
<tr>
<td>17a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.020</td>
<td>0.765</td>
<td>0.096/0.102/0.093</td>
</tr>
<tr>
<td>18a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.020</td>
<td>0.765</td>
<td>0.142/0.156/0.145</td>
</tr>
<tr>
<td>19a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.020</td>
<td>0.765</td>
<td>0.192/0.203/0.199</td>
</tr>
<tr>
<td>20a,b,c</td>
<td>salt water</td>
<td>1.18</td>
<td>0.020</td>
<td>0.765</td>
<td>0.240/0.237/0.240</td>
</tr>
<tr>
<td>21a,b</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.765</td>
<td>0.071/0.066</td>
</tr>
<tr>
<td>22a,b,c</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.765</td>
<td>0.111/0.109/0.111</td>
</tr>
<tr>
<td>23a,b,c</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.765</td>
<td>0.150/0.156/0.158</td>
</tr>
<tr>
<td>24a,b</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.765</td>
<td>0.214/0.202</td>
</tr>
<tr>
<td>25a,b</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.765</td>
<td>0.255/0.251</td>
</tr>
<tr>
<td>26a,b,c</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.383</td>
<td>0.054/0.052/0.057</td>
</tr>
<tr>
<td>27a,b,c</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.383</td>
<td>0.108/0.104/0.107</td>
</tr>
<tr>
<td>28a,b,c</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.383</td>
<td>0.158/0.161/0.149</td>
</tr>
<tr>
<td>29a,b,c</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.383</td>
<td>0.216/0.213/0.204</td>
</tr>
<tr>
<td>30a,b,c</td>
<td>fresh water</td>
<td>1.0</td>
<td>0.015</td>
<td>0.383</td>
<td>0.256/0.253/0.254</td>
</tr>
</tbody>
</table>

