
PNAS | ACCEPTED MANUSCRIPT

Synapse-type-specific competitive Hebbian
learning forms functional recurrent networks

Samuel Eckmann� ,1,2, Edward James Young2, and Julijana Gjorgjieva1,3

1Max Planck Institute for Brain Research, Frankfurt am Main, Germany, 2Computational and Biological Learning Lab, University of Cambridge, Cambridge, United Kingdom,
3School of Life Sciences, Technical University Munich, Freising, Germany, � Corresponding author, Email: ec.sam@outlook.com

Cortical networks exhibit complex stimulus-response patterns that are based on specific recurrent interactions between

neurons. For example, the balance between excitatory and inhibitory currents has been identified as a central component

of cortical computations. However, it remains unclear how the required synaptic connectivity can emerge in developing

circuits where synapses between excitatory and inhibitory neurons are simultaneously plastic. Using theory and model-

ing, we propose that a wide range of cortical response properties can arise from a single plasticity paradigm that acts

simultaneously at all excitatory and inhibitory connections – Hebbian learning that is stabilized by the synapse-type-

specific competition for a limited supply of synaptic resources. In plastic recurrent circuits, this competition enables

the formation and decorrelation of inhibition-balanced receptive fields. Networks develop an assembly structure with

stronger synaptic connections between similarly tuned excitatory and inhibitory neurons and exhibit response normal-

ization and orientation-specific center-surround suppression, reflecting the stimulus statistics during training. These

results demonstrate how neurons can self-organize into functional networks and suggest an essential role for synapse-

type-specific competitive learning in the development of cortical circuits.

C
omputation in neural circuits is based on the interactions

between recurrently connected excitatory (E) and in-

hibitory (I) neurons (1–4). In sensory cortices, response

normalization, surround and gain modulation, predictive pro-

cessing, and attention all critically involve inhibitory neurons (5–

10). Theoretical work has highlighted the experimentally ob-

served balance of stimulus selective excitatory and inhibitory

input currents as a critical requirement for many neural compu-

tations (11–16). For example, recentmodels based on balanced

E-I networks can explain a wide range of cortical phenomena,

such as cross-orientation and surround suppression (17, 18),

as well as stimulus-induced neural variability (19–21). A major

caveat of these models is that the network connectivity is usu-

ally static and designed by hand, albeit based on experimental

measurements. In contrast, in the brain, synapses are plas-

tic and adjust to the statistics of sensory inputs. How synap-

tic weights self-organize in a biologically plausible manner to

generate many of the non-linear response properties observed

experimentally is not well understood. Earlier theoretical work

on inhibitory plasticity has focused on the balance of excitation

and inhibition in single neurons (22–24), but has not been able to

explain the development of inhibition-balanced receptive fields

when excitatory and inhibitory inputs are both plastic. In more

recent recurrent network models, only a fraction of excitatory

and inhibitory synapse-types are modeled as plastic and neu-

ral responses exhibit a narrow subset of the different response

patterns recorded in experiments (14, 25–29).

Here we present a Hebbian learning framework with mini-

mal assumptions that explains a wide range of experimental

observations. Our framework is based on two key proper-

ties: First, all synaptic strengths evolve according to a Heb-

bian plasticity rule that is stabilized by the competition for a lim-

ited supply of synaptic resources (30–33). Second, motivated

by the unique protein composition of excitatory and inhibitory

synapses, different synapse-types compete for separate re-

source pools. Building on classical work on Hebbian plasticity

(30, 31), we develop an analytical framework that provides an

intuitive understanding of the weight dynamics in recurrent net-

works of excitatory and inhibitory neurons. In numerical simula-

tions, we reveal how the synapse-type-specific competition for

resources enables the self-organization of neurons into func-

tional networks. Beyond the formation of inhibition-balanced

feedforward receptive fields, we demonstrate that emergent re-

current connectivity can generate a wide range of computations

observed in cortical circuits.

Results

Synapse-type-specific plasticity enables the joint develop-

ment of stimulus selectivity and E-I balance. To understand

plasticity in recurrently connected E-I networks, we considered

simplified circuits of increasing complexity. We first asked how
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Cortical circuits perform diverse computations, primar-

ily determined by highly structured synaptic connectiv-

ity patterns that develop during early sensory experience

via synaptic plasticity. To understand how these struc-

tured connectivity patterns emerge, we introduce a gen-

eral learning framework for networks of recurrently con-

nected neurons. The framework is rooted in the biologi-

cally plausible assumption that synapses compete for lim-

ited synaptic resources, which stabilizes synaptic growth.

Motivated by the unique protein composition of differ-

ent synapse types, we assume that different synapse

types compete for separate resource pools. Using theory

and simulation, we show how this synapse-type-specific

competition allows the stable development of structured

synaptic connectivity patterns, as well as diverse compu-

tations like response normalization and surround suppres-

sion.
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Figure 1: Synapse-type-specific competitive Hebbian learning enables the development of stimulus selectivity and inhibitory balance. (A)
Feedforward input to a model pyramidal neuron (blue triangle) during stimulation. The neuron receives direct excitation (lightblue) and disynaptic
inhibition (red). Plastic synapses are marked by *. (B) A single postsynaptic pyramidal neuron receives synaptic input from a population of
excitatory (wE ), and a population of inhibitory (wI) neurons. (C) Excitatory and inhibitory input neurons are equally tuned to the orientation of
a stimulus grating (bottom, tuning curve of neurons tuned to 60◦ highlighted in dark gray) and exhibit a Gaussian-shaped population response
(orange, solid line) when a single grating of 30◦ is presented (orange plate, dashed line). (D) Hebbian potentiation of a synapse (**) is normalized
due to a limited amount of synaptic resources in the dendritic branch, here reflected by a fixed number of synaptic channels (green). (E) Weight
convergence of synapses of the feedforward circuit in B, where excitatory (blue) and inhibitory (red) weights are plastic according to synapse-
type-specific competitive Hebbian learning. All synaptic weights were initialized randomly. (F) Final synaptic weight strengths, after training, as
a function of the tuning peak of the corresponding presynaptic neurons. (G) Excitatory synaptic weight vector (blue arrow) of a single pyramidal
neuron with linear activation function. The pyramidal neuron receives input from two excitatory neurons (y1 and y2, compare inset). Each dot
corresponds to one input pattern. After training, the weight vector aligns with the direction of maximum variance, which corresponds to the
principal eigenvector of the input covariance matrix. (H & I) Same as in E and F, but for classic inhibitory plasticity. The development of stimulus
selectivity is prevented by fast inhibitory plasticity. (J) Excitatory (blue) and inhibitory (red) synaptic weight vectors of a single pyramidal neuron
with linear activation function. The pyramidal neuron receives input from two pairs of excitatory and inhibitory neurons (y1 and y2, compare inset).
Each excitatory-inhibitory input pair has identical firing activities yi . After training via synapse-type-specific competitive Hebbian learning, the
excitatory and inhibitory weight vectors both align with the principal component, i.e., excitatory and inhibitory synaptic weights are balanced.

E-I balance and stimulus selectivity can simultaneously develop

in a single neuron. The neuron receives input from an upstream

population of excitatory neurons, and disynaptic inhibitory in-

put from a population of laterally connected inhibitory neurons

that themselves receive input from the same upstream popu-

lation (Fig. 1A). We studied the self-organization of excitatory

and inhibitory synapses that project onto the single postsynap-

tic neuron (Fig. 1B), assuming that input synapses that project

onto inhibitory neurons remained fixed (Fig. 1A). Following ex-

perimental results (34–37), we assumed that inhibitory and exci-

tatory input neurons are equally selective for the orientation of a

stimulus grating (Fig. 1C, bottom). We presented uniformly dis-

tributed oriented stimuli to the network in random order. Stimuli

elicited a Gaussian-shaped response in the population of input

neurons (Fig. 1C, top) and thus drove the postsynaptic neuron

(see Methods for details). Synapses are plastic according to a

basic Hebbian rule:

∆wA ∝ yAr, A ∈ {E, I}, [1]

where r is the postsynaptic firing rate, yA is a vector that holds

the presynaptic firing rates of excitatory (A = E) and inhibitory

(A = I) neurons, and∆wA are the corresponding synaptic weight

changes. Experimental results have shown that after the induc-

tion of long-term plasticity neither the total excitatory nor the

total inhibitory synaptic area change (32). This suggests that a

synapse can only grow at the expense of another synapse —

a competitive mechanism potentially mediated by the limited

supply of synaptic proteins (Fig. 1D) (33). Motivated by these

results, we adopted a competitive normalization rule for both

excitatory and inhibitory synapses:

wA ← WA
wA + ∆wA

‖wA + ∆wA‖
, [2]

where A ∈ {E, I}, and WE , WI are the maintained total exci-

tatory and inhibitory synaptic weight, respectively. Shortly af-

ter random initialization, excitatory and inhibitory weights stabi-

lize (Fig. 1E) and form aligned, Gaussian-shaped tuning curves

(Fig. 1F) that reflect the shape of the input stimuli (Fig. 1C). As a

result, neural responses become orientation selective while in-

hibitory and excitatory inputs are equally tuned, which demon-

strates the joint development of stimulus selectivity and E-I bal-

ance.

Excitatory plasticity performs principal component analy-

sis. To uncover the principles of synapse-type-specific com-

petitive Hebbian learning, we analyzed the feedforward model

analytically. It is well established that in the absence of inhibi-

tion, competitive Hebbian learning rules generate stimulus se-

lective excitatory receptive fields (30, 31). In the case of a linear

activation function, r ∝ u ≡ wT y, the expected total synaptic

efficacy changes can be expressed as (31):

〈 ¤wE〉 ∝ CwE − γwE , [3]

were C = 〈yEyE
ᵀ〉 is the input covariance matrix, with 〈·〉 be-

ing the temporal average, and γ is a scalar normalization factor

that regulates Hebbian growth. Then, fixed points, for which

〈 ¤wE〉 = 0, are eigenvectors of the covariance matrix. The neu-

ron becomes selective to the first principal component of its
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input data, i.e., the fixed point input weight vector aligns with

the input space direction of maximum variance (30, 31) (Fig. 1G;

see Supplementary Material (SM) Sec. 1.2 for details). For non-

linear activation functions r = f (u), neurons become selective

for higher-order correlations, e.g., independent components, in

their inputs (38, 39). Such learning rules have been shown to

result in feedforward receptive fields that resemble simple cell

receptive fields in visual cortex (40, 41). In the following, we call

the fixed points of such pure feedforward circuits ‘input modes’.

This entails principal components, in the case of linear activa-

tion functions, and more complex, e.g., simple-cell-like, recep-

tive fields in the case of non-linear activation functions.

Classic inhibitory plasticity prevents stimulus selectivity.

We next examined how inhibitory plasticity affects the devel-

opment of stimulus selectivity. Previous work has suggested

that inhibitory synaptic plasticity in the cortex is Hebbian (42,

43) and imposes a target firing rate r0 on the postsynaptic neu-

ron (23):

〈 ¤wI〉 ∝ 〈yI (r − r0)〉, [4]

where synaptic change becomes zero when the postsynaptic

firing rate r is equal to the target rate r0. With this ‘classic’ in-

hibitory plasticity rule, inhibitory synaptic weight growth is un-

bounded. However, since an increase of inhibitory synaptic

weights usually entails a decrease in postsynaptic firing rate

r the plasticity rule is self-limiting and synaptic weights stop

growing once the target firing rate r0 is reached. When excita-

tory synaptic weights remain fixed, classic inhibitory plasticity

leads to balanced excitatory and inhibitory input currents (23).

However, when excitatory synaptic weights are also plastic,

neurons develop no stimulus selectivity (24): Classic inhibitory

plasticity must act on a faster timescale than excitatory plastic-

ity to maintain stability (24). Then the postsynaptic target firing

rate is consistently met and average excitatory synaptic weight

changes only differ amongst each other due to different aver-

age presynaptic firing rates, which prevents the development of

stimulus selectivity (Fig. 1H & I; see SM Sec. 1.2.3 for details).

Synapse-type-specific competition enables balanced prin-

cipal component analysis. Synapse-type-specific competi-

tive Hebbian learning (Eq. 1, and 2) enables the joint devel-

opment of stimulus selectivity and balanced input currents.

In contrast to classic inhibitory plasticity, under synapse-

type-specific competitive Hebbian learning, inhibitory synaptic

growth is not stabilized by a target firing rate. Instead, as excita-

tory synapses, inhibitory synapses compete for a limited supply

of synaptic resources that maintain the total amount of synaptic

strength. As we did for excitatory synapses (Eq. 3), we incorpo-

rated the normalization step (Eq. 2) into the update rule (Eq. 1)

and considered the simpler case of a linear activation function

f (u) ∝ u:

〈 ¤w〉 ∝ Cw − γ
(
wE

0

)
− ρ

(
0

wI

)
, [5]

w =

(
wE

wI

)
, C ≡

〈(
yEyE

ᵀ −yEyI
ᵀ

yIyE
ᵀ −yIyI

ᵀ

)〉
, [6]

where γ and ρ are scalars that ensure normalization of excitatory

and inhibitory weights, respectively. In addition, we defined the

modified covariance matrix C. Then multiples of the excitatory
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Figure 2: Feedforward tunings are affected by lateral input in mi-

crocircuitmotifs. (A) In addition to feedforward input from a population
of orientation tuned excitatory cells (blue circle), a neuron receives lat-
eral input from an excitatory neuron with fixed feedforward tuning (light
blue). * indicates plastic synapses. Feedforward tuning curves of the
two neurons are shown before (center row) and after (bottom row) train-
ing. (B) Same as in A, for lateral input from multiple inhibitory neurons
with fixed feedforward tuning. (C) Same as in A, for two recurrently con-
nected excitatory neurons with all feedforward and recurrent synapses
plastic. (D) Same as in C, for inhibitory neurons. All synapses plastic.

and the inhibitory part of the eigenvectors of the modified co-

variance matrix C are fixed points of the weight dynamics (see

SM Sec. 2 for details). When excitatory and inhibitory inputs

are equally stimulus selective, such that one can approximate

yE ∝ yI, the modified covariance matrix C is composed of mul-

tiples of the original covariance matrixC (cf. Eq. 6). This implies

that, if excitatory and inhibitory synaptic weights have identical

shape, wE ∝ wI, equal to a multiple of an eigenvector of C, the

system is in a fixed point (Fig. 1J), where 〈 ¤w〉 = 0 (cf. Eq. 5).

Neurons become selective for activity along one particular in-

put direction, while excitatory and inhibitory neural inputs are

co-tuned, which explains the joint development of stimulus se-

lectivity and E-I balance in feedforward circuits, in agreement

with our numerical simulations with non-linear activation func-

tions (Fig. 1E & F).

Lateral inputs shape feedforward weight dynamics. We

wanted to understand how fully plastic recurrent networks of

excitatory and inhibitory neurons can self-organize into func-

tional circuits. Therefore, we next investigated the effect of

synapse-type-specific competitive Hebbian learning in recur-

rent networks.

In a first step, we considered how lateral input from an ex-

citatory neuron with fixed selectivity for a specific feedforward

input mode affects synaptic weight dynamics in a simple mi-

crocircuit motif (Fig. 2A, top). We observed that a downstream

neuron becomes preferentially tuned to the feedforward input

mode of the lateral projecting neuron (Fig. 2A, bottom; cf. SM

Sec. 3). Similarly, laterally projecting inhibitory neurons repel

downstream neurons from their inputmodes (Fig. 2B). However,

when two excitatory neurons are reciprocally connected, they

pull each other towards their respective input modes, and their

tuning curves and activities become correlated (Fig. 2C). This

contradicts experimental observations that brain activity decor-

relates over development (44, 45). In line with these results, in

our model, interconnected inhibitory neurons repel each other

and their tuning curves decorrelate (Fig. 2D).
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Figure 3: Tuning curve decorrelation in plastic recurrent networks. (A) Top: A population of recurrently connected excitatory and inhibitory
neurons receives input from a set of input neurons that are tuned to different stimulus orientations (cf. Fig. 1B, bottom). Every 200ms a different
orientation is presented to the network (vertical gray lines). At the same time, all synapses exhibit plasticity according to a synapse-type-specific
Hebbian rule (see Methods). Bottom: typical firing rate activity of one excitatory (blue) and one inhibitory (red) neuron before and after training. (B)
Feedforward tuning curves of NE = 10 excitatory neurons before (t0, top), during (t1, center), and after (t2, bottom) training. Synaptic weights were
initialized randomly. Different color shades indicate weights of different postsynaptic neurons. Compare SM Movies M1 & M2. (C) Feedforward
population tuning uniformity (see Methods) of excitatory and inhibitory neurons in B. Time points t0, t1, t2 correspond to time points in B. (D)
Connectivity matrices after training a network of NE = 80 excitatory (blue) and NI = 20 inhibitory (red) neurons. Neurons are sorted according

to their preferred orientation θ̂, as measured by their peak response to different oriented gratings. wAB
max is the largest synaptic weight between

population A and B; A,B ∈ {E, I}. (E) Normalized (norm.) recurrent weight strengths as a function of the difference between preferred orientations
of the pre- and postsynaptic neurons, ∆θ̂ = θ̂post − θ̂pre, averaged over all neuron pairs. Input weights to excitatory (solid) and inhibitory (dashed)
neurons overlap. (F) Average firing rate response of inhibitory and excitatory neurons to a stimulus orientation θ, relative to their preferred
orientation, ∆θ = θ̂ − θ, averaged over all neurons. Curves for excitatory (blue) and inhibitory (red) neurons overlap. (G) Same as in F, but for
average excitatory and inhibitory inputs to excitatory neurons. (H) Inhibitory input to an excitatory neuron with preferred orientation close to 90◦.
Each curve corresponds to the input from one presynaptic inhibitory neuron for stimuli of different orientations θ.