Table 3. Summary of the experimental parameters. All experiments were conducted in a rectangular tank of length $l_t = 2.09 \pm 0.01$ m, width $w_t = 0.15 \pm 0.01$ m, and depth $d_t = 0.57 \pm 0.01$ m. Either saturated salt water (saturated NaCl solution), with density $\rho_{sw} = 1.18 \times 10^3$ kg·m$^{-3}$, or fresh water, with density $\rho_w = 1.0 \times 10^3$ kg·m$^{-3}$, was used in the experiments. The depth of the liquid bath d, the total mass of the beads m, and the lock length x_i were also varied, as listed in the table. Spherical polypropylene beads (McMaster Carr, 1974K2) were used in all the experiments with a radius $r = 1.59$ mm and density $\rho = 0.91 \times 10^3$ kg/m3, measured at room temperature. Experiments with similar parameters were conducted to test the reproducibility.
Table 4. Summary of experimental results. The experimental data for the time evolution of the front location are fitted to a power-law form of $x_f(t) = at^\beta$ during an intermediate time period. The values of the scaling exponent β and the prefactor α from a best least-squares fit of the experimental data are reported. The runout distance x_∞ represents the length of the beads at the end of the experiments, once the motion has stopped. The initial thickness represents the thickness of the beads at the origin $x = 0$ at the beginning of the experiments, i.e., $h_i \equiv h_0(t = 0)$, while the final thickness h_∞ represents the thickness of the beads at $x = 0$ at the end of the experiments, i.e., $h_\infty \equiv h_0(t \to \infty)$, as shown in figure 13.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Scaling Exponent β</th>
<th>Prefactor α [m/s$^\beta$]</th>
<th>Runout Distance x_∞ [m]</th>
<th>Initial Thickness h_i [m]</th>
<th>Final Thickness h_∞ [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a,b,c</td>
<td>0.716 ± 0.014</td>
<td>0.239 ± 0.004</td>
<td>0.907 ± 0.012</td>
<td>0.147 ± 0.007</td>
<td>0.033 ± 0.001</td>
</tr>
<tr>
<td>2a,b,c</td>
<td>0.584 ± 0.017</td>
<td>0.237 ± 0.001</td>
<td>0.738 ± 0.034</td>
<td>0.096 ± 0.005</td>
<td>0.046 ± 0.005</td>
</tr>
<tr>
<td>3a,b,c</td>
<td>0.417 ± 0.003</td>
<td>0.254 ± 0.003</td>
<td>0.638 ± 0.003</td>
<td>0.063 ± 0.001</td>
<td>0.056 ± 0.002</td>
</tr>
<tr>
<td>4a,b,c</td>
<td>0.327 ± 0.030</td>
<td>0.282 ± 0.007</td>
<td>0.606 ± 0.008</td>
<td>0.051 ± 0.001</td>
<td>0.050 ± 0.001</td>
</tr>
<tr>
<td>5a,b,c</td>
<td>0.272 ± 0.023</td>
<td>0.314 ± 0.009</td>
<td>0.599 ± 0.008</td>
<td>0.043 ± 0.001</td>
<td>0.043 ± 0.001</td>
</tr>
<tr>
<td>6a,b,c</td>
<td>0.690 ± 0.028</td>
<td>0.231 ± 0.005</td>
<td>0.805 ± 0.028</td>
<td>0.140 ± 0.006</td>
<td>0.026 ± 0.003</td>
</tr>
<tr>
<td>7a,b,c</td>
<td>0.530 ± 0.019</td>
<td>0.225 ± 0.004</td>
<td>0.649 ± 0.019</td>
<td>0.076 ± 0.002</td>
<td>0.043 ± 0.003</td>
</tr>
<tr>
<td>8a,b,c</td>
<td>0.401 ± 0.015</td>
<td>0.253 ± 0.002</td>
<td>0.561 ± 0.019</td>
<td>0.053 ± 0.002</td>
<td>0.050 ± 0.005</td>
</tr>
<tr>
<td>9a,b,c</td>
<td>0.314 ± 0.014</td>
<td>0.292 ± 0.002</td>
<td>0.534 ± 0.022</td>
<td>0.043 ± 0.001</td>
<td>0.043 ± 0.001</td>
</tr>
<tr>
<td>10a,b,c</td>
<td>0.209 ± 0.011</td>
<td>0.347 ± 0.007</td>
<td>0.548 ± 0.013</td>
<td>0.034 ± 0.003</td>
<td>0.034 ± 0.003</td>
</tr>
<tr>
<td>11a,b,c</td>
<td>0.679 ± 0.006</td>
<td>0.197 ± 0.002</td>
<td>0.664 ± 0.009</td>
<td>0.100 ± 0.005</td>
<td>0.018 ± 0.001</td>
</tr>
<tr>
<td>12a,b,c</td>
<td>0.470 ± 0.010</td>
<td>0.201 ± 0.003</td>
<td>0.528 ± 0.005</td>
<td>0.054 ± 0.001</td>
<td>0.033 ± 0.002</td>
</tr>
<tr>
<td>13a,b,c</td>
<td>0.343 ± 0.022</td>
<td>0.233 ± 0.001</td>
<td>0.472 ± 0.011</td>
<td>0.035 ± 0.002</td>
<td>0.033 ± 0.001</td>
</tr>
<tr>
<td>14a,b,c</td>
<td>0.274 ± 0.018</td>
<td>0.284 ± 0.006</td>
<td>0.478 ± 0.013</td>
<td>0.029 ± 0.001</td>
<td>0.028 ± 0.001</td>
</tr>
<tr>
<td>15a,b,c</td>
<td>0.200 ± 0.017</td>
<td>0.323 ± 0.007</td>
<td>0.492 ± 0.008</td>
<td>0.026 ± 0.006</td>
<td>0.025 ± 0.001</td>
</tr>
<tr>
<td>16a,b,c</td>
<td>0.682 ± 0.018</td>
<td>0.269 ± 0.004</td>
<td>0.972 ± 0.021</td>
<td>0.146 ± 0.004</td>
<td>0.033 ± 0.001</td>
</tr>
<tr>
<td>17a,b,c</td>
<td>0.530 ± 0.011</td>
<td>0.268 ± 0.003</td>
<td>0.771 ± 0.021</td>
<td>0.099 ± 0.003</td>
<td>0.051 ± 0.002</td>
</tr>
<tr>
<td>18a,b,c</td>
<td>0.402 ± 0.018</td>
<td>0.281 ± 0.004</td>
<td>0.672 ± 0.022</td>
<td>0.066 ± 0.003</td>
<td>0.061 ± 0.002</td>
</tr>
<tr>
<td>19a,b,c</td>
<td>0.314 ± 0.003</td>
<td>0.323 ± 0.006</td>
<td>0.641 ± 0.001</td>
<td>0.051 ± 0.002</td>
<td>0.051 ± 0.001</td>
</tr>
<tr>
<td>20a,b,c</td>
<td>0.177 ± 0.004</td>
<td>0.362 ± 0.004</td>
<td>0.639 ± 0.005</td>
<td>0.045 ± 0.001</td>
<td>0.045 ± 0.002</td>
</tr>
<tr>
<td>21a,b</td>
<td>0.779 ± 0.020</td>
<td>0.164 ± 0.006</td>
<td>0.931 ± 0.006</td>
<td>0.149 ± 0.003</td>
<td>0.028 ± 0.002</td>
</tr>
<tr>
<td>22a,b,c</td>
<td>0.563 ± 0.014</td>
<td>0.197 ± 0.004</td>
<td>0.771 ± 0.040</td>
<td>0.092 ± 0.004</td>
<td>0.038 ± 0.002</td>
</tr>
<tr>
<td>23a,b,c</td>
<td>0.402 ± 0.024</td>
<td>0.234 ± 0.004</td>
<td>0.676 ± 0.023</td>
<td>0.064 ± 0.002</td>
<td>0.049 ± 0.001</td>
</tr>
<tr>
<td>24a,b</td>
<td>0.362 ± 0.000</td>
<td>0.259 ± 0.007</td>
<td>0.630 ± 0.011</td>
<td>0.050 ± 0.002</td>
<td>0.050 ± 0.001</td>
</tr>
<tr>
<td>25a,b</td>
<td>0.281 ± 0.008</td>
<td>0.285 ± 0.012</td>
<td>0.605 ± 0.005</td>
<td>0.041 ± 0.001</td>
<td>0.041 ± 0.001</td>
</tr>
<tr>
<td>26a,b,c</td>
<td>0.661 ± 0.012</td>
<td>0.173 ± 0.007</td>
<td>0.831 ± 0.002</td>
<td>0.098 ± 0.006</td>
<td>0.016 ± 0.001</td>
</tr>
<tr>
<td>27a,b,c</td>
<td>0.451 ± 0.007</td>
<td>0.194 ± 0.004</td>
<td>0.589 ± 0.021</td>
<td>0.053 ± 0.001</td>
<td>0.031 ± 0.001</td>
</tr>
<tr>
<td>28a,b,c</td>
<td>0.320 ± 0.014</td>
<td>0.237 ± 0.008</td>
<td>0.533 ± 0.013</td>
<td>0.038 ± 0.001</td>
<td>0.033 ± 0.001</td>
</tr>
<tr>
<td>29a,b,c</td>
<td>0.242 ± 0.014</td>
<td>0.292 ± 0.007</td>
<td>0.526 ± 0.011</td>
<td>0.030 ± 0.002</td>
<td>0.028 ± 0.001</td>
</tr>
<tr>
<td>30a,b,c</td>
<td>0.174 ± 0.021</td>
<td>0.332 ± 0.009</td>
<td>0.514 ± 0.007</td>
<td>0.023 ± 0.001</td>
<td>0.021 ± 0.001</td>
</tr>
</tbody>
</table>
monotonically as time progresses, and $Fr < 0.5$ during most of the time period. We note that the frontal Fr is constant and of order one for an inertial current (see, e.g., Simpson 1982), and our calculation suggests that this constant frontal Fr condition is not appropriate for the spreading of the current of beads. Generally, we do not expect the Froude number to be a relevant parameter for these flows.

A.2. On porosity ϕ_e and intruding area A_i

We show in figure 18 the incremental change of area covered by the bead layer; the blue region represents an increase in area, and the red region indicates a decrease. As time progresses, the length of the current extends, which is mainly sustained by a decrease in the thickness of the current within the lock region. The difference in the area covered by the blue and red regions indicates a porosity change for the current of beads, which we
Figure 18. The incremental change of area of the bead layer for the experiment shown in figure 2. The blue region represents an increase in area, while the red region indicates a decrease. The downstream signals represent small changes in the free surface height.
provide a detailed calculation in this section. Eventually the front of the beads reaches a maximum location, all motion stops and the interface shape stays unchanged at later times.

First, the total area A_e can be calculated from the side-view pictures in representative experiments, as shown in figure 19a. We observe an increase in A_e immediately following the release of beads from the lock gate. We can then compute the effective porosity ϕ_e for the system of beads based on $\phi_e \equiv 1 - m/(\rho w_i A_e)$, where m and ρ are the mass and density of the beads, respectively, and w_i is the width of the water tank. The experiments are identical to those in figure 17.

Figure 19. Calculations based on side-view pictures in representative experiments: (a) Area A_e for the current of beads and (b) Porosity ϕ_e, computed based on $\phi_e \equiv 1 - m/(\rho w_i A_e)$, where m and ρ are the mass and density of the beads, respectively, and w_i is the width of the water tank. The experiments are identical to those in figure 17.