Tuning curve decorrelation in fully plastic recurrent E-I net-

works. Recent experimental studies have suggested that in-

hibitory neurons drive decorrelation of neural activities (46,

47). Hence, we asked whether the interaction between ex-

citatory and inhibitory neurons can serve to decorrelate not

only inhibitory but also excitatory neural activities. To address

this question we explored the consequences of synapse-type-

specific competitive Hebbian learning in a network of recur-

rently connected excitatory and inhibitory neurons. We pre-

sented different oriented gratings in random order to a net-

work where all feedforward and recurrent synapses are plas-

tic (Fig. 3A, top). We observed a sharp increase in response

selectivity (Fig. 3A, bottom) that is reflected in the reconfigura-

tion of feedforward synaptic weights (cf. SM Movies M1 & M2):

Shortly after random initialization (Fig. 3B, top), excitatory neu-

rons predominantly connect to a subset of input neurons with

similar stimulus selectivities (Fig. 3B, center left). We quantified

the uniformity of the distribution of feedforward tuning curves

during training (Fig. 3C, see Methods) and found that inhibitory

neurons maintained a much wider coverage of the input stim-

ulus space than the excitatory population (cf. Fig. 3B, center,

t1). Eventually, tuning curves of excitatory as well as inhibitory

neurons decorrelate and cover the whole stimulus space with

minimal overlap (Fig. 3B, bottom), in sharp contrast to circuits

without inhibition, where tuning curves become clustered (cf.

Fig. 2C). After training, neurons are organized in an assembly-

like structure. Neurons that are similarly tuned became more

strongly connected (Fig. 3D & E), as is observed experimen-

tally (48–58). We found that inhibitory neurons become as se-

lective for stimulus orientations as excitatory neurons (34–37)

(Fig. 3F), while excitatory input is balanced by similarly tuned in-

hibitory input (Fig. 3G) from multiple overlapping inhibitory neu-

rons (Fig. 3H), in agreement with experimental results (12, 59–

64); but see (65–70).

In summary, we find that synapse-type-specific competitive

Hebbian learning in fully plastic recurrent networks is sufficient

to decorrelate neural activities and leads to preferential connec-

tivity between similarly tuned neurons, as observed in cortical

circuits.

Inhibitory neurons balance excitatory attraction and enable

decorrelation. To uncover how recurrent inhibition can pre-

vent all neurons from becoming selective for a single input

mode, we investigated the fundamental principles of synapse-

type-specific competitive Hebbian learning in recurrent net-

works analytically (SM Sec. 5). In the simplified case of linear

activation functions, input modes are eigenvectors of the input

covariance matrix (cf. Eq.3). Since these eigenvectors are or-

thogonal by definition (Fig. 4A), the activities of neurons that

are tuned to different eigenvectors are uncorrelated, and their

reciprocal connections decay to zero under Hebbian plastic-

ity (Fig. 4B). Then, neurons that are tuned to the same input

mode form recurrent ‘eigencircuits’ that are otherwise sepa-

rated from the rest of the network (SM Sec. 4). We characterize
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Figure 4: Illustration of eigencircuit decomposition and attraction.

(A) Feedforward synaptic weight vectors wa, wb of two neurons that
are tuned to two different principal components (top, purple and green)
of the input data. Each dark blue dot represents one presynaptic firing
pattern (cf. Fig. 1G). (B) Synaptic weightswab between neurons that are
tuned to different eigenvectors decay to zero, while neurons tuned to
the same eigenvector form recurrently connected eigencircuits (purple).
(C) As single, laterally projecting neurons shape the effective attraction
of their input mode (left; cf. Fig.2), eigencircuits also increase or de-
crease the effective attraction of their respective eigenvector direction
(right). (D) A recurrent network of excitatory (triangles) and inhibitory
(circles) neurons that are distributed across four decoupled eigencir-
cuits (EC, top). Each excitatory neuron contributes plus one (+), each
inhibitory neuron minus one (-) to the eigencircuit attraction, λeig (solid
line, bottom). Due to synaptic plasticity, neurons are pulled towards
the most attractive eigencircuit, EC3 (gray dashed arrows, top). After
all neurons integrate into the same eigencircuit (EC3), its attraction be-
comes negative, while the now unoccupied eigencircuits (EC1, EC2,
EC4) are neutral (dashed line, bottom).

a mode’s effective attraction as a number such that, if a mode

has a higher attraction than a competing mode, then neurons

responding to the mode with lower attraction are unstable and

shift their tuning towards the mode with higher attraction (see

SM for details). Just like single, laterally projecting neurons (SM

Sec. 3), eigencircuits also modify the effective attraction of their

input mode (Fig. 4C). The decomposition of the network into

eigencircuits allows to write the effective attraction λ of each

input mode as the sum of a feedforward component λ and the

variances of the firing rates of the neurons that reside in the

respective eigencircuit (cf. SM Sec. 4.1 & 4.2):

λ = λ + λeig = λ +
∑
i

σ2
E,i −

∑
j

σ2
I,j, [7]

where we defined the contribution of recurrently projecting neu-

rons to the effective attraction of an input mode as the eigen-

circuit attraction, λeig. Note that, in general, variances σ2
E/I de-

pend on the total synaptic weights, and the number of exci-

tatory and inhibitory neurons in the eigencircuit (SM Sec. 4.2).

This reveals that the attractive and repulsive effects of excita-

tory and inhibitory neurons can balance each other. In a sim-

plified example, we assumed that all input modes have equal

feedforward attraction, equal to λ, while each excitatory neuron
contributes plus one and each inhibitory neuron minus one to

the effective attraction (Fig. 4D, top). Then the eigencircuit at-

tractions becomes λeig = nE − nI (Fig. 4D, bottom, solid line).

In this configuration, the network is unstable: All neurons are

attracted towards the input mode with the highest effective at-

traction (EC3), which suggests that all tuning curves will even-

tually collapse onto the same input mode. However, when all

neurons become selective to the most attractive input mode,

that mode would become repulsive (Fig. 4D, bottom, dashed

gray line), as each increase in attraction due to an additional

excitatory neuron is balanced by a decrease in attraction due

to two additional inhibitory neurons. Consequently, the result-

ing eigencircuit is unstable and neurons are repelled towards

non-repulsive, unoccupied input modes; distributed across the

stimulus space.

While this example conveys the core principle of how recur-

rently connected neurons adjust their tunings, the actual dy-

namics of synaptic weights are more complex (SM Sec. 5). In

particular, neurons do not switch their tuning between input

modes in discrete steps but shift their tuning gradually. Due

to the recurrent nature of the circuit, even small tuning shifts

affect the attractions of the respective eigencircuits (cf. SM

Sec. 5.2.3). In our simulations, we therefore never observe a full

collapse of all tuning curves onto the same input mode before

neurons distribute across the stimulus space. Instead, neurons

rapidly develop tuned feedforward receptive fields that gradu-

ally shift to maximise tuning uniformity, with little to no oscilla-

tory dynamics (Fig. 3B & C and SM Movies M1 & M2).

In the simplified case of linear activation functions, we derive

the following condition that prevents the collapse of all tuning

curves onto a single input mode:

NEσ
2
E
< NIσ

2
I
, [8]

where σ2
E
, σ2

I
are the average of the variances of the excitatory

and inhibitory firing rates, and NE , NI are the total number of

neurons in the network (cf. SM Sec. 5.2.4). These results show

that recruiting recurrent inhibition can prevent tuning curve col-

lapse and enables decorrelation, where a lower number of in-

hibitory neurons can be compensated by an increase in neural

activation.

Plastic recurrent E-I networks perform response normal-

ization and exhibit winner-takes-all dynamics. Our results

thus far reveal how synapse-type-specific competitive Hebbian

learning can explain the development of structured recurrent

connectivity. We next asked whether synapse-type-specific

competitive Hebbian learning can also explain the emergence

of non-linear network computations. For example, the firing

rate response of neurons in the visual cortex to multiple over-

layed oriented gratings is normalized in a non-linear fashion

(71, 72). While this form of normalization is mostly of thala-

mic origin (73–75), there is most likely also a cortical compo-

nent(72, 76). A recently introduced E-I network model with

static, hand-crafted connectivity can explain these modula-

tions (18, 77). We explored if the recurrent connectivity can

instead be learned from a network’s input stimulus statistics.

We consider a circuit with fixed feedforward tuning and plas-

tic recurrent connectivity (Fig. 5A). After training the network

with single oriented grating stimuli (Fig. 5A, bottom), we found

that neural responses to a cross-oriented mask grating that

is presented in addition to a regular test grating are normal-

ized, i.e., the response to the combined stimulus is weaker than

the sum of the responses to the individual gratings (Fig. 5B,
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left). When the contrast of the mask grating is lower than the

test grating’s, the network responds in a winner-takes-all fash-

ion: The higher-contrast test grating dominates activities while

the lower-contrast mask grating is suppressed (Fig. 5B, right).

As observed experimentally (71, 72, 78), we found that this

orientation-specific response normalization is divisive and shifts

the log-scale contrast-response function to the right (Fig. 5C).

Sensory input statistics shape computational functions of

recurrent circuits. We next investigated how the stimulus

statistics during training affect receptive field properties. We

considered a plastic network where two neural populations re-

ceive tuned input from either a center or a surround region of

the visual field (Fig. 5D). During training, we presented either

the same oriented grating in both regions (Fig. 5E, top, pur-

ple), or a single grating in just one region (Fig. 5E, bottom, red),

at 50% contrast (cf. Table 1). These stimulus statistics heav-

ily influenced the recurrent connectivity structure in the net-

work. When identical oriented stimuli are presented to the cen-

ter and surround regions during training, neurons with similar

orientation tuning become most strongly connected, indepen-

dent from which region the neurons receive their feedforward

input (Fig. 5F). However, when the center and surround regions

are stimulated separately during training, neurons only connect

to similarly tuned neurons within the same region and cross-

region connectivity decays to zero (Fig. 5G). These differences

in the recurrent connectivity structure are also reflected in the

networks’ response properties. We found that after training, the

response of center-tuned neurons exhibits orientation-specific

surround suppression, reflecting the stimulus statistics during

training. When the center and the surround regions are stim-

ulated separately during training, iso- or cross-oriented stimuli

in the surround both elicit minimal suppression of the center-

tuned population’s response to a center stimulus (Fig. 5H & I,

red). In contrast, in the case of correlated stimulation of the

center and surround regions during training, the response of the

center population is markedly suppressed when an additional

surround stimulus is presented (Fig. 5H & I, purple). Importantly,

suppression is stronger for iso- compared to cross-orientations

(Fig. 5I, solid and dashed lines), as has been reported exper-

imentally (79–82). We further investigated the lateral interac-

tions between neurons tuned to the center and surround re-

gions by presenting an oriented stimulus only in the surround

region, while observing the total excitatory and inhibitory inputs

to excitatory neurons (Fig. 5J). We found that the total excita-

tory input to stimulated excitatory neurons in the surround was

larger than the total inhibitory input (Fig. 5J, right column). When

center and surround neurons were stimulated together during

training, both center and surround received similar, balanced

E and I recurrent input, but the surround cells also received

feedforward excitation, yielding more total excitation (Fig. 5J,

top, purple). When center neurons were not stimulated with the

surround neurons during training, they received no input from

a surround-only stimulus (Fig. 5J, bottom, red). In the case of

correlated stimulation of the center and surround regions during

training, this lateral input was orientation-specific. Center neu-

rons tuned to the same orientations as stimulated neurons in the

surround received stronger input than center neurons tuned to

different orientations (Fig. 5J, top left), reflecting the input stim-

ulus statistics during training (Fig. 5E) and the resulting recur-

rent connectivity (Fig. 5F). A similar balance of excitatory and

inhibitory lateral inputs has previously been observed in bar-

rel cortex (83). Together, this demonstrates that synapse-type-

specific competitive Hebbian learning produces extra-classical

receptive fields that modulate feedforward responses via recur-

rent interactions that reflect the input statistics during training.

Discussion

Our results suggest that synapse-type-specific competitive

Hebbian learning is the key mechanism that enables the for-

mation of functional recurrent networks. Rather than hand-

tuning connectivity to selectively explain experimental data,

our circuits emerge from a single unsupervised, biologically

plausible learning paradigm that acts simultaneously at all

synapses. In a single framework, our networks readily explain

multiple experimental observations, including the development

of stimulus selectivity, excitation-inhibition balance, decorre-

lated neural activity, assembly structures, response normaliza-

tion, and orientation-specific surround suppression. These re-

sults demonstrate how the connectivity of inhibition-balanced

networks is shaped by their input statistics and explain the

experience-dependent formation of extra-classical receptive

fields (84–88). Unlike previous models (89–94), our networks

are composed of excitatory and inhibitory neurons with fully

plastic recurrent connectivity.

Early theoretical work on inhibitory plasticity assumed that

synapses evolve to maintain the mean firing rate of postsynap-

tic excitatory neurons (23). When excitatory input is static, this

leads to neural tunings where inhibition and excitation are bal-

anced. However, when excitatory synapses are simultaneously

plastic according to a simple Hebbian rule, the circuit is unsta-

ble and can not explain the joint development of feedforward

stimulus tuning and inhibitory balance (24) (SM Sec. 1.2.3). The

system can be stabilized when the Hebbian growth of exci-

tatory synapses is controlled by a BCM-like plasticity thresh-

old. This introduces fierce competition between different input

streams in the form of subtractive weight normalization, which

leads to winner-takes-all dynamics among synapses that do

not allow for the development of extended receptive fields (24,

31, 95). Later models have proposed more intricate plasticity

rules, some of which consider, e.g., voltages or currents, in ad-

dition to pre- and postsynaptic action potentials (Agnes2024,

25, 28, 96–100, 102), as summarized in several recent reviews

(14, 103–106). In recent years, there has also been a resurgence

of interest in normative approaches (28, 29, 107). In these ap-

proaches, it is postulated that synaptic plasticity rules act to

optimize an objective function that describes a desirable net-

work property. Motivated by the notorious instability of recur-

rent networks, one obvious objective is stability, e.g., in the form

of firing rate homeostasis.

Following early theoretical work that suggested such a home-

ostatic role for synaptic plasticity of inhibitory synapses onto

excitatory neurons(23), two recent studies propose a similar role

for the plasticity of other recurrent synapse types (28, 29). In-

deed, such plasticity rules allow the formation of inhibition bal-

anced receptive fields (28), and stabilize network activity, even

when faced with strong recurrent connections (29). However,

none of these rules have been applied in fully plastic recur-

rent networks with structured feedforward input. Even in com-

plex models that use many different forms of plasticity, some

synapse types are kept static after initialization, to maintain sta-

ble network activity (Agnes2024, 23, 26, 27). While such net-

works still show many interesting dynamics, they lack the rich

computational functions of circuits with structured connectiv-

Eckmann et al. | 30 April 2024 6



PNAS | ACCEPTED MANUSCRIPT

In
p
u
t

Preferred orientation

CENTER SURROUND

D

E

A B

F

I J

G

C
In

p
u
t

Stimulus orientation

In
p
u
t

Preferred orientation

CENTER SURROUND

E total

ffwd. stim.

I total

H

F
ir
in

g
 r

a
te

 (
H

z)

Preferred orientation

38%:12%25%:25%

F
ir
in

g
 r

a
te

 (
H

z)

50%

25%

12%

0%

Test contrast (%)

iso

cross

F
ir
in

g
 r

a
te

 (
n
o
rm

.)

Surround contrast (%)

F
ir
in

g
 r

a
te

 (
n
o
rm

.)

CENTERCENTER

Relative preferred orientation

In
p
u
t 
(n

o
rm

.)

Relative preferred orientation

100%

50%

20%

0%

SURROUND

S
yn

a
p
tic

 w
e
ig

h
t

PrePre

P
o
st

P
o
st

100%

50%

20%

0%

100%

50%

20%

0%

Figure 5: Cross-orientation and surround suppression in trained neural networks. (A) A plastic recurrent network of excitatory and inhibitory
neurons (top) receives input according to fixed feedforward tuning curves (bottom). Input amplitudes were modulated with stimulus contrast.
Tuning curve of neurons with preferred orientation of 90◦ highlighted in dark gray. (B) Response of 80 excitatory neurons to a test grating (orange,
45◦) and a mask grating (green, 135◦) of different contrast levels (insets, grating contrasts increased for better visibility). Gratings are presented
separately (orange & green) or together (dark blue). Each open circle corresponds to the response of one excitatory neuron. (C) Contrast response
curve of a single excitatory neuron with preferred orientation θ̂ = 45◦ to the test and mask gratings in B. Different mask contrasts are indicated
by different color shades. The bottom/top circles correspond to the left/right contrast level configurations in B. (D) Center (left) and surround
region (right) with different oriented stimuli. (E) Example stimuli during training with different stimulus statistics. Top: Neurons tuned to the same
orientation, but different regions (center region, left; or surround region, right) receive identical input; two example stimuli are shown in solid and
transparent purple, respectively. Bottom: Neurons tuned to the center and surround regions are stimulated separately; two example stimuli are
shown in solid and transparent red, respectively. Either the surround or the center regions are stimulated, while the other region receives zero
input. (F) Recurrent connectivity matrix between excitatory (blue) and inhibitory (red) neurons (cf. Fig. 3D) after training the network with correlated
center and surround stimuli (corresponds to purple color in E, top). Neurons are sorted according to their feedforward orientation tuning. Color
shades indicate tuning to the center (dark) or surround (light) region. (G) Same as in F, but for a network trained with single gratings that were
presented either in the center or the surround region (corresponds to red color in E, bottom). (H) Suppression of excitatory population activity
in response to increasing surround stimulation for two networks trained under different stimulus statistics. Left: network stimulation. Neurons
tuned to the center region are stimulated by an oriented grating of constant, 100% contrast (not shown) while neurons tuned to the surround
region are stimulated with an oriented grating of increasing contrast (shades; compare insets). Identical stimulation protocol for both training
statistics. Center and right: network response. The activity of excitatory neurons that are tuned to the center region is suppressed with increasing
surround contrast. The magnitude of suppression depends on the stimulus statistics during training (purple vs. red, colors as in E). (I) Response
of one excitatory neuron to center and surround stimulation after training. A center stimulus of preferred orientation was presented at constant
contrast while the contrast of a cross- (dashed) or iso-oriented (solid) surround stimulus changed. Colors indicate different stimulus statistics
during training (as in E). (J) Total excitatory (solid) and inhibitory (dotted) input to excitatory neurons during stimulation of only the surround region
with an oriented grating of 90◦. Excitatory input due to feedforward stimulation (ffwd. stim.) is shown in light gray. Colors (top vs. bottom)
indicate different input statistics during training (as in E).

ity between all neuron types (18, 77). In contrast, our learning

rule is minimalistic and only relies on general Hebbian synap-

tic growth that is stabilized by competitive interactions. Im-

portantly, our theory does not depend on a specific biophys-

Eckmann et al. | 30 April 2024 7



PNAS | ACCEPTED MANUSCRIPT

ical implementation of the Hebbian plasticity paradigm. We

only require that synapses follow the basic Hebbian principle

of synaptic strengthening following concurrent pre- and post-

synaptic activity. In the past, competitive Hebbian learning has

been investigated theoretically for excitatory synaptic inputs to

single neurons (30, 31, 39, 108, 109), but not for inhibitory in-

puts or in recurrent networks. Our analysis demonstrates that

competitive Hebbian plasticity is a suitable learning mechanism

for networks of recurrently connected excitatory and inhibitory

neurons, while being analytically tractable and biologically plau-

sible.

Competitive interactions between synapses have been ob-

served in many different preparations and have been attributed

to various mechanisms (Lopez2024, 110–121). While previous

work has focused on competitive interactions between excita-

tory synapses, our results support the notion that similar com-

petitive processes are also active at inhibitory synapses (32,

122). The local competition for a limited supply of synaptic

building blocks is a biologically plausible normalization mech-

anism (33, 115, 120, 123, 124). Many synaptic proteins are

specific to inhibitory or excitatory synapses and reside in one

synapse-type, but not the other (125, 126). Therefore, in this

work, we assume a synapse-type-specific competition for dif-

ferent synaptic resource pools and implement separate normal-

ization constants for inhibitory and excitatory synapses. On a

finer scale, synapses of different excitatory and inhibitory neu-

ron subtypes also differ in their protein composition (126–129).

In principle, this allows for the precise regulation of different in-

put pathways via the adjustment of subtype-specific resource

pools (130–136). Furthermore, axons of different neuron sub-

types target spatially separated regions on the dendritic tree,

allowing for pathway-specific local competition. For example,

somatostatin-positive cortical Martinotti cells target the api-

cal dendritic tree of pyramidal cells, while parvalbumin-positive

basket cells form synapses closer to the soma (1), which sug-

gests that afferents of these cell types compete for separate

resources pools. We anticipate such subtype-specific mecha-

nisms to be crucial for the functional development of any net-

work with multiple neuron subtypes (137, 138).

In the brain, total synaptic strengths are dynamic and home-

ostatically regulated on a timescale of hours to days (139–142).

In addition to maintaining average firing rates in response to

network-scale perturbations, a prominent framework puts for-

ward homeostatic scaling of synaptic strengths as a stabiliz-

ing mechanism of Hebbian growth (143). However, theoretical

models suggest that homeostatic scaling is too slow to balance

rapid synaptic plasticity (144). In our networks, Hebbian growth

is instead thought to be stabilized by the competition for a lim-

ited pool of synapse-type-specific resources, while total synap-

tic strengths remain fixed. This competition is fast due to rapid

interactions on a molecular level (33, 120). Compared to Heb-

bian growth, infinitely fast, as a synapse can only grow at the

expense of another. Therefore, we suggest that homeostatic

scaling of total synaptic strengths is not required for immediate

network stability but instead controls the operating regime of

the network (16, 77, 145).

Our results demonstrate how multi-synaptic, inhibitory inter-

actions can decorrelate excitatory neurons. In contrast, in-

hibitory neurons can inhibit each other mono-synaptically and

do not require additional recurrent interactions for decorrela-

tion. Accordingly, we observe that during training, inhibitory

neurons are more decorrelated compared to excitatory neu-

rons (Fig. 3C). These insights complement recent experimen-

tal results that suggest an instrumental role of inhibition in the

decorrelation of excitatory networks in mouse prefrontal cortex

during early development (47). Recent experimental studies in

ferret visual cortex report conflicting evidence—either support-

ing (46) or contradicting (146) aligned developmental trajecto-

ries of excitatory and inhibitory populations. In our simulations,

we observe similar developmental trajectories for excitatory and

inhibitory populations. However, we focused on synaptic plas-

ticity and did not consider other processes, like critical periods

(147, 148), that are known to shape circuit development.

Cortical computations rely on strong recurrent synaptic

weights that result in neural activities that can deviate signifi-

cantly from the input stimulus pattern (15, 16, 18) (cf. Fig. 5B,

left, combined grating response). Such a decoupling of net-

work activity from feedforward input due to recurrent interac-

tions can lead to neural tunings that do not reflect the input stim-

ulus statistics (cf. SM Sec. 3). In our theory (SM Sec. 4), we as-

sume that neurons are tuned to feedforwardmodes and thereby

implicitly assume that network activity is dominated by feedfor-

ward input. In our numerical simulations of fully plastic recur-

rent networks, we find that for intermediate levels of recurrence

(cf. Table 1, Fig. 1, 2 & 3), the network’s activities are indeed

dominated by feedforward inputs. In case of strong recurrence

(Fig. 5), we ensure feedforward dominance by presenting single

oriented gratings that match the fixed feedforward tunings of

neurons (cf. Fig. 5). Such gratings elicit a Gaussian-shaped re-

sponse that is sharpened due to the recurrent connectivity, but

maintains the general correlation structure compared to purely

feedforward-driven networks (compare tuning widths in Fig. 5A,

bottom, and B, single grating response). Biological cortical net-

works are strongly recurrently connected (149–153). However,

neural activity and the induction and polarity of synaptic plas-

ticity are regulated by neuromodulators (154–158), which may

control the destabilizing effect of strong recurrent connectiv-

ity. In addition, different synapse types do not develop simul-

taneously but progress through different developmental stages

(137, 159, 160). For example, the development of recurrent ex-

citatory connections is delayed compared to that of feedfor-

ward synapses (131, 161). Taking these factors into account

will be essential for future models of developing recurrent cir-

cuits.

In our networks, structured feedforward input is crucial for

the development of orientation selective receptive fields. How-

ever, already at the time before eye opening cortical neurons

exhibit substantial selectivity for stimulus orientation, without

having been exposed to the statistical regularities of visual in-

puts (162–164). One hypothesis is that, instead, spontaneous

activity in the retina provides the statistical structure required

for the initial development of orientation selectivity (165–167).

In our model, circuit formation depends only on the statistical

regularities between input streams and is agnostic with respect

to their origin. Therefore, we expect our approach to extend be-

yond sensory cortices and to provide a fundamental framework

for plasticity in recurrent neural networks.

Materials and Methods

Computational model. We consider networks of rate coding exci-
tatory (E) and inhibitory (I) neurons that receive input from themselves
and a population of feedforward input neurons (F). Membrane potential
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vectors u evolve according to

τA ¤uA = −uA +WAF rF +WAErE −WAIrI, A ∈ {E, I}, [9]

where τA is the activity timescale. WAB are matrices that hold synap-
tic weights between the presynaptic population B and the postsynaptic
population A with B ∈ {E, I, F }. All differential equations were numer-
ically integrated using the Euler method in timesteps of ∆t. Entries of
weight matrices were drawn from a normal distribution with mean µW
equal to two times the standard deviation σW , which yields mainly pos-
itive entries. Negative entries were set to their absolute value. Before
the start of the simulation, excitatory and inhibitory weights were nor-
malized as described below. Unless stated otherwise, prior to normal-
ization, all recurrent excitatory weights were set to zero, i.e., initially
networks were dominated by feedforward input. Firing rate vectors rA
are given as a function f (uA ) of the membrane potential uA:

rA = f (uA ), f (uA ) = a[uA − b]n+, A ∈ {E, I} [10]

with [ · ]+ = max(0, · ) and scalar constants a, b, and n.

Plasticity and normalization. Plastic weights evolve according to
a Hebbian plasticity rule

¤WAB = εABrArB
ᵀ
, A ∈ {E, I}, B ∈ {E, I, F } [11]

where εAB is a scalar learning rate, and
ᵀ
indicates the transpose. After

each plasticity step, synaptic weights are normalized such that the total
excitatory and inhibitory postsynaptic weights are maintained:

w
(ij)
AB
←WAE

w
(ij)
AB∑

j w
(ij)
AE
+∑

k w
(ik)
AF

, [12]

w
(ij)
AI
←WAI

w
(ij)
AI∑

j w
(ij)
AI

, A ∈ {E, I}, B ∈ {E, F }, [13]

where WAE ,WAI are the total excitatory and inhibitory synaptic weight
norms. Weights are updated and normalized in every integration
timestep ∆t, in sync with the network dynamics.

In Fig. 1, we set the activity of the inhibitory input neurons equal to
the activity of the excitatory input neurons, i.e., rI = rF . For panels H & I
of Fig. 1, inhibitory weights evolved according to the classic inhibitory
plasticity rule (23) without normalization:

¤wEI = εEI (rE − r0 )rI, [14]

where r0 is a target firing rate.

Input model. The activity of feedforward input neurons depends on
the orientation θ and contrast c of an input grating:

rF = cAF exp

(
|θ, θF |2

2σ2
F

)
, [15]

where the vector θF holds the preferred orientations of the input neu-
rons that are evenly distributed between 0 and 180◦, σF is the tuning
width, AF the maximum firing rate, and | ·, · | is the angular distance ,
i.e., the shortest distance around a circle of circumference 180◦. During
training, single gratings, sampled from a uniform distribution between
0◦ and 180◦, were presented to the network for 200ms, before the next
stimulus was selected.

In Fig. 5 network stimulation is realized via static feedforward
weights. Neuron were assigned a preferred orientation θ̂, evenly dis-
tributed between 0◦ and 180◦. Static feedforward weights were initial-
ized as

WAF = exp
©­«
��θ̂, θF ��2
2σ2

θ

ª®¬. [16]

For Fig. 5, feedforward weights are normalized separately to WAF be-
fore the start of the simulations (cf. Table 1). In this case, feedforward
weights are fixed and are not taken into account when normalizing re-
current weights. Feedforward weights of static neurons in Fig. 2A & B
are processed in the same fashion. For Fig. 5, parameters were se-
lected to result in stimulation patterns as in Rubin et al. (18). Weight
norms WAB were also adapted from Rubin et al. (18). See Table 1 for
an overview of used simulation parameters.

Tuning curve uniformity measure. In Fig. 3C, we quantified the
uniformity of the distribution of tuning curves during learning and de-
fined:

pA
j
=

∑
i

w
(ij)
AF
/
∑
ij

w
(ij)
AF
, A ∈ {E, I}, [17]

where pA
j
is the normalized total synaptic output weight of input neu-

ron j onto the excitatory (E) and inhibitory (I) neural population. Then∑
j p

A
j
= 1, and we can define the tuning uniformity UA as the normal-

ized Shannon entropy H
pA
.

UA = H
pA
/log(NF ) = −

∑
j

pA
j
log(pA

j
)/log(NF ), A ∈ {E, I} . [18]

UA is maximal, equal to one, if pA is uniformly distributed, and minimal,
equal to zero, if all synaptic weight is concentrated in a single input
neuron. Such a concentration is highly unlikely. In our simulations,
weight distributions are much closer to a uniform distribution, and the
uniformity measure is close to one.
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1Linear competitive Hebbian learning finds principal components
Before considering inhibitory plasticity, we recapitulate how linear Hebbian learning finds the principal eigenvector
of a neuron’s inputs. Although first described by Oja (1), we will mostly follow the derivation by Miller and MacKay
(2)thatwewilllaterextendtoinhibitoryneurons.

1.1Hebbian plasticity without normalization is unstable
Weconsiderasingleneuronthatreceivesinputfromasetofexcitatoryneurons(Fig.S1A).Itsoutputfiringrateris
aweightedsumofthefiringratesofitspre-synapticinputsy. Onecanconvenientlywritethisasadotproduct:

τr¤r= −r+
∑

i

wiyi= −r+wᵀy, [1]

wherewis a vector that holds the synaptic weights, andτrdefines the timescale at which the activity changes. In
the following, lowercase letters in bold indicate vectors, and uppercase letters in bold matrices. Following Hebb’s
principle,synapticweightchangesdependonthepre-andpost-synapticfiringrates. Invectornotation:

τ ¤w= yr [2]

where the constantτ sets the timescale of plasticity. Assuming that synaptic weights change on a much slower
timescalethanfiringrates,τr� τ,wemakethesimplifyingassumptionthatrreachesitsfixedpointinstantaneously,
i.e.,τr� 1andr= wT y,andconsiderthesameplasticitytimescaleforallsynapsesτ = 1. Then,theaveragechange
ofthesynapticweightscanbeexpressedasalineartransformationoftheoriginalweightvector:

〈 ¤w〉 = 〈yr〉 = 〈yyTw〉 = Cw, C≡ 〈yyᵀ〉, [3]

where〈·〉 is a temporal average andCis the covariance matrix of the synaptic inputsy, assuming inputs have
zero mean,〈y〉 = 0. In the following, we only consider the average weight changes and omit the angled notation
for convenience. To solve this differential equation, we express the weight change in the eigenvector basis of the
covariancematrixC,whichissymmetricandpositive-semidefiniteand,therefore,hasacompletesetoforthonormal
eigenvectorswithnon-negativeeigenvalues.

¤wv≡V−1¤w= VᵀCVVᵀw= Λwv, [4]
⇒ wv= exp(Λt)wv(t0). [5]

Here,Λ is the diagonal eigenvalue matrix, and each column ofVholds mutually orthogonal eigenvectors, i.e.,
VVT = 1, andV−1= VT. Each eigenvector component grows exponentially at a rate given by the respective eigen-
value, which we identify with theattractionof the input component. We call eigenvector components with positive
eigenvalueattractive, and the eigenvector component with the largest eigenvalue themost attractiveinput mode.
Wewilllaterseethateigenvaluesthatdescribethedynamicsofinputmodescanbecomenegative(Sec.2). Wewill
callsuchinputmodeswithnegativecorrespondingeigenvaluerepulsive.

In summary, we find that unconstrained Hebbian plasticity results in the unlimited growth of synaptic weights
and is therefore unstable. One way to constrain this unlimited growth is to modify the Hebbian learning rule such
thatthetotalsynapticweightismaintained.

A B C

FigureS1:(A)Feedforwardexcitatorycircuit. Apost-synapticneuronwithoutputfiringraterreceivessynapseswfromasetofexcitatoryneurons
withfiringratesyE. (B)Thenormalizationoperationconstrainssynapticweightchanges¤wtoahyperplanethatisperpendiculartotheconstraint
vectorcby subtracting a multipleγ of the weight vectorw. See text for details. Figure adapted from Miller and MacKay (2). (C) Feedforward
inhibitory circuit. A post-synaptic neuron with output firing raterreceives excitatory synapseswEfrom a population ofNEexcitatory neurons
with firing ratesyE, and inhibitory synapseswIfrom a population ofNIinhibitory neurons with firing ratesyI. The gray horizontal line indicates
theseparationbetweentwohypotheticalbrainregionsorcorticallayers.
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1.2Weight constraints stabilize unlimited Hebbian growth
Hebbian plasticity and weight normalization can be considered as two discrete steps. First, growing weights ac-
cordingtotheHebbianrule. Second,normalizingtomaintainthetotalsynapticweight. Inthissection,wewillfollow
Miller and MacKay (2) and show how one can integrate these two discrete steps into one and derive the effective
weightchange¤w. Onecanwritethetwostepsas

w̃= w(t) + Cw∆t, w(t+ ∆t) = W
cT w̃

w̃, W ≡ cᵀw(t), [6]

This update rule maintains the projection ofwonto the constraint vectorcby multiplicatively scaling the weight
vector after the Hebbian learning step, i.e.,w̃. Alternatively, if we letW be a constant (cf. Eq.6), the projection
ontocwould be constrained to be equal to that constant. In the following, we instead assume that the weights are
already properly normalized and set the projection value as it was before the plasticity timestep, i.e., equal toW as
definedabove.

w(t+ ∆t) = β [w(t) + Cw(t)∆t], β (w(t),∆t) = cT w(t)
cT [Cw(t)∆t+ w(t)]

, [7]

whereβ describes the multiplicative normalization that depends on the size of the timestep∆tand the previous
weightw(t). Itisstraightforwardtocheckthattheprojectionoftheweightvectorontotheconstraintvectorcdoes
notchange,i.e.,

cᵀw(t+ ∆t) = cᵀw(t). [8]

Then,theeffectiveweightchange¤wisgivenas

¤w= lim
∆t→0

w(t+ ∆t) − w(t)
∆t

= lim
∆t→0

[
β −1
∆t

w(t) + βCw(t)
]

[9]

= lim
∆t→0

[
β −1
∆t

w(t) + βCw(t) + Cw(t) − Cw(t)
]

[10]

= lim
∆t→0

[
Cw(t) − 1− β

∆t
[w(t) + Cw(t)∆t]

]
[11]

= lim
∆t→0

[
Cw(t) − 1− β

β∆t
w(t+ ∆t)

]
, [12]

where,inthefirstandlaststeps,weusedthedefinitionofw(t+ ∆t) inEq.7. Next,wetakethelimit

lim
∆t→0

1− β

β∆t
= lim

∆t→0

1
∆t

(
1
β
−1

)
[13]

= lim
∆t→0

1
∆t

(
cT [Cw∆t+ w]

cT w
−1

)
[14]

= lim
∆t→0

cT Cw
cT w

+ cT w
cT w∆t

− 1
∆t

=
cT Cw
cT w

. [15]

Insummary,weget(cf. Fig.S1B):

⇒ ¤w= Cw− γw, γ ≡ cT Cw
cT w

. [16]

Here,γ isascalarnormalizationfactorthatdependsonthecurrentweightw.
Analternativewaytoderive¤wistoguesstheshapeofthemultiplicativenormalizationterminEq.16andrequire

thatthechangealongtheconstraintvectoriszero1,i.e.,

d
dt

(
cᵀw

)
= cᵀ ¤w= cᵀCw− γcᵀw !