Figure 20. The time evolution of the intruding area $A_i(t)$ measured from the location of the lock gate x_i to the front $x_f(t)$. The definition of the intruding area is shown in the inset of (a), and the experimental results are shown in a log-log graph in (b). The experiments are identical to those in figure 17.
Flow of buoyant granular materials along a free surface

The evolution of the intruding area A_i, measured from the location of the lock gate x_i to the location of the propagating front $x_f(t)$. The results from representative experiments are shown in figure 20, and we observe that A_i first increases before gradually reaching a constant value.

We note that the thickness of beads can vary across the width of the water tank, i.e., perpendicular to the plane of the paper, which is an uncertainty in the experimental measurements. In addition, a surface wave (with an amplitude of ≈ 1 cm, for example), generated from pulling the gate out and the impact of beads, can also contribute to the experimental uncertainty. For example, the oscillations in figures 19 and 20 are likely caused by the sloshing water wave. In fact, based on long-wave theory, we estimate that the water wave travels with a speed of $\sqrt{gd} \approx 1.2$ m/s. Thus, the period of the oscillations is estimated to be $2l_t/\sqrt{gd} \approx 3.4$ s, which agrees with the experimental observations.

Appendix B. On experimental data fitting

We note that the experimental data can be fitted using other functional forms, besides those introduced in the main text and summarized in table 1. Here we provide more data-fitting results for the scaling exponent β, prefactor A, and runout distance X_∞ as a function of the rescaled initial lock length x_i, as also illustrated in figure 21. The results hold for $0.6 \leq x_i \leq 3.8$, as set by the experiments. We also note that some of the fitted powers are close to rational fractions.

In particular, we provide the best exponential, logarithm, and power-law fitting results for the scaling exponent β,

$$\beta = \begin{cases}
0.926 e^{-0.455x_i}, & R^2 = 0.971, \\
-0.324 \ln x_i + 0.591, & R^2 = 0.976, \\
0.581 x_i^{-0.769}, & R^2 = 0.962.
\end{cases} \quad (B\,1)$$

We also provide the best exponential, linear, and power-law fitting results for the dimensionless prefactor A,

$$A = \begin{cases}
0.645 e^{0.491x_i}, & R^2 = 0.947, \\
0.944 x_i, & R^2 = 0.929, \\
1.07 x_i^{0.824}, & R^2 = 0.924.
\end{cases} \quad (B\,2)$$

In addition, we provide the best exponential, logarithm, and power-law fitting results for the dimensionless runout distance X_∞,

$$X_\infty = \begin{cases}
15.2 e^{-0.622x_i}, & R^2 = 0.927, \\
-6.21 \ln x_i + 8.72, & R^2 = 0.919, \\
8.16 x_i^{-1.09}, & R^2 = 0.982.
\end{cases} \quad (B\,3)$$

The data-fitting results can be used to describe the universal behaviours for the propagating front in the interfacial granular intrusion experiments.

Appendix C. On the spreading time

We investigate in this section the spreading time t_∞ of the current of beads. The definition of the spreading time t_∞ is given by $x_\infty = \alpha t_\infty^\beta$. Thus, once α, β and x_∞ are identified from each experiments, the value of t_∞ can be computed. The experimental data are shown in figure 22a. The error bars are longer than those of α, β and x_∞,
especially for fresh water experiments with a large initial lock length \(x_i \) (e.g., \(x_i \geq 15 \) cm).

We can further define the dimensionless spreading time as \(T_\infty \equiv t_\infty/t_c \), where the characteristic time \(t_c \) is defined by (3.5). We observe that the rescaled data collapse to a universal curve, as shown in figure 22b, which confirms that \(t_c \) correctly captures the time scale of the spreading dynamics of the granular intrusion experiments. We also note that the spreading time \(t_\infty \) is defined based on \(\alpha, \beta \) and \(x_\infty \), and \(T_\infty(X_i) \) can be estimated based on

\[
T_\infty = X_\infty^{1/\beta},
\]

where \(\beta(X_i) \) and \(X_\infty(X_i) \) are provided from (B1) and (B3), respectively. The dashed
Figure 22. The spreading time t_∞ in different experiments: (a) raw data and (b) rescaled data. t_∞ is defined based on $x_\infty = \alpha^\beta t_\infty$ and the dashed curve in (b) is based on (B 1b), (B 3c) and (C 1). The data collapse in the rescaled plot (b) and the agreement with the dashed curve further confirm that the characteristic time and length scales t_c and l_c, defined as (3.5) and (3.1), correctly capture the spreading dynamics of the current of beads.

The agreement with the rescaled experimental data on $T_\infty(X_i)$ further confirms the self-consistence of the scaling arguments in this study.

REFERENCES