= 0, ⇒ γ =
cT Cw
cT w

, [17]

Notethatforcbeingaconstantvectorofones,theL1-normoftheweightvectorismaintained. However,cdoesnot
havetobeconstant. Forexample,forc= wtheL2-normismaintained. Also,notethatonecananalogouslyderive
effective plasticity rules when weights are constrained via subtractive normalization with the ansatz¤w= Cw− ζk,
wherekisavectorofones(2).

1Weindicateanequalityorconditionthatwewanttobefulfilledwithanexclamationpointovertheequalsign.
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1.2.1Fixed points
FromEq.16itisclearthatmultiplesofeigenvectorsvofCarefixedpoints,forwhich¤w∗ = 0. Explicitly,forascalar
constantaandw∗ = avonegets:

¤w∗ = aCv− cT Cv
cT v

av= aλv− cT λv
cT v

av= 0. [18]

Notethatthisisindependentofthechoiceoftheconstraintvectorc. Wenextconsiderthestabilityoftheseeigen-
vectorfixedpoints.

1.2.2Stability analysis
In the previous sections, we showed how multiplicative normalization constrains the norm of the weight vector and
therefore prevents the otherwise unlimited growth of Hebbian plasticity. However, even when the total synaptic
weightisconstrained,synapticweightsmightstillbeunstableandneversettleintoafixedpoint,e.g.,experiencing
oscillatory dynamics and unstable fixed points. Following Miller and MacKay (2), we will now explore under what
conditionsfixedpointsarestable.

Formally, a fixed point in a linear system is stable when the largest eigenvalue of the Jacobian is negative, or
marginally stable when it is equal to zero (3). The weight dynamics around a fixed pointw∗ can be approximated
withitsTaylorexpansion:

¤w≈ ¤w∗ +
∑

i

d¤w
dwi

����
∗
(wi− w∗

i), [19]

=
d¤w
dw

����
∗
(w− w∗), [20]

= J∗ (w− w∗), [21]

where¤w∗ iszero,bydefinition,andJ∗ istheJacobianevaluatedatthefixedpoint. TheJacobianisdefinedas

J∗ ≡

©­­­­­­­«

d¤w1
dw1

���
∗
... d¤w1

dwN

���
∗

...
...

d¤wN
dw1

���
∗
... d¤wN

dwN

���
∗

ª®®®®®®®¬
≡ d¤w

dw

����
∗
. [22]

Afixedpointisstableifsmallperturbationsawayfromthefixedpoint,∆w= w− w∗,decaytozero,i.e.,

d
dt

∆w= ¤w− ¤w∗ = ¤w≈ J∗∆w, [23]

where we approximated¤wwith its Taylor expansion (Eq.19), since the perturbation is small, i.e.,wis close to the
fixedpoint. Theresultisalineardifferentialequationthatonecansolveas

∆w(t) = exp
(
J∗t

)
∆w(t0), [24]

whereallvectorcomponentsdecaytozeroifalleigenvaluesofJ∗ arenegative1,2. Aswewillseelater,itisusefulto
rewritetheweightdynamics(Eq.16)as

¤w= Cw− wγ, [25]

= Cw− wcTCw
cT w

, [26]

=

[
1 − wcT

cT w

]
Cw. [27]

1ThiscanbeseenbyformulatingthesystemintheeigenbasisofJ∗. Then,thematrixexponentialbecomes:V−1exp
(
J∗t

)
V= exp(ΛJt),where

VholdseigenvectorsandΛJisadiagonalmatrixthatholdstheeigenvaluesofJ∗.
2Ingeneral,therealpartoftheeigenvaluesoftheJacobianhavetobenegativeforafixedpointtobestable. However,sinceCisacovariance

matrix, it is positive definite with positive, real eigenvalues. We will see (Eq.32) that from this it follows that the eigenvalues of the Jacobian are
alsoreal.
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Itfollows1:

d¤w
dw

����
∗
=

[
1 − v∗cT

cT v∗

]
C+

[
− 1cT

cT v∗
+ v∗cT cT
(cT v∗)2

]
Cv∗, [28]

=

[
1 − v∗cT

cT v∗

]
[C− λ∗1] , [29]

wherew
��
∗ = w∗ = av∗ is the fixed point withv∗ being an eigenvector ofC. The scalarais the length of the fixed

pointweightvectorw∗ (whichcancels)andλ∗ istheeigenvaluetov∗. TofindtheeigenvaluesoftheJacobian,λJ,we
diagonalizeJbyswitchingtotheeigenbasisofC. WhenVisthematrixthatholdstheeigenvectorsofCascolumns
onegets

Vᵀ
d¤w
dw

����
∗

V=

[
1 − Vᵀ

v∗cT
cT v∗

V
] [

VᵀCV− λ∗1
]
, [30]

=

[
1 − e∗ cT V

cT v∗

]
[Λ − λ∗1] , [31]

whereΛ is a diagonal matrix that holds the eigenvalues ofC. Without loss of generality, we can assume that the
firstcolumnofVisequaltov∗. Thene∗ = VT v∗ isacolumnvectorofzeros,exceptforthefirstentry,whichisequal
to one. Then, the first bracket becomes an upper triangular matrix with ones on the diagonal, except for the first
diagonalentry,whichiszero. Fromthis,itfollows2thattheeigenvaluesoftheJacobianare

λJ= λ − λ∗. [32]

Ifλ∗ is the largest eigenvalue, i.e.,w∗ is a multiple of the principal eigenvector ofC, then allλJare negative or zero,
and the fixed point is marginally stable. If there exists aλ > λ∗, the correspondingλJis positive and the fixed point
isunstable. Therefore,theeigenvectorcorrespondingtotheprincipaleigenvalueistheonly(marginally)stablefixed
point. In summary, linear Hebbian learning combined with multiplicative normalization becomes selective for the
principal eigenvector of the input covariance matrix and thus performs principal component analysis (PCA). Next,
weconsiderwhathappenswhenaneuronalsoreceivesinhibitoryinput.

1.2.3Classic Inhibitory plasticity prevents stimulus selectivity
Previous work suggested a homeostatic inhibitory synaptic plasticity rule (4) that enforced a post-synaptic target
firingrater0:

¤wI∝ yI(r− r0) . [33]

However,whencombinedwithexcitatoryplasticity,thisclassicrulepreventsthedevelopmentofstimulusselectivity
(cf. Fig.1A,E&F).Forcompleteness,webrieflyrecapitulatethisresult,presentedinClopathet al.(5): Weconsider
a simplified circuit of a single post-synaptic neuron with firing raterthat receives lateral input fromNIinhibitory
neurons, while all neurons receive feedforward input from a population ofNEexcitatory neurons3(cf. Fig.S1C).
Then,yEandyIarevectorsthatholdthefiringratesoftheexcitatoryandinhibitorypopulations. Wenowexplorethe
self-organizationofexcitatoryandinhibitorysynapticweights,wEandwI,thatprojectontothesinglepost-synaptic
neuron,whileinputsynapsesQthatprojectontoinhibitoryneuronsremainfixed. InClopathet al.(5),theauthorsfind
thatclassicinhibitoryplasticityisrequiredtoactfasterthanexcitatoryplasticitytoenablestableweightdynamics(5).
Formuchfasterinhibitoryplasticity,thedynamicsofexcitatoryandinhibitoryweightsdecouples,andfixedpointsof
theinhibitoryweightsw∗

Icanbeconsideredseparatelyfromthefixedpointsofexcitatoryweights. Whenexcitatory
and inhibitory inputs are equally stimulus selective, the fast dynamics of inhibitory weights ensures that the target
firing rate is consistently met,r∗ ≈ r0, and plasticity of excitatory synapses only depend on pre-synaptic terms and
constants4:

〈 ¤w∗
I〉 = 0 ⇒ 〈 ¤wE〉 ∝ 〈yE〉r0−normalization. [34]

1To make sense of the vector notation, it helps to first consider theb’th column ofd¤w
dw which is equal tod¤w

dwb
, wherewbis theb’th vector

componentofw.
2Becausetheeigenvaluesofaproductoftwotriangularmatricesisequaltotheproductoftheireigenvalues.
3NotethatNIdoesnotnecessarilyequalNE.
4More precisely, we assume that excitatory and inhibitory inputs are similarly tuned, i.e.,yE = Q−1yI. From〈 ¤wI〉 = 0 we get〈yIr〉 = 〈yI〉r0,

which after multiplying byQ−1becomes〈Q−1yIr〉 = 〈Q−1yI〉r0. Then, for excitatory plasticity one gets〈 ¤wE〉 = 〈Q−1yIr〉 − normalization=
〈yE〉r0−normalization,asstatedinEq.34.
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Whenallpre-synapticneuronshavesimilaraveragefiringrates,〈yE〉i≈ y0,andweightschangeonaslowertimescale
thanactivities,asisthecasebiologically,theaverageexcitatorysynapticweightchangebecomes

〈 ¤wE〉 ∝ cy0r0−normalization, [35]

wherecis a vector of ones. The average synaptic weight change is identical across synapses, which prevents the
development of stimulus selectivity (Fig.1E&F). Therefore, classic inhibitory plasticity that enforces a target firing
rate cannot explain the joint development of stimulus selectivity and inhibitory balance. Instead, we propose that,
as excitatory weights, also inhibitory weights are constrained via a competitive process that normalizes the total
inhibitoryinputthataneuronreceives.

2Synapse-type-specific normalization balances E-I receptive fields
Differentfromthenormalizationofexcitatoryweights,thenormalizationofinhibitoryweightsisnotmotivatedbythe
requirementforstability. Inhibitorysynapticplasticitythatdependsonneuralactivityisself-limiting,sinceincreasing
inhibitory weights eventually prevent the neuron from firing, and thus prevent further plasticity. Instead, we moti-
vate the normalization of inhibitory synaptic weights by the competition for a limited amount of synaptic building
blocksthatmayalsodriveexcitatorynormalization(seeMaintextfordetails). Inthefollowing,wegeneralizetheap-
proach outlined in the previous Sections for excitatory weight normalization to the case of simultaneous excitatory
and inhibitory normalization. We consider the same circuit architecture as in Section1.2.3(cf. Fig.S1C) with rate
dynamics

τr¤r= −r+ yE
ᵀwE−yI

ᵀwI
ᵀ
= −r+ yᵀ

(
1 0
0 −1

)
w, [36]

w=

(
wE

wI

)
, y=

(
yE

yI

)
, yI= QyE, [37]

where1 is the unit matrix with appropriate dimension,0are matrices of zeros and appropriate dimensionality, and
we defined the modified weight and input vectors,wandy. Similar to before, we assume fast activity dynamics,
τr� 1,andwritetheHebbianpartofthetime-averagedweightdynamicsas

τ
〈 ¤w〉

= 〈yr〉 =
〈
yyᵀ

〉 (
1 0
0 −1

)
w, [38]

=

〈(
yEyE

ᵀ −yEyI
ᵀ

yIyE
ᵀ −yIyI

ᵀ

)〉
w≡ Cw, [39]

wherewedefinedthemodifiedcovariancematrixC. Ingeneral,weassumethatallsynapsesofonetype,excitatory
or inhibitory, change equally fast (cf. Table 1). Then, the matrixτ holds the timescales of excitatory plasticity,
τE = 1τE, and inhibitory plasticity,τI= 1τI, as matrices on the diagonal, and is zero otherwise. In the following,
we drop the bracket notation〈·〉 for better readability. As in the case of only excitatory input, we can implement
multiplicativenormalizationbyadditionalconstraintterms. Nowalsoforinhibitoryweights(cf. Eq.16):

τ ¤w= Cw− γwE− ρwI , [40]

wE=

(
wE

0

)
, wI=

(
0
wI

)
, [41]

where0indicatesvectorsofzerosofappropriatedimension(NIandNE)thatwedonotspecifyforbetterreadability.
Theconstraintfactorsγandρfollowfromtherequirementthattheweightvectordoesnotgrowalongthedirection

of the constraint vectorscEandcI. Here we choose them such that the sums over the excitatory and inhibitory
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weightsremainconstant,i.e.,theL1-normoftheexcitatoryandinhibitorypartoftheweightvectorismaintained1.

cE
ᵀ ¤w !

= 0, cI
ᵀ ¤w !

= 0, [42]

cE
ᵀ ≡

(
1, ... ,1,0, ... ,0

)
, cI

ᵀ ≡
(
0, ... ,0,1, ... ,1

)
, [43]

wherethenumberofnon-zeroentriesincEandcIisequaltothenumberofexcitatoryNEandinhibitoryneuronsNI,
respectively. Basedontheserequirementswederiveexpressionsforthescalarconstraintfactorsγ andρ:

⇒ γ =
cE

ᵀCw
cE

ᵀwE
, ρ =

cI
ᵀCw

cI
ᵀwI

. [44]

Finally,wecanwritetheweightdynamicsas

⇒ τ ¤w=

[
1 − wEcE

ᵀ

cE
ᵀwE

− wIcI
ᵀ

cI
ᵀwI

]
Cw . [45]

2.1Fixed points
Forthefixedpointswehavetofindweightvectorsw∗ forwhichthetimederivative¤w∗

isequaltozero:

τ ¤w∗
= Cw∗ − γw∗

E− ρw∗
I [46]

= Cw∗ − cE
ᵀCw∗

cE
ᵀw∗

E
w∗

E− cI
ᵀCw∗

cI
ᵀw∗

I
w∗

I
!
= 0, [47]

whichisequivalentto

Cw∗ !
= λEw∗

E+ λIw∗
I , [48]

forλEandλIbeingarbitraryscalar.

2.1.1Eigenvectors of the modified covariance matrix are fixed points

ItisstraightforwardtocheckthatmultiplesofeigenvectorsvofthemodifiedcovariancematrixCwitheigenvalueλ
arefixedpoints:

Cv= λvE+ λvI= λEvE+ λIvI ⇒ λE= λI= λ. [49]

In the following, we will refer to eigenvectors of the modified covariance matrix as fixed point eigenvectors, and
to eigenvectors of the feedforward excitatory covariance matrixCas feedforward eigenvectors. Next, we will try
to specify the eigenvectors ofC. In general, eigenvectors ofCdepend non-trivially on the tuning of the laterally
projecting population (cf. Sec.3, Eq.121). However, the problem simplifies when the laterally projecting inhibitory
neurons are tuned to multiples of eigenvectors of the excitatory population’s covariance matrix. This is what one
would expect when the post-synaptic excitatory neuronrand the inhibitory populationyEboth receive excitatory
input from the same external brain regionyEand synapses from the external population onto inhibitory neurons
are plastic according to a Hebbian rule with multiplicative normalization (cf. Fig.S1C). Although we showed in
Section1.2.2thatwithoutrecurrentinteractionsonlytheprincipaleigenvectorisastablefixedpoint,wewillfindthat
withsuitablerecurrentinteractionsanyfeedforwardeigenvectorcanbestable(cf. Sec.3&5.2.3). Formallyweset

yI= QyE= AᵀVᵀyE, [50]

where each row ofQ= AT VT is the feedforward weight vector of an inhibitory neuron which is equal to a positive
multiple,a, of an eigenvectorvof the excitatory covariance matrixC= 〈yEyE

ᵀ〉. ThenVholds all eigenvectors as
columns,andAisamatrixwhereeachmultipleistheonlynon-zeroelementpercolumn,suchthatAAT isadiagonal
matrix. We will now show that in this scenario multiples of the excitatory and inhibitory part of the eigenvectors of
themodifiedcovariancematrixCarefixedpoints. Asafirststep,weexplicitlycalculatetheeigenvectors.

1The choice of the L1-norm is motivated by the synaptic competition for a fixed amount of resources, where, in the simplest case, each unit
of resource linearly increases synaptic strengths. Higher-order L-norms do not affect the learning of feedforward receptive fields. However, in
recurrentnetworks,theycanleadtoinstabilities(cf. Sec.4.3).
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2.1.2Eigenvectors and eigenvalues of the modified covariance matrix

Intheprevioussection,wehaveseenthateigenvectorsvofthemodifiedcovariancematrixCarefixedpoints. Inthis
section,we will findan explicit expressionfor these eigenvectorswhen inhibitory neuronsare tuned tofeedforward
eigenvectors, i.e., inhibitory neurons are tuned to eigenvectorsvof the excitatory covariance matrixC. Making use
ofEq.50themodifiedcovariancematrixbecomes

C=

〈©­«
yEyE

ᵀ −yEyI
ᵀ

yIyE
ᵀ −yIyI

ᵀ
ª®¬
〉
=

©­«
C −CVA

AT VT C −AT VT CVA
ª®¬ =

©­«
C −VΛA

AT ΛVT −AT ΛA
ª®¬. [51]

Then,afullset1oflinearlyindependenteigenvectorsVandtheirinverseV−1isgivenas2.

V=
©­«

V VA

AT 1

ª®¬, V−1=
©­«
(1 − AAT)−1 0

0 (1 − AT A)−1
ª®¬©­«

VT −A

−AT VT 1

ª®¬, [52]

whereeachcolumnofVisannon-normalizedeigenvector. Theeigenvaluespectrumis

CV!
= VΛ ⇒ Λ =

(
Λ(1 − AAT) 0

0 0

)
. [53]

Similar to before, we call eigenvectors of the modified covariance matrix with positive eigenvalueattractive. Differ-
ent from the case of only excitatory feedforward input, eigenvalues of the modified covariance matrix can also be
negative. Inthiscase,wecallthecorrespondingeigenvectorrepulsive(cf. Sec.1.1).

ForeigenvectorsintherightmatrixcolumnofVinEq.52,theexcitatoryandinhibitorycomponentsofthemem-
brane potential exactly cancel, post-synaptic firing rates are zero, and no plasticity is induced: For multiple post-
synapticneuronswithfiringratesr,whereeachneuronistunedtooneoftheseeigenvectors,onegets

r= yᵀ
(
1 0
0 −1

)
V◦, V◦ =

(
VA
1

)
, y=

(
yE

yI

)
, yI= AᵀVᵀyE, [54]

⇒ r=
(
yE
ᵀ
,−yE

ᵀVA
) (VA

1

)
= 0. [55]

Since these eigenvectors result in post-synaptic firing rates of zero, and they define the null space of theCmatrix
(Eq.53), we call them ‘null eigenvectors’ or ‘null fixed points’, and all eigenvectors that are not null eigenvectors
‘regular’ eigenvectors or fixed points. Note that for each additional inhibitory neuron that is tuned to a feedforward
eigenvector,thereisanadditionalnulleigenvector,sinceinhibitorysynapticweightscannowshiftbetweentheorig-
inal,andtheadditionalinhibitoryneurontocancelpost-synapticfiring. Overall,therearealwaysNInulleigenvectors
andNEregulareigenvectors3. NotethatAisamatrixwithexactlyonenon-zeroelementpercolumn(cf. Eq.50f.),and
wecanseefromEq.52thattheexcitatorypartofeachnulleigenvectorisproportionaltotheexcitatorypartofone
regular eigenvector. In the following, when we speak of regular eigenvectors and corresponding null eigenvectors,
wemeaneigenvectorswithproportionalexcitatorycomponents.

We have already shown in Section2.1.1that eigenvectors ofCare fixed points. Each eigenvector specifies an
exactratiobetweentheexcitatoryandinhibitoryweightnorm. Sinceourlearningruleseparatelymaintainsthetotal
excitatory and inhibitory synaptic weights, reaching any of these fixed points would require detailed fine-tuning at
the point of initialization. In the next section, we show a more general set of fixed points that does not require any
finetuningofweightnorms.

2.1.3Non-eigenvector fixed points
Inthissection,we showthatthereexist fixedpointsthatare noteigenvectorsofthe modifiedcovariancematrix. In
particular, arbitrary multiples of the excitatory and inhibitory parts of regular eigenvectors, i.e., of eigenvectors that

1NotethatAandVAareofdimensionNE× NI,andVisofdimension(NE+ NI) × (NE+ NI).
2To show thatV−1is the inverse ofVit is useful to define the Moore-Penrose inverseA−1= AT (AAT)−1and note thatAT (1 − AAT)−1=

(1 − AT A)−1AT .
3Similarly, each additional laterally projecting excitatory neuron adds another null eigenvector. In that case, the lateral excitatory weight

componentandthefeedforwardexcitatoryweightcomponenthaveoppositesignssuchthattheycanceleachother(cf. Sec.5.1).
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resultinnon-zeropost-synapticactivity,arefixedpoints. WemaketheansatzthatthematrixW∗ holdsfixedpoints
ascolumnsandhastheshape

W∗ =

(
VKE

AT KI

)
, [56]

whereKEandKIandarediagonalscalingmatricesofarbitraryconstants. Thefixedpointconditionthatfollowsfrom
Eq.48is

CW∗ !
=

(
W∗

EΛE

W∗
IΛI

)
. [57]

WenowshowthatforanyKE,KIwecanfinddiagonalmatricesΛE,ΛIthatfulfilthiscondition1. Wewriteexplicitly

⇒ CW∗ =

(
C −VΛA

AT ΛVT −AT ΛA

) (
VKE

AT KI

)
!
=

(
VKEΛE

AT KIΛI

)
[58]

CVKE− VΛAAᵀKI
!
= VKEΛE, [59]

AᵀΛVᵀVKE− AᵀΛAAᵀKI
!
= AᵀKIΛI. [60]

VKEΛ − VKIAAᵀΛ !
= VKEΛE, [61]

AᵀKEΛ − AᵀKIΛAAᵀ !
= AᵀKIΛI, [62]

where we made use of the fact that independent of their subscript, theK,Λ, andAAT matrices are diagonal and
commute. Bycomparingtheleftandrightsidesoftheequations,wefind

ΛE= Λ
(
1 − K−1

E KIAAᵀ
)
, [63]

ΛI= Λ
(
K−1

I KE− AAᵀ
)
, [64]

which are diagonal matrices, as required2. Before we consider the stability of these fixed points in Section2.2, we
firstshowthatthereisanadditionalsetoffixedpoints.

2.1.4General fixed points
Havingcoveredvariousspecialcasesoffixedpointsforthedynamics,wenowconsiderthegeneralproblem. Recall
thatfixedpointsaredefinedtosatisfyEquation48:

Cw∗ = λEw∗
E+ λIw∗

I [65]

ExpandingthisusingourexpressionforC(Eq.51),wecanseethatthisisequivalentto:

VΛVᵀw∗
E− VΛAw∗I= λEw∗

E, [66]

AᵀΛVᵀw∗
E− AᵀΛAw∗I= λIw∗

I, [67]

andequivalently

Λ(Vᵀw∗
E− Aw∗I) = λEVᵀw∗

E, [68]

AᵀΛ(Vᵀw∗
E− Aw∗I) = λIw∗

I. [69]

Insertingthefirstintothesecondexpression,wecanconcludethat

λEAᵀVᵀw∗
E= λIw∗

I. [70]

1ForKE= 1andKI= (AAT)−1columnsofW∗ holdsnulleigenvectorsthatcanbeformedbyalinearcombinationofnulleigenvectorsV◦ given
inEq.54.

2Ingeneral,thisisnotthecasefornulleigenvectors. FollowingthesameformalismfornulleigenvectorsW∗ᵀ = (KE
ᵀAT VT ,KI

ᵀ )ᵀ onefindsthe
conditionthatAT ΛAmustbediagonal. Ingeneral,thisisnotthecase,e.g.,whenmultipleinhibitoryneuronsaretunedtothesameeigenvector,
i.e.,whenmultiplecolumnsofAholdthesamevectoruptoaconstantfactor.
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IfλE= λI,0,thenweknowthatw∗ isaneigenvectorofthemodifiedcovariancematrix,asdiscussedinSection2.1.1.
In the case thatλE= λI= 0, we have the null eigenvectors discussed in Section2.1.2. We therefore now address
thecasethatλE, λI.

WebeginwiththecaseλI,0. ThenwecaninsertEq.70intoEq.68toarriveat

Λ

(
1 − λE

λI
AAᵀ

)
Vᵀw∗

E= λEVᵀw∗
E, [71]

which, together with Eq.70, gives necessary and sufficient conditions for a fixed point. From Eq.71, we conclude
thatVT w∗

Eis an eigenvector of the diagonal matrixΛ
(
1 − λE

λI
AAT

)
with eigenvalueλE. WhenVT w∗

Eis one-hot, then
the vectorw∗ consists of an arbitrary multiple of the excitatory and inhibitory parts of a regular eigenvector, as
coveredinSection2.1.3.

WenowturnourattentiontothecasewhereVT w∗
Eisnotsimplyone-hot. Wecannowsaythatforeachcompo-

nentjofVT w∗
Ewhichisnon-zero,thefollowingequationmusthold:

λj

(
1− λE

λI
(AAᵀ)jj

)
= λE. [72]

ThisisalinearsysteminthepairofvariablesλEandλE/λI. Weworkunderthemildassumptionsthattheeigenvalues
λj,thediagonalelements(AAT)jj,andtheirproductλj(AAT)jjaredistinctforeachj. Theseconditionswillingeneral
hold in the absence of fine tuning. In this case,λEandλIprovide two degrees of freedom and there will only be
solutionswhenVT w∗

Eis(atmost)two-hot,havingnon-zerocomponents,jandk. Suchsolutionssatisfy:(
λj

λk

)
=

(
λj(AAT)jj 1
λk(AAT)kk 1

) (
λE/λI

λE

)
, [73]

whichwecansolvetoobtaintheexpressions:

λE= λjλk
(AAT)jj− (AAT)kk

λj(AAT)jj− λk(AAT)kk
, λI= λjλk

(AAT)jj− (AAT)kk

λj− λk
. [74]

Thecomponentsofthetwo-hotsolutionaredeterminedbytheknowninitialvaluesofkE= cE
ᵀwEandkI= cI

ᵀwI,
whicharekeptconstantthroughouttraining1. Althoughtwo-hotfixedpointsdonotrequirefinetuningofexcitatory
andinhibitoryweightnorms,wedidnotobservetheminanyofournumericalsimulationsandthereforeassumethey
areunstable.

The final case to be considered is whenλI= 0, λE,0. In this situation, Eq.70tells us thatVT w∗
Eis in the kernel

ofAT andthereforeinthekernelofthediagonalmatrixAAT2. ByusingEq.68,wecanthereforeconcludethat

AAᵀΛ(Vᵀw∗
E− Aw∗I) = 0. [75]

Weworkundertheassumptionthat,intheabsenceoffinetuning,Λ hasdistinctnon-zeroeigenvalues. Inthiscase,
the first term in Equation75is zero, andAw∗Imust also be in the kernel ofAAT and therefore in the kernel ofAT .
Sow∗

Iis in the kernel ofAT Aand therefore the kernel ofA. By Equation68, this tells us thatΛVT w∗
E = λEVT w∗

E,
andthereforeVT w∗

EisaneigenvectorofΛ witheigenvalueλE. Wethereforearriveatafixedpointforthesystemin
whichVT w∗

Eis one-hot with support on the kernel ofAAT, andw∗
Iis in the kernel ofA. This impliesw∗

I
ᵀyI= 0 (cf.

Eq.50)whichisbiologicallyimplausiblesinceweconstrainsynapticweightsw∗
IandfiringratesyItobepositive.

Under mild assumptions regardingΛ andAAT, we have thus exhaustively characterized the fixed points of the
system.

2.2Stability analysis
We first consider the stability of fixed points that are regular eigenvectors of the modified covariance matrix and
discussthecaseofnon-eigenvectorfixedpointsafterwards. WithEq.45,fortheJacobianJitfollows(cf. Eq.29)

τ J
����
∗
= τ

d¤w
dw

�����
∗
=

[
1 −

v∗EcE
ᵀ

cE
ᵀv∗E

−
v∗IcI

ᵀ

cI
ᵀv∗I

] [
C− λ∗1

]
, [76]

1Briefly, the two normalization conditions arekE= cT w∗
E, andkI= cT w∗

I=
λE
λI

cT AT VT w∗
E, where we used Eq.70. Then, by inserting Eqs.74

wegettwolinearequationsforthetwounknowncomponentsofw∗
E,whichcanbesolvedintermsofkE,kI, λi, λj. Wecantheninsertthesolution

forw∗
EintoEq.70toobtainw∗

I,whichtogetherdefinesallcomponentsoftheeigenvector.
2Notethatker(AT ) = ker(AAT) andker(A) = ker(AT A),foranymatrixA.
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wherev∗Eandv∗Iare the excitatory and the inhibitory part of the eigenvector fixed pointw∗ = v∗ with eigenvalueλ∗,
with an additional set of zeros to reach the correct dimensionality of the vector (cf. Eq.41). To find the eigenvalues
λJoftheJacobian,weswitchtotheeigenbasisofthemodifiedcovariancematrix1:

⇒ V−1J
����
∗

V= V−1τ−1VV−1

[
1 −

v∗EcE
ᵀ

cE
ᵀv∗E

−
v∗IcI

ᵀ

cI
ᵀv∗I

]
V

[
Λ − λ∗1

]
, [77]

where we insertedVV−1≡ 1. The result is a block triangular matrix where each block on the diagonal corresponds
to one regular eigenvector and its potentially multiple null eigenvectors. To better see this, we consider the first
and second part of Eq.77separately. We defineε ≡ τ−1, which remains a diagonal matrix with time constants for
excitatoryandinhibitorysynapsesonthediagonal,εE= 1εEandεI= 1εI. Insertingthedefinitionoftheeigenvectors
matrixanditsinverse(Eq.52)wewrite

V−1τ−1V=
©­«
(1 − AAT)−1 0

0 (1 − AT A)−1
ª®¬©­«

VT −A

−AT VT 1

ª®¬©­«
εE 0

0 εI

ª®¬©­«
V VA

AT 1

ª®¬ [78]

=
©­«
(1 − AAT)−1 0

0 (1 − AT A)−1
ª®¬
(
εE− εIAAT (εE− εI)A
(εI− εE)AT εI− εEAT A

)
. [79]

As one would expect, forεE= εI, this is equal to a scalar times the identity matrix. When we switch columns and
rows such that pairs of regular and corresponding null eigenvectors form blocks, this becomes a block diagonal
matrix. Note that this does not change the determinant or the eigenvalues of the matrix as for each row switch,
there is a corresponding column switch that maintains the characteristic polynomial. Alternatively, we can assume
thatthematrixofeigenvectorsVanditsinverseV−1arealreadyappropriatelysorted. Withoutlossofgenerality,we
assume that the first columns ofVare the fixed point’s eigenvectorv∗ and its corresponding null eigenvectors, and
write2

V−1τ−1V=
©­­­«
(1− a∗ᵀa∗)−1 0

0 (1− a∗a∗ᵀ)−1
0

0
. . .

ª®®®¬
©­­­«
εE− εIa∗ᵀa∗ (εE− εI)a∗ᵀ

(εI− εE)a∗ εI− εEa∗a∗ᵀ 0

0
. . .

ª®®®¬, [80]

wherea∗ is a column vector that holds the multiples of the inhibitory neurons that are tuned to the feedforward
eigenvectorv∗. As before,0are matrices of zeros and appropriate dimensionality, and ellipsis indicate continuing
blocksonthediagonalwithsimilartermsthatbelongtothenon-fixedpointeigenvectorsandtheirnulleigenvectors3.

Similarly,wecanwritethesecondpartofEq.77asablocktriangularmatrix. Beforesorting,wewrite

V−1

[
v∗EcE

ᵀ

cE
ᵀv∗E

+
v∗IcI

ᵀ

cI
ᵀv∗I

]
V≡ V−1

[
v∗EdE

ᵀ + v∗IdI
ᵀ]

= V−1©­«
v∗EdE

ᵀ

v∗IdI
ᵀ

ª®¬, [81]

dE
ᵀ
=

cE
ᵀV

cE
ᵀv∗E
, dI

ᵀ
=

cI
ᵀV

cI
ᵀv∗I
, v∗E= Ve∗, v∗I= Aᵀe∗, [82]

wheredE
ᵀ anddI

ᵀ are row vectors that hold the L1-norms of the eigenvectors’ excitatory and inhibitory parts as a
fractionoftheL1-normofthefixedpointeigenvector’sexcitatoryandinhibitoryparts. Thevectore∗ iszeroexceptfor
oneentry,equaltoone,whichcorrespondstothefixedpointfeedforwardeigenvectorv∗. Wecontinuebymultiplying
theinverseeigenvectormatrixV−1fromtheleft:

V−1©­«
v∗EdE

ᵀ

v∗IdI
ᵀ

ª®¬ = N©­«
VT −A

−AT VT 1

ª®¬©­«
Ve∗dE

ᵀ

AT e∗dI
ᵀ
ª®¬ = N©­«

e∗dE
ᵀ − AATe∗dI

ᵀ

−AT e∗dE
ᵀ + AT e∗dI

ᵀ
ª®¬, [83]

1Notethatwemustmakeuseoftheinverseinsteadofthetransposesince,ingeneral,theeigenvectormatrixVisnotorthonormal.
2Notethatwhensorted,AT Aisablockdiagonalmatrix. Further,asnotedbefore,thematrixAAT isalwaysdiagonal.
3The dimensionalities of these blocks depend on the number inhibitory neurons tuned to the respective feedforward eigenvector, i.e., if there

aren†
Iinhibitoryneuronstunedtoaspecificfeedforwardeigenvectorv†,thedimensionalityofthecorrespondingblockis1+nI,duetooneregular

eigenvectorandn†
Icorrespondingnulleigenvectors.
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wherewedefinedthenormalizationmatrixNoftheinverseeigenvectormatrixV−1(cf. Eq.52)toimprovereadability.
Itfollowsthatthematrixaboveholdsnon-zerovaluesinonlyafewrows,correspondingtothefixedpointeigenvector
(topblock)anditsnulleigenvectors(bottomblock). Afterrearranging,weget

N©­«
e∗dE

ᵀ − AATe∗dI
ᵀ

−AT e∗dE
ᵀ + AT e∗dI

ᵀ
ª®¬ = N

©­­­«
d∗

E− a∗ᵀa∗d∗
I dþ

E
ᵀ − a∗ᵀa∗dþ

I
ᵀ

−a∗d∗
E+ a∗d∗

I −a∗dþ
E
ᵀ + a∗dþ

I
ᵀ ...

0 0

ª®®®¬ [84]

whered∗
E,d∗

Ianddþ
E
ᵀ,dþ

I
ᵀ are the entries ofdE

ᵀ,dI
ᵀ that correspond to the fixed point eigenvector and its null

eigenvectors, respectively. As before, ellipsis indicate additional non-zero entries. To find the respective entries of
dE,dIweusethedefinitionofV(Eq.52)towrite

dE
ᵀ
=

cE
ᵀV

cE
ᵀv∗E

=
1

cE
ᵀv∗

(
cE

ᵀV, cE
ᵀVA

)
, [85]

dI
ᵀ
=

cI
ᵀV

cI
ᵀv∗I

=
1

cI
ᵀAT e∗

(
cI
ᵀAᵀ, cI

ᵀ
1
)
. [86]

After rearranging the entries that correspond to the fixed point eigenvector and its null eigenvectors to the front we
get

dE
ᵀ
=

(
d∗

E, dþ
E
ᵀ
, ...

)
=

1
cE

ᵀv∗
(
cE

ᵀVe∗, cE
ᵀv∗a∗ᵀ

)
=

(
1, a∗ᵀ, ...

)
, [87]

dI
ᵀ
=

(
d∗

I, dþ
I
ᵀ
, ...

)
=

1
cI
ᵀAT e∗

(
cI
ᵀAᵀe∗, cI

ᵀ)
=

(
1,

cI
ᵀ

cT a∗ , ...

)
, [88]

wheree∗ selects the proper columns andcT is a row vector of ones of appropriate dimensionality. We insert
Eq.87&88intoEq.84andfind

V−1

[
v∗EcE

ᵀ

cE
ᵀv∗E

+
v∗IcI

ᵀ

cI
ᵀv∗I

]
V= N

©­­­­«
1− a∗ᵀa∗ 0

0 a∗cI
ᵀ

cT a∗ − a∗a∗ᵀ
...

0 0

ª®®®®¬
≡

©­­­«
1 0

0 M∗
...

0 0

ª®®®¬, [89]

M∗ =
(
1 − a∗aᵀ

)−1(
a∗cI

ᵀ

cT a∗ − a∗a∗ᵀ
)
, [90]

wherewedefinedthematrixM∗.
Insummary,wefindthatafterrearrangement,Eq.77isablocktriangularmatrix.

⇒ V−1J
����
∗

V= N
©­­­«
εE− εIa∗ᵀa∗ (εE− εI)a∗ᵀ

(εI− εE)a∗ εI− εEa∗a∗ᵀ 0

0
. . .

ª®®®¬
©­­«
0 0
0 1 − M∗ ...

0 1

ª®®¬
[
Λ − λ∗1

]
, [91]

where we used Eq.80and Eq.89. Therefore, to find the eigenvalues, we consider each diagonal block separately.
We make the simplifying assumption that there is exactly one inhibitory neuron tuned to each feedforward eigen-
vector. Then,a∗ → a∗ becomes a scalar,NandA= AT become diagonal, andM∗ → 1. The transformed Jacobian
remainstriangularandbecomes

⇒ V−1J
����
∗

V= N
©­­­«
εE− εIa∗2 (εE− εI)a∗

(εI− εE)a∗ εI− εEa∗2
0

0
. . .

ª®®®¬
©­­«
0 0
0 0

...

0 1

ª®®¬
[
Λ − λ∗1

]
, [92]

with2×2blocksonthediagonalofwhichweonlyshowthefirst,thatcorrespondstoperturbationsinthedirectionof
thefixedpointeigenvectororitsnulleigenvector1. Fromthematrixproductabove,weseethattheircorresponding

1Since we assumed that there is exactly one inhibitory neuron per feedforward eigenvector, there is also exactly one null eigenvector per
feedforwardeigenvector(cf. Eq.52)
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eigenvalues must be zero since the first two columns of the second to last matrix are zero. For perturbations in the
directionofanon-fixedpointeigenvectorv† oritsnulleigenvectorwehavetoconsidertheblockmatrix

J†
∗ ≡ V†−1J

����
∗

V† =
1

1− a†2

(
εE− εIa†2 εE− εI

(−εE+ εI)a†2 −εEa†2+ εI

) (
λ† − λ∗ 0

0 −λ∗

)
, [93]

whereV† is a two-column matrix that holdsv† and its null eigenvector. The eigenvalues of this matrix are negative
undertwoconditions. First,itsdeterminantmustbepositive,andsecond,itstracemustbenegative. Fortraceand
determinant,wefind

det(J†
∗) =

1(
1− a†2

)2(
1−2a†2+ a†4

)
εEεI

(
λ∗ − λ†

)
λ∗, [94]

tr(J†
∗) =

1(
1− a†2

) (
εE

[
λ† −

(
1− a†2

)
λ∗

]
+ εI

[
−a†2λ† −

(
1− a†2

)
λ∗

] )
[95]

Finally,thetwostabilityconditionsread

det(J†
∗)

!
>0 ⇒ −

(
λ† − λ∗

)
λ∗εEεI>0, [96]

tr(J†
∗)

!
<0 ⇒ εE(λ† − λ∗) − εI

(
a†2λ† + λ∗

)
<0, [97]

where,forthetraceterm,wemadeuseoftheequalityλ† = λ†
(
1− a†2

)
(cf.Eq.53)toreplaceλ†.

2.2.1Principal component analysis in inhibition modified input space
The first stability condition above states that only the fixed pointv∗ with the largest eigenvalue,λ∗ > λ†, [λ†, can
be stable, and then only if it is not repulsive, i.e., provided that its corresponding eigenvalue is larger than zero. An
eigenvector can become repulsive if inhibition is sufficiently strong, i.e., ifλ∗ = λ∗ (1− a∗2) < 0 ⇒ a∗2> 1. This
implies that post-synaptic neurons tuned to repulsive eigenvectors receive more inhibition than excitation, which
results in negative firing ratesr∗ = yE

ᵀv∗ − yE
ᵀv∗a∗2< 0, fora∗2> 1(cf. Eq.55). However, in biology, neurons with

larger inhibitory than excitatory input are hyperpolarized and remain silent, which is why we assumeλ∗ > 0. In the
following, we call the combination of the excitatory feedforward attraction of an eigenvectorλ∗ (cf. Sec.1.1) plus
anycontributionoflaterallyprojectingneurons,inthiscase,minusthelateralinhibitoryrepulsiona∗2λ∗,theeffective
attraction,λ∗,ofafeedforwardinputmode.

ForεI= εE,thesecondconditionreducesto1λ† −2λ∗ <0,whichholdsifthefirstconditionismet. Therefore,the
post-synaptic neuron becomes tuned to the eigenvector of the modified covariance matrix with the largest eigen-
value, i.e., it performs principal component analysis on a modified feedforward input space, where the attraction of
feedforward eigenvectors is modified by laterally projecting inhibitory neurons (cf. Eq.53). We will further discuss
thenotionofamodifiedinputspaceinSection3.

2.2.2Fast inhibition increases stability
Inournetworks,stationarystatescanstillemergewheninhibitoryplasticityisslowerthanexcitatoryplasticity. Inthe
extreme case of static inhibition,εI= 0, the second stability condition is still satisfied if the fixed point attractionλ∗

islargerthanthefeedforwardattractionλ† ofanyothereigenvector,λ† − λ∗ <0. Wheninhibitoryweightsarestatic,
they remain tuned to the fixed point and the repulsive component of competing eigenvectorsa†2λ† do not matter
forstability. Thisexplainswhywehavetoconsideronlytheattractivepartλ† oftheeffectiveattractionλ† inthefirst
termofthesecondstabilitycondition. However,forgrowingεI>0,theinfluenceoftheinhibitorypartofcompeting
eigenvectors increases, corresponding to an increasingly negative second term in the second stability condition2.
Then, for sufficiently fast inhibitory plasticityεI> εE, the second condition always holds. Therefore, we consider
slightlyfasterinhibitorythanexcitatoryplasticityinournumericalsimulations(cf. Table1).

1Here,wemakeuseoftheequalityλ† = λ†
(
1− a†2

)
.

2Note that we consider non-repulsive fixed pointsλ∗ > 0and inhibitory neurons with positive firing rates, i.e.,a> 0, [a, such that the second
terminthesecondstabilityconditionisalwaysnegative.
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2.2.3Stability of non-eigenvector fixed points
Before, we considered the stability of fixed pointsw∗ that are eigenvectorsvof the modified covariance matrix
C. Weight vectors of that shape put a strong constraint on the choice of the weight norms, as the ratio between
the excitatory and the inhibitory weight norms is given by the norms of the excitatory and the inhibitory parts of
the eigenvector (cf. Eq.52). The issue was solved in that we found that arbitrary combinations of multiples of the
excitatory and inhibitory components of regular eigenvectors are also fixed points (cf. Sec.2.1.3). We will now
considerthestabilityofsuchnon-eigenvectorfixedpoints.

Lettheshapeofafixedpointw∗ be(cf. Eq.56)

w∗ =

(
kEv∗E
kIv∗I

)
=

(
1kE 0
0 1kI

)
v∗ ≡ Kv∗, [98]

wherekEandkIarescalarconstants. WerecapitulatethegeneralweightdynamicsasgiveninEq.45:

τ ¤w=

[
1 − wEcE

ᵀ

cE
ᵀwE

− wIcI
ᵀ

cI
ᵀwI

]
Cw. [99]

Instead of evaluating the eigenvalues of the Jacobian, we now switch to a new coordinate system in which the
Jacobian will have a familiar shape. This is possible since fixed points and their stability do not depend on the
choiceofcoordinates. Wedefine:

w′ ≡ K−1/2w, ⇒ w= K1/2w′, [100]

fromwhichtheweightdynamicscanbewrittenas

¤w′
= K−1/2¤w= K−1/2τ−1

[
1 −

K1/2w′
EcE

ᵀ

cE
ᵀK1/2w′

E

−
K1/2w′

IcI
ᵀ

cI
ᵀK1/2w′

I

]
K−1/2K1/2CK1/2w′, [101]

whereweinsertedK−1/2K1/2= 1. Wenowmakeuseofthefollowingidentities:

cA
ᵀK1/2w′

A= k1/2
A cA

ᵀw′
A, K1/2w′

AcA
ᵀ
= k1/2

A w′
AcA

ᵀ
,

w′
AcA

ᵀ

cA
ᵀw′

A
K−1/2= K−1/2w′

AcA
ᵀ

cA
ᵀw′

A
, [A∈ {E,I}. [102]

We find that theK1/2matrices inside the bracket cancel, and we can pullK−1/2from the right side to the left side of
thebracket:

¤w′
= K−1/2¤w= K−1/2τ−1K−1/2

[
1 −

w′
EcE

ᵀ

cE
ᵀw′

E
−

w′
IcI

ᵀ

cI
ᵀw′

I

]
K1/2CK1/2w′. [103]

Weintroducethefollowingdefinitions

τ ′ = τK, C′ = K1/2CK1/2=

〈(
k1/2

E yE

k1/2
I yI

) (
k1/2

E yE
ᵀ
,−k1/2

I yI
ᵀ
)ᵀ〉
. [104]

Note thatC′ isnotthe modified covariance matrix expressed in the new coordinate system but a new modified
covariancematrixthatcorrespondstoanalteredinputspacewhereexcitatoryandinhibitoryinputfiringratesyE,yI
arescaledbyk1/2

E ,k1/2
I ,respectively. Insummary,wecanwritetheplasticityoftheweightvectorinthenewcoordinate

systemas1

τ ′ ¤w′
=

[
1 −

w′
EcE

ᵀ

cE
ᵀw′

E
−

w′
IcI

ᵀ

cI
ᵀw′

I

]
C′w′ . [105]

WeareinterestedinthestabilityofthefixedpointsgiveninEq.98. Inthenewcoordinatesystem,theybecome

w′∗ = K−1/2w∗ = K−1/2Kv∗ = K1/2v∗. [106]

1Here,τ−1andK−1/2arebothdiagonalmatricesandcommute.
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It is straightforward to proof thatw′∗ is an eigenvector of the new modified covariance matrixC′ with eigenvalue
λ′∗ = (kE− kIa∗2)λ∗: WithCdefinedinEq.51weget

C′w′∗ = K1/2CK1/2K1/2v∗ [107]

= K1/2©­«
C −VΛA

AT ΛVT −AT ΛA
ª®¬©­«

Ve∗kE

AT e∗kI

ª®¬ [108]

= K1/2©­«
Ve∗λ∗kE− VΛAATe∗kI

AT e∗λ∗kE− AT ΛAATe∗kI

ª®¬ [109]

= K1/2©­«
Ve∗

AT e∗
ª®¬(kE− kIa∗2)λ∗ = w′∗λ′∗, [110]

where we defineda∗2as the entry of the diagonal matrixAAT that corresponds to the eigenvectorv∗1. Note that
thisisindependentofthechangeofvariables,however,onlyinthenewcoordinatesystemonecanidentifythenew
modifiedcovariancematrixwithanactualinputspace2,wherepre-synapticfiringratesarescaledbykE,kI(Eq.104).
Intheory,wecannowproceedinfindingtheeigenvaluesoftheJacobian3,asexplainedinSection2.2. . Asbefore,
onefindsthatstabilityislargelydeterminedbytheeigenvaluesofthemodifiedcovariancematrix,whichnowareλ′.

Apart from providing a principled way to determine if a non-eigenvector fixed point is stable, our formulation
providesadditionalinsight: Let’sassumethetotalsynapticinhibitoryweightofaneuronisverysmall,muchsmaller
thananyeigenvectorofCwouldsuggest,i.e.,kI� 1,whiletheexcitatoryweightnormisequaltoone,whichimplies
kE= 1. As one would expect intuitively, the neuron does not exhibit much of the repulsion of the inhibitory neurons
(cf. Eq.104forkI� 1), and its stability would be primarily determined by the excitatory attraction of the different
eigenvector modes, i.e.,λ′ = (kE− kIa∗2)λ ≈ λ. In the extreme case, when the inhibitory weight norm is zero, i.e.,
kI= 0,onlytheactivityoftheexcitatorypopulationisrelevant.

Whiletheeffectiveplasticity timescaleτ ′ = τKinEquation105dependsonthemagnitude oftheexcitatory and
the inhibitory part of the specific fixed point under consideration, this doesnotmean that the speed of synaptic
plasticity is different from the original formulation in Equation45. For example, when we consider a fixed point
with a decreased inhibitory weight normkI< 1, the effective inhibitory plasticity appears to increase, sinceτ ′I=
τIkI. However, this effect is balanced by the decrease in pre-synaptic inhibitory firing rates, which decreases with
decreasingkI. Similarly, the coordinate system in which we describe the weight dynamics also does not affect the
speed of plasticity4. From Equation103we see that we can freely shift scaling matricesKbetween the modified
covariance matrix and the plasticity timescale by pulling diagonal matrices of the same shape asKthrough the
bracket (cf. Eq.102). However, in Section2.2we only considered the stability of fixed points that are regular
eigenvectorsofthemodifiedcovariancematrix. Ifwehadchosen,e.g.,C′ = K−1/2CK1/2andτ ′ = τ,thenw′∗ = K1/2v∗
(cf. Eq.106) would not be a regular eigenvector ofC′ (cf. Eq.107f.). Therefore, our derivation in Section2.2would
notapply,andwewouldneedtofindadifferentwaytoproofstability.

3Lateral input stretches and compresses the feedforward input
space

Beforeweconsiderhowsynapse-type-specificHebbianplasticityaffectslearninginfullyplasticrecurrentnetworks,
we first build additional intuition for how static lateral input affects the weight dynamics. From the previous section
weknowthatinthiscasetheeigenvaluesofthemodifiedcovariancematrixarethekeyfactorsthatdeterminefixed
pointstability,andfromSections1.1&2.1.2weknowthattheseeigenvaluesdescribetheHebbiangrowthtowards
thecorrespondingeigenvectorthatcanbeattractiveorrepulsive,correspondingtoapositiveornegativeeigenvalue.
When a neuron receives only feedforward excitatory input (Fig.S2A), the weight dynamics is described by a true
covariance matrix with eigenvalues equal to the variances along the principal components of the feedforward input
space (cf. Sec.1). Then the weight vector in the fixed point aligns with the direction of maximal variance in the

1a∗2= a∗ᵀa∗,cf. Eq.80.
2ThenewmodifiedcovariancematrixintheoriginalcoordinatesisK1/2C′K−1/2= KC,witheigenvectorsKv∗.
3WewouldhavetoemploytheeigenvectorbasisofthenewmodifiedcovariancematrixV′ = K1/2Vfortriangularization.
4Achangeintheoverallweightnorms,however,canaffectthemagnitudeofpostsynapticactivitiesandsynapticchanges.
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A B C

FigureS2: Inputspacemodificationduetolateralinput.(A)Top: asingleneuronwithfiringraterreceivessynapticinputswfromapopulation
of excitatory neuronsy. Bottom: input distribution projected onto the first two input dimensions. Each dot represents the firing rates of the first
two neurons during one input pattern. (Contour lines in light gray). Under a linear Hebbian learning rule, the neuron becomes selective for the
directionofmaximumvariance,thefirstprincipalcomponent(cf. Sec.1). (B)Top: SameasinAforaneuronthatreceivesadditionalinputwqfrom
a laterally projecting excitatory neuronrqwhich is tuned to an eigenvectorqof the original input covariance matrix. Bottom: the effective input
spaceyeffofthetargetneuron(darkbluetriangle)iswarpedsuchthatthevariancealongtheeigenvectorq(bluearrow)isstretchedinproportion
to the absolute value of the weight vectorq. The contour lines of the original input distribution fromAare shown in light gray for reference. (C)
Top: SameasBforalaterallyprojectinginhibitoryneuron. Bottom: Now,theeffectiveinputspaceiscompressed. Seetextfordetails.

input space (Fig.1G). In the following, we introduce a similar perspective and show that additional lateral input can
be interpreted to stretch and compress the original feedforward input space, while the feedforward component of
theweightvectorperformsPCAonthismodifiedinputspace.

We consider a circuit of two neurons that both receive feedforward input from a population of input neuronsy
(Fig.S2B,top). Letthefirstneuronhaveafixed,non-plasticsetoffeedforwardweightsqandfiringrate

rq= qᵀy [111]

Weletthefirstneuronprojectlaterallyontothesecondneuronviaasynapticweightwq,withoutreceivinganylateral
inputitself. Thentheequilibriumfiringrateofthesecondneuronis

r= wqrq+ wᵀy [112]

whereweassumethatbothwandwqareplasticaccordingtoastabilizedHebbianrule.
Fromtheperspectiveofthesecondneuron,theinputspaceisincreasedbyonedimensionduetotheadditional

lateralinput,i.e.,wecanwriteEq.112as

r= wᵀy, y=
(
yᵀ,qᵀy

)ᵀ
, w=

(
wᵀ
,wq

)ᵀ
, [113]

where, we defined the new input vectoryand the combined input weightsw. Effectively this is still a feedforward
network without feedback, and the static covariance matrixCof the new inputsyfully determines the average
synapticweightdynamics1:

C=
〈
yyᵀ

〉
=

〈(
yyT yyTq

qTyyT qTyyTq

)〉
=

(
C Cq

qTC qTCq

)
, [114]

whereCis the covariance matrix of the original inputy. We are interested in the eigenvectorsvand eigenvaluesλ
of this matrix for two reasons. First, because they describe the attraction towards different input modes due to the
Hebbian term in our competitive plasticity rule. Second, because eigenvectors are fixed points with their stability

1Inthiscase,Cisatruecovariancematrix,sincethelateralprojectingneuronisexcitatory.
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mostlydeterminedbytheeigenvalues. Eigenvectorsandeigenvaluesmustsatisfy

Cv= λv, [115](
C Cq

qTC qTCq

) (
vF

vq

)
= λ

(
vF

vq

)
. [116]

wherevqandvFare the lateral and the feedforward components of the eigenvector, respectively. In the following,
wefocusonthefeedforwardcomponentfordifferentq. Itfollows

CvF+Cqvq= λvF, [117]

qᵀCvF+qᵀCqvq= λvq. [118]

C
(
vF+qvq

)
= λvF, [119]

qᵀC
(
vF+qvq

)
= λvq. [120]

Inserting the first into the second expression givesvq= qT vFwhich, when inserted into the first expression, results
in:

C
(
1 +qqᵀ

)
vF= λvF. [121]

This is again an eigenvector equation, where the feedforward components of the original eigenvectorvF, are them-
selveseigenvectorsofthematrixC(1+qqT). Notethatforq= 0werecoverthecasewithoutlateralprojectionsand
feedforwardcomponentsaremultiplesofeigenvectorsofCwithattractionsλ = λ. Forgeneralq,thesolutionisnot
straightforward: Weconsidertheequationintheinputeigenspace,whereEq.121becomes

Λ
(
1 + qvqv

ᵀ)
vFv= λvFv, [122]

withΛ beingthediagonalmatrixoffeedforwardeigenvaluesλ andthesubscript(·)vindicatesavectorintheeigen-
basis ofC. In this basis, eigenvectors ofCare unit vectors, i.e.,vv= e, whereeis a vector of zeros with a single
entry equal to one, corresponding to the respective eigenvector. Whenqcontains components of more than one
eigenvector,thematrixqvqv

ᵀ isnotdiagonalandeigenvectorsofC,donotsolvetheequation. Hereweconsidera
simplifiedcase: Whenthefirstneuronhadplasticfeedforwardinput,weknowfromSection1thatitwouldconverge
toamultipleofaneigenvectorofthefeedforwardcovariancematrix1,q∝ v†,withCv† = λ†v†. Then,qvqv

ᵀ
= e†e†ᵀis

diagonalwithasinglenon-zeroentry,andfromEquation122itisobviousthatfeedforwardeigenvectorcomponents
ofCareeigenvectorsofthefeedforwardcovariancematrixCthatsolveEq.121.

Tofindtheeigenvaluesλ,wefirstconsiderfeedforwardeigenvectorcomponentsvFthatareorthogonaltoq:

vF∝ v‡ ⊥ q∝ v† ⇒ qᵀvF∝ v†ᵀv‡ = 0, [123]

Then it follows from Equation121that the corresponding eigenvalue of the modified covariance matrix equals the
eigenvalueoftheoriginalcovariancematrix,whichis,bydefinition,equaltothevarianceσ‡2oftheinputdistribution
alongtherespectiveeigenvector.

⇒ λ‡ = λ‡ = σ‡2. [124]

Therefore,inputmodesthatareorthogonaltothetuningofthelaterallyprojectingneuronmaintaintheirattractions,
equal to the respective eigenvalues ofC, and the laterally projecting neuron does not affect the Hebbian growth
dynamicsintheinputsubspaceorthogonaltoq2. Theremainingfeedforwardeigenvectorcomponentisproportional
toq:

vF∝ v† ‖ q= aqv† ⇒ qᵀvF∝ v†ᵀv† = 1, ⇒ λ† = λ† + λ†a2q= σ†2+ σ2
q, [125]

1Moreprecisely,qwouldconvergetoamultipleoftheprincipaleigenvector. Here,weconsiderthemoregeneralcasewhereqisproportional
toanarbitraryeigenvector. Wewillseethatwithsuitablelateralinput,anyfeedforwardeigenvectorcanbestable.

2However,theconstrainttermintheweightdynamicsintroducesinteractionsbetweenthesubspacesorthogonalandparalleltoq.

Eckmannetal.,SupplementaryMaterial|30April2024 17



PNAS|ACCEPTED MANUSCRIPT

where we again made use of Equation121. Here,aqis equal to‖q‖, the L2-norm ofq, andσ2
q= λ†a2qis the firing

rate variance of the laterally projecting neuron1. Therefore, the second neuron adjusts its feedforward weightsw
asifthevariancealongtheeigenvectorqwasincreasedbyσ2

q(Fig.S2B,bottom). Inthatsense,thesecondneuron
‘perceives’ its feedforward input space as stretched and we speak of a modified input space (cf. Sec.2.2.1) that is
describedbyamodifiedcovariancematrixC. Wenotethatitispossibletochooseqsuchthatanarbitrarydirection
oftheinputspacebecomesstable. Forq= C−1hEq.121is2(

C+hhᵀC−1
)
vF= λvF. [126]

For increasing‖h‖, the principal eigenvector transitions fromvF ∝ v, for‖h‖ = 0, tov∞F ∝ hfor‖h‖ → ∞. In the
following, we only consider the case whenqis parallel to one of the eigenvectors ofC. Then, for sufficiently large
aqandq∝ v†, an arbitrary non-principle eigenvectorv† with attractionλ† = λ† (1+ a2q) can become stable. In that
case,thecorrespondingfixedpointisofthefollowingshape3:

⇒ w∗ =

(
w∗

w∗
q

)
=

(
w∗

qT w∗

)
∝

(
v†

aq

)
, [127]

When the laterally projecting neuron is inhibitory (Fig.S2C, top), the modified covariance matrix becomes (cf.
Eq.51)

C=
(

C −Cq
qT C −qT Cq

)
, [128]

anditfollowsthattheinputspaceiscompressedalongq∝ v† (Fig.S2C,bottom):

λ† = λ† − λ†a2q= σ†2− σ2
q. [129]

In the case of lateral inhibition and sufficiently large vector normsaq, an eigenvector can become repulsive, i.e., its
eigenvalue becomes negative. Geometrically, this corresponds to a reflection of the input space alongqthrough
theorigin,whichcannolongerbevisualizedasintuitivelyasinFig.S2.

We can generalize the overall approach to multiple excitatory and inhibitory neurons such that the effective
attractiontowardsafeedforwardeigenvectorbecomes

λ = λ
(
1+ ‖aE‖2− ‖aI‖2

)
, [130]

⇒ λ = σ2+ ‖σE‖2− ‖σI‖2 , [131]

whereλ = σ2,thevectorsaE,aIholdthefeedforwardvectornormsofthelaterallyprojectingneuronsthataretuned
to the respective feedforward eigenvector, andσA =

√
λaA, A∈ {E,I}, hold the standard deviations of their firing

rates. Thisallowswritingtheregularfixedpointsas4

w∗ =
©­­«
w∗

w∗
E

w∗
I

ª®®¬ ∝
©­­«

v
aE

aI

ª®®¬ = σ−1©­­«
σv
σE

σI

ª®®¬ , [132]

Thisimpliesthatforregularfixedpoints,thetotalsynapticweightisdistributedamonglateralsynapsesinproportion
to the standard deviation of their pre-synaptic activities. Note that the different weight norms of the excitatory and
inhibitorypartofnon-eigenvectorfixedpointscandistortthisrelation(cf. Sec.2.1.3).

In summary, we demonstrated how static lateral input can be interpreted to reshape the feedforward attraction
landscape of afferent neurons. Note that these results are independent of what causes the laterally projecting neu-
rons’ tuning. The second, afferent neuron does not ‘see’ what inputs to the laterally projecting neurons cause their

1FromEquation111weimmediatelyfindσ2
q= 〈r2q〉 − 〈rq〉2= qT Cq= λ†a2q,forq= aqv†,whereweassumedzeromeaninput,〈y〉 = 0.

2NotethatC−1= (C−1)ᵀ sinceCisatruecovariancematrix,i.e.,CandC−1aresymmetric.
3Ifaqistoosmallsothatλ† < λ‡ = λ‡,theprincipalfeedforwardeigenvectorv‡ ofCwitheigenvalueλ‡ isstableandw∗ = (v‡ᵀ,0)ᵀ.
4If none of the laterally projecting neurons is tuned to a specific feedforward eigenvectorv‡, i.e.,v‡ ⊥ qi[i, the corresponding fixed point

becomesv‡ = (v‡ᵀ, 0T , 0T )ᵀ.
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tuning. For example, in addition to feedforward input, laterally projecting neurons might be integrated into a recur-
rent circuit of neurons that are all tuned to the same eigenvector1. Thenσ2

E,σ
2
Iresult from recurrent interaction in

addition to the norm of the feedforward weight vectors. However, for the dynamics of the second neuron, it would
notmakeanydifferenceaslongasthefiringratestatisticsofitspre-synapticinputswerethesame. Inthefollowing
sections,wewillconsidercircuitswherethefiringratestatisticsemergefromrecurrentinteractions.

4Eigencircuits
In the previous section we considered neurons that receive feedforward input from an excitatory population and
lateral input from neurons with fixed feedforward tuning (Fig.S2). We found that the attraction of different feedfor-
ward input modes is determined by the eigenvalues of a modified covariance matrix, composed of a feedforward
contribution and a contribution due to the laterally projecting neurons that is proportional to the variance of their
firing rates (Eq.131). In this section, we consider networks of recurrently connected, laterally projecting neurons
andexplorethevariancesoftheirfiringrates.

First,weconsideranetworkofexcitatoryandinhibitoryneuronsyE,yIthatarelaterallyconnectedtothemselves
and each other and receive feedforward input from the same excitatory populationy. We assume that the activity
in the network is dominated by feedforward input such that neurons become selective for different eigenvectors of
the feedforward covariance matrixC= 〈yyT〉, e.g., the steady state firing rateyaof a neuron that is tuned to an
eigenvectorvais proportional tova

ᵀy(Fig.4A), where the proportionality factor depends on the number and firing
ratesofotherneuronsthataretunedtothesameeigenvector(seeSec.4.1). ThentheaverageHebbiangrowthofa
synapsethatconnectstwoneuronsthataretunedtodifferenteigenvectorsis2:

〈 ¤wab〉 ∝ 〈yayb〉 ∝ 〈va
ᵀyyᵀvb〉 = va

ᵀCvb= λbva
ᵀvb= 0. [133]

Due to the competition for synaptic resources, the synapse loses out to the non-zero growth of synapses that
connect neurons that are tuned to the same eigenvector, and decays to zero over time (Fig.4B). Eventually, the
circuit is separated into sub-circuits that are tuned to different eigenvectors with recurrent connections within, but
not between sub-circuits. Since there is one sub-circuit per eigenvector of the feedforward covariance matrix, we
callthesedecoupledsub-circuits‘eigencircuits’(cf. Fig.4).

4.1Variance propagation
In Section3, we have seen that the attraction and the stability of a feedforward eigenvector are closely related to
thefiringratevariancesoflaterallyprojectingneurons,independentfromhowthesevariancesarise. Intheeffective
feedforwardcircuitsthatweconsidered,itwasstraightforwardtocomputevariancesbasedonfeedforwardweight
norms(Eq.131f.). Wenowshowhowvariancescanbedeterminedinrecurrenteigencircuits,whichallowstoquantify
theeffectiveattractionofaninputmode.

Weconsideragenericeigencircuitandinvestigatehowvariancespropagatethroughthenetwork,i.e.,ourgoalis
toexpressthestandarddeviationofaneuron’sfiringrateasafunctionofthestandarddeviationsofitspre-synaptic
input firing rates. For a neuron in an eigencircuit, all pre-synaptic inputs with non-zero synaptic weight are tuned
to the same feedforward eigenvectorv. We only consider these non-zero entries and assume that the steady state
firingrateofanarbitraryneuroncanbewrittenas(Fig.S3A)

r= wᵀy+ wE
ᵀyE− wI

ᵀyI, [134]

yE= aE(v
ᵀy), yI= aI(v

ᵀy), [135]

Note that before,aEandaIreferred to feedforward weight norms (cf. Sec.3). Now these vectors more generally
expresshowfiringratevariancesrelatetotheinputvariancealongtheeigencircuit’sfeedforwardeigenvector,without
makinganyassumptionsabouthowthistuningarises. WewillshowinSection5thatthisassumptioniscorrectand
specify how the entries ofaE,aIrelate to the recurrent excitatory and inhibitory weights (cf. Eqs.161&162). For

1Another example is neurons that project from outside the local circuit, e.g., from another brain area that is higher up in the processing
hierarchy.

2SinceweassumeHebbianplasticitybetweenalltypesofneurons,excitatoryandinhibitory,wedonotspecifytheneurontype.yaandybare
thefiringratesoftwoarbitraryvectorsthatarepartoftwodifferenteigencircuits.
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theweightvectors,werequirethattheexcitatoryandinhibitorypartsarenormalizedtomaintainthetotalamountof
inhibitoryandexcitatorysynapticresources:(

w
wE

)
= WE

vE

‖vE‖p
, wI= WI

vI

| |vI| |p
, [136]

vE=

(
v

aE

)
, vI= aI, [137]

whereWE,WIarescalarweightnorms,andvE,vIaretheexcitatoryandinhibitorypartsofthefixedpointeigenvector
(cf. Sec.5),withentriesthatareproportionaltothepre-synapticstandarddeviations(cf. Eq.132). Then,thep-norm,
‖·‖p,ismaintainedduetocompetitionforsynapticresources1. Forthepost-synapticfiringrate,itfollows

r=

(
1+ ‖aE‖2

‖vE‖p
WE− ‖aI‖2

‖vI‖p
WI

)
(vᵀy). [138]

Thefirstbracketisascalarpre-factorwhichmakesitstraightforwardtocomputethestandarddeviation:

σr=

(
1+ ‖aE‖2

‖vE‖p
WE− ‖aI‖2

‖vI‖p
WI

)
σ =

σ2+ ‖aE‖2σ2

‖vE‖pσ
WE− ‖aI‖2σ2

‖vI‖pσ
WI, [139]

⇒ σr=



σE


2

σE




p

WE−


σI



2

σI




p

WI , [140]

σE=
(
σ,σE

ᵀ)ᵀ
, σI= σI, [141]

Foranetworkinthesteadystate,i.e.,whensynapticweightsconverged,thisequationputsthestandarddeviationof
neuralfiringratesinrelationtoeachother,i.e.,itprovidesthestandarddeviationofapost-synapticneuron’sactivity
as a function of the standard deviations of its pre-synaptic input neurons’ activities2. It describes how standard
deviationsandvariances‘propagate’throughthenetwork. Inthenextsection,wewillusethisvariancepropagation
equation(Eq.140)toexpressthestandarddeviationsintermsofonlytheweightnormsandthefeedforwardstandard
deviationσ.

4.2Consistency conditions provide eigencircuit firing rate variances
WenowconsiderasingleeigencircuitwherenEexcitatoryandnIinhibitoryneuronsarerecurrentlyconnected,and
aretunedtothesamefeedforwardeigenvectorwithstandarddeviationσ (Fig.S3B).Intheirsteadystate,allneurons
havetofulfilthevariancepropagationequation(Eq.140). Inthefullyconnectedeigencircuit,thefiringratevariance
ofeachneurondependsonthefiringratevariancesofallotherneurons,andallneuronshavethesamesetofnon-
zero pre-synaptic inputs. This providesN= nE+ nIconsistency conditions for theNunknown standard deviations.
Forexample,theconditionforasingleexcitatoryneuronireads

σi
E= Wi

EE

(
σ2+ ‖σE‖2

σ + ‖σE‖1

)
− Wi

EI

(
‖σI‖2

‖σI‖1

)
, [142]

wherewechosetheL1-norm,p= 1,fornormalization(butseeSec.4.3),andWAB, A,B∈ {E,I}arethetotalsynaptic
weightthataneuronoftypeAreceivesfromneuronsoftypeB. Wemakethesimplifyingassumptionthatallneurons
have similar weight norms, i.e.,Wi

AB≈ WAB, [i, A,B∈ {E,I}. Then, also the standard deviations of their activities
aresimilar,andweapproximateσi

A≈ σA, [i, A∈ {E,I}:

‖σA‖2=
∑

i

σi2
A ≈ nAσ

2
A, ⇒ σ2+ ‖σA‖2

σ + ‖σA‖1
≈

σ2+ nAσ
2
A

σ + nAσA
. [143]

1The vectors(wT ,wE
ᵀ )ᵀ andwIare normalized such that



(wT ,wE
ᵀ )ᵀ




p= WE, and‖wI‖p= WI. This is achieved by scaling the excitatory

andinhibitorypartoftheregulareigenvector,i.e.,scalingvEbykE= WE/‖vE‖p,andvIbykI= WI/‖vI‖p(cf. Sec.2.1.3)
2Note that we allow self-excitation and self-inhibition, i.e., in a fully connected recurrent network,σralso appears on the right sides of the

equation,asanentryofσEorσI.
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Thestandarddeviationsofexcitatoryandinhibitoryneuralfiringratesbecome

σE= WEE

(
σ2+ nEσ

2
E

σ + nEσE

)
− WEI

(
nIσ

2
I

nIσI

)
, σI= WIE

(
σ2+ nEσ

2
E

σ + nEσE

)
− WII

(
nIσ

2
I

nIσI

)
. [144]

Aftersomealgebra,thisyieldsthestandarddeviationsas

σI=
WIE

1+ WII

1
Φ
σE , Φ ≡

[
WEE−

WEIWIE

1+ WII

]
, [145]

⇒ σE=
1

2(1− Φ) nE

(
−1±

√
1+4Φ (1− Φ) nE

)
σ . [146]

This provides standard deviations as a function of the number of neurons in the eigencircuit1,nE,nI, their weight
norms,WAB, and the standard deviation of the feedforward input activity along the corresponding eigenvector,σ.
Via Eq.131, we can determine how the eigencircuit modifies the attraction of its feedforward eigenvector, i.e., the
effectiveattractionλ is

λ = σ2+ nEσ
2
E− nIσ

2
I≡ λ + λeig, [147]

wherewedefinedthe attractionoftheeigencircuit,λeig,andλ istheattractionof therespectivefeedforwardeigen-
vector. In the following, we refer toλ interchangeably as the effective attraction of the eigencircuit or the effective
attractionofthefeedforwardinputmode.

In summary, we assumed that neurons are tuned to feedforward eigenvectors (Eq.135) and showed how the
networkdecomposesintorecurrenteigencircuits. Wedemonstratedhowvariancespropagatethroughsucheigen-
circuits,andquantifiedhoweigencircuitsmodifytheattractionoftheirfeedforwardeigenvector(cf. Sec.3)bylaterally
projectingontootherneurons(cf. Fig.4C).Inthefollowing(Sec.5),wewillshowthateigencircuitsareindeedstable
fixedpointsoffullyplasticrecurrentnetworksandinvestigatetheirstability.

4.3A note on the choice of weight norm
Thechoiceoftheweightnormthatismaintainedviamultiplicativenormalizationisnon-trivial. Biologicallywemoti-
vatednormalizationbythecompetitionforalimitedamountofsynapticresources. Weassumedthesimplestcase,
where the L1-norm is maintained, and each resource unit translates to one unit of synaptic strength. An alternative
choicewouldbe tomaintain theL2-norm. Inthe variancepropagation equation(Eq.140)thiscorresponds top= 2
whichbecomes

σr=



σE




WE−



σI




WI. [148]

Following a similar logic as in Section4.2, the eigencircuit consistency condition for a single inhibitory neuron be-
comes(cf. Eq.142):

σI=
WIE

1+ WII

(
σ2+ ‖σE‖2

) 1
2
, [149]

where we once more assumed that all neurons have similar weight norms,Wi
AB≈ WAB, [i. The variance of an

excitatoryneuronbecomes

σ2
E= Φ2

(
σ2+ ‖σE‖2

)
= Φ2

(
σ2+ nEσ

2
E

)
, [150]

⇒ σ2
E=

Φ2

1− Φ2nE
σ2 . [151]

For an increasing number of excitatory neuronsnE, the firing rate variance of a single excitatory neuron grows and
diverges forΦ2nE= 1. For even largernE, variances would have to be negative to fulfil the consistency condition,

1Notethatfor0> Φ <1thereexistsarealsolutionforσE,independentofnE.
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A B C

D

FigureS3:(A)Aneuronwithfiringrater(gray,center)receivessynapticinputsaspartofarecurrenteigencircuit. Theneuronreceivesexcitatory
synapseswfromapopulationofinputneuronsy(darkpurple,bottom). Excitatory(purple,triangles)andinhibitoryneurons(lightpurple,circles)
withfiringrates,yE,yI,thatarepartofthesameeigencircuit,projectlaterallyontoneuronrviaexcitatorywEandinhibitorywIsynapses. Recurrent
synapticconnectionsthatarenotinputsofneuronrareshowninlightgray–Notallsynapticconnectionsareshown,forclarity. (B)Recurrently
connected eigencircuit ofnE = 1excitatory neuron (purple triangle) andnI= 2inhibitory neurons (light purple circles) that are tuned to the
samefeedforwardeigenvector(darkpurplecircle,bottom). Thestandarddeviationσ ofinputfiringratesalongtheinputeigenvectorpropagates
throughthenetworkandresultsinfiringratestandarddeviationsofσEandσI(cf. Eq.145f.). (C)Twoexcitatoryneurons(triangles,top)andtwo
inhibitoryneurons(circles,top)inarecurrentcircuitreceivefeedforwardexcitationfromtwoinputneurons(purpleandgreencircles,bottom)that
correspond to two different eigenvectors with eigenvalueλA,λB. Neurons are configured in a fixed point with two eigencircuits,AandB, with
eigencircuit attractionsλA

eig,λ
B
eig(cf. Eq.147). Neurons that are part of the same eigencircuit are recurrently connected to each other. Synaptic

weightsbetweenneuronsthataretunedtodifferenteigencircuitsarezero. TheexcitatoryneuronineigencircuitAisperturbedinthedirectionof
eigencircuitB(dashedlines). (D)Equivalentcircuitwithoneexcitatoryandoneinhibitoryneuron. Weconsiderafixedpoint,wherebothneurons
aretunedtothesamefeedforwardeigenvectorwitheigenvalueλ∗. Theneuronsformaneigencircuitwithattractionλ∗eig. Theexcitatoryneuronis
perturbedinthedirectionofanotherfeedforwardeigenvectorwithattractionλ† (dashedline). Firingrates,yE,yI,y,andrecurrentandfeedforward
synapticweights,wEE,wEI,wIE,wII,wEF,wIF,areshowninblack(cf. Eqs.153&153). Seetextfordetails.

which is not possible. It follows that for sufficiently largenEthere exist no fixed points. This is not unique to the
L2-norm but holds for anyp> 1. Such norms allow for a larger total synaptic weight (in terms of its L1-norm) when
distributed across multiple synapses. Additional neurons provide additional recurrent synapses, which leads to the
growth of the effective recurrent excitation until activities can no longer be stabilized by recurrent inhibition. For a
suitable choice of the weight norms,Φ can, in principle, become small enough to balance the number of excitatory
neurons in any eigencircuit to maintain positive variances. However, this requires additional fine-tuning and fails
whennEbecomesunexpectedlylarge.

5E-I networks with fully plastic recurrent connectivity
Wenow consider fullyconnected networks ofexcitatory and inhibitory neuronswhere all connections,feedforward
and recurrent, are plastic according to the competitive Hebbian learning rule we introduced in Section2. We will
first show that eigencircuits are fixed points and then consider their stability with respect to a weight perturbation.
Specifically,wewouldliketoknowwhenaneuronfromoneeigencircuitbecomesattractedtoadifferentfeedforward
eigenvector. Westartwithsomesimplifyingassumptions.

Sinceeachneuroncanbebidirectionallyconnectedtoallotherneurons,thedimensionalityoftheweightdynam-
ics grows quadratically with the number of neurons. We are only interested in the general principles and consider
a simplified circuit of two excitatory and two inhibitory neurons. One possible fixed point configuration is shown in
FigureS3C(without dashed lines), where neurons are configured in two eigencircuits,A,B, with one excitatory and
one inhibitory neuron per eigencircuit1. In this fixed point, all neurons receive feedforward input from a population
of input neurons but synapses that connect neurons of different eigencircuits are zero (cf. Sec.4). When a neuron
in eigencircuitAis perturbed towards the other eigencircuitB(Fig.S3C, dashed lines), the tuning and the firing
rates of all neurons in eigencircuitAchange. However, neurons in eigencircuitBare unaffected because there are
no connections projecting from eigencircuitAto eigencircuitB. Therefore, we only consider the recurrence within
eigencircuitA,andthinkofinputfromothereigencircuitsaseffectivelyfeedforwardandstatic: Thatis,weconstruct
an equivalent circuit where we perturb an excitatory neuron that is part of an eigencircuit, ‘∗’, in the direction of
another eigencircuit, ‘†’, that does not contain any neurons and has feedforward attraction equal to the effective

1WewillshowinSection5.1thateigencircuitsareinfactfixedpointsoftheweightdynamics.
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attractionofeigencircuitB,thatis1(Fig.S3D)

λ† = λB= λB+ λB
eig, λ†eig= 0. [152]

The configuration and attraction of the perturbed eigencircuit ‘∗’ is equal to eigencircuitA, i.e.,λ∗ = λA,λ∗eig= λA
eig.

InSection5.2.3wewillexplaininmoredetailwhythesetwocircuits(Fig.S3C&D)arehighlysimilarwithregardsto
theirstability.

In the equivalent circuit (Fig.S3D), we now consider the generic equilibrium firing rates of thenE= 1excitatory
andnI= 1inhibitoryneuronwithouttakinganytuningintoaccount(Fig.S3D)

yE= wEF
ᵀy+ wEEyE− wEIyI, [153]

yI= wIF
ᵀy+ wIEyE− wIIyI, [154]

whereyholds the firing rates of a population ofNFinput neurons and we did not assume any specific tuning of the
feedforwardweightswEF,wIF. Sincethenetworkislinear,wecansolveforthefiringrates:

yE=
1

1− wEE+
wEIwIE

1+ wII

(
wEF

ᵀ − wEIwIF
ᵀ

1+ wII

)
y≡ aE

ᵀy, [155]

yI=
1

1+ wII+
wIEwEI

1− wEE

(
wIF

ᵀ + wIEwEF
ᵀ

1− wEE

)
y≡ aI

ᵀy, [156]

wherewedefinedtheeffectivefeedforwardvectorsaE,aI. Theweightdynamicsis

τ ¤w=

©­­­­­«
¤wEF

¤wEE

¤wEI
...

ª®®®®®¬
=

©­­­­­«
yyT yyE −yyI

yEyT yEyE −yEyI

yIyT yIyE −yIyI

0

0
. . .

ª®®®®®¬
©­­­­­«
wEF

wEE

wEI
...

ª®®®®®¬
−

©­­­­­«
γE 0 0
0 γE 0
0 0 ρE

0

0
. . .

ª®®®®®¬
©­­­­­«
wEF

wEE

wEI
...

ª®®®®®¬
, [157]

whereellipsisindicatesimilartermsforafferentweightsoftheinhibitoryneuron. Wedefinethemodifiedcovariance
matrix

C=

©­­­­­­«

〈
yyT

〉
〈yyE〉 − 〈yyI〉〈

yEyT
〉

〈yEyE〉 − 〈yEyI〉〈
yIyT

〉
〈yIyE〉 − 〈yIyI〉

0

0
. . .

ª®®®®®®¬
=

©­­­­­­«

C CaE −CaI
aE

ᵀC aE
ᵀCaE −aE

ᵀCaI
aI
ᵀC aI

ᵀCaE −aI
ᵀCaI

0

0
. . .

ª®®®®®®¬
, [158]

andwritetheaveragesynapticchangeas2(cf. Eq.40)

⇒ τ ¤w≡ Cw− Γw, [159]

whereΓ is a diagonal matrix that holds the scalar constraint factors, andτ holds the timescales for excitatory
synapses,τE= 1τE,andinhibitorysynapses,τI= 1τI,onthediagonal. Wemakethesimplifyingassumptionthatthe
plasticity of excitatory and inhibitory synapses is equally fast,τE= τI= τ. Thenτ = τ1, which does not affect the
fixedpointsorthestabilityofthesystem3,andwesetτ = 1.

Notethatthisisahighlynon-lineardynamicalsystemsincethemodifiedcovariancematrixnotonlydependson
the feedforward inputsybut also on the plastic synaptic weightsw, in addition to the weight dependence of the
normalization factorsΓ. Next, we show that the eigencircuit configuration we discussed in the introduction to this
sectionisinfactafixedpointoftheweightdynamics.

1SeeEq.147forthedefinitionoftheeigencircuitattractionλeig.
2Weomittedtheanglenotation〈·〉 toimprovereadability.
3It does not affect the sign of the eigenvalues of the Jacobian, sinceτ is always positive. In principle, however, different timescales for

excitatoryandinhibitoryweightscanaffectstability(cf. Sec.2.2).
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5.1Fixed points
Ingeneral,fixedpointsw∗ mustfulfilthefollowingcondition

C∗w∗ − Γ∗w∗ !
= 0. [160]

whereC∗ isthemodifiedcovariancematrixevaluatedinthefixedpoint. Weconsiderthespecialcasewhenthetwo
neurons form a single eigencircuit, tuned to the feedforward eigenvectorv∗. Then we can write the excitatory and
inhibitoryfiringratesas1

y∗E= a∗
E
ᵀy= yᵀa∗

E, a∗
E= a∗Ev∗, [161]

y∗I= a∗
I
ᵀy= yᵀa∗

I, a∗
I= a∗Iv

∗, [162]

whereaEandaIdepend on the excitatory and inhibitory weights and can be determined via Eq.155&156. This
demonstratesthatwhenneuronsaretunedtothesamefeedforwardeigenvectorv∗,theirfiringrateisproportionalto
theprojectionoftheactivityvectoryontotheeigenvectorv∗,andjustifiesourassumptioninEq.135. Themodified
covariancematrixinthefixedpointbecomes

C∗ =

©­­­­­«
C Cv∗a∗E −Cv∗a∗I

a∗Ev∗ᵀC a∗Ev∗ᵀCv∗a∗E −a∗Ev∗ᵀCv∗a∗I
a∗Iv

∗ᵀC a∗Iv
∗ᵀCv∗a∗E −a∗Iv

∗ᵀCv∗a∗I

0

0
. . .

ª®®®®®¬
=

©­­­­­«
C λ∗a∗Ev∗ −λ∗a∗Iv

∗

λ∗a∗Ev∗ᵀ λ∗a∗2E −λ∗a∗Ea∗I
λ∗a∗Iv

∗ᵀ λ∗a∗Ia
∗
E −λ∗a∗2I

0

0
. . .

ª®®®®®¬
. [163]

whichcanbediagonalizedbytheeigenvectormatrixV∗ anditsinverse:

V∗ =

©­­­­­­«

V\∗ v∗ v∗a∗E v∗a∗I
0 a∗E −1 0

0 a∗I 0 1

0

0
. . .

ª®®®®®®¬
, V∗−1= N−1

©­­­­­­­­­«

N V\∗
ᵀ 0 0

v∗ᵀ a∗E −a∗I
aEv∗ᵀ −(1− a∗2I) −a∗Ea∗I
−aIv∗

ᵀ −a∗Ia
∗
E 1+ a∗2E

0

0
. . .

ª®®®®®®®®®¬
, [164]

N ≡ 1+ a∗2E − a∗2I, [165]

wherethesubscript(·)\∗ indicatesthatamatrixdoesnotcontainanentrythatcorrespondstotheinputmodev∗.
Ingeneral,C∗ hasonediagonalblockofdimensionD= NF+NE+NIperneuroninthecircuit,i.e.,NE+NIblocks2.

Then,C∗ is of dimension(NE+ NI)D× (NE+ NI)D. Therefore, to diagonalizeC∗, we require(NF+ NE+ NI) (NE+ NI)
eigenvectors. BecauseC∗ hasablockdiagonalstructure(Eq.163),withthefirstD×Dblockdrivingdevelopmentof
weights onto the excitatory neuron and the secondD× Dblock driving development of weights onto the inhibitory
neuron,theeigenvectormatrixV∗ anditsinversehavethesameblockdiagonalstructure. Sinceeachblockhasthe
same sub-structure, we only show the first block in Eq.164. Assuming that all neurons in the circuit are tuned to a
feedforward eigenvector, we haveNF+ nE+ nIeigenvectors ofC∗ per eigencircuit and block, wherenEandnIare
the number of excitatory and inhibitory neurons in the respective eigencircuit:NFregular eigenvectors, andnE+ nI
nulleigenvectors(cf.Sec.2.1.2). Forthespecificcircuitathand,wehaveoneexcitatoryandoneinhibitoryneuron,
NE= NI= 1, recurrently connected in the same eigencircuit, i.e., there areNF−1eigencircuits withnE= nI= 0and
one eigencircuit withn∗

E = n∗
I= 1. The first column ofV∗ in Eq.164corresponds to theNF− 1eigencircuits with

nE = nI= 0, i.e., with one regular eigenvector per feedforward eigenvectorv, v∗, but without null-eigenvectors.
ThecorrespondingeigenvaluesareΛ\∗,whicharealsoeigenvaluesofthefeedforwardcovariancematrixC. Forthe
eigencircuitcorrespondingtov∗ thereare1+n∗

E+n∗
I= 3eigenvectorsofC∗. Thefirstisaregulareigenvectorandthe

lasttwoarenulleigenvectors,wheretheexcitatoryfeedforwardcomponentiscancelledbyeitheranegativelateral
1Note that here the superscript ‘∗’ indicates a variable that is evaluated in the fixed point of the weight dynamics and not a fixed point of the

firingrateactivity. Differentinputpatternsyresultindifferentneuralactivitiesy∗E,y
∗
I.

2RememberthatNFisthenumberofinputneurons,andNE,NIarethetotalexcitatoryandinhibitoryneuronsinthecircuit,respectively.
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excitatory component1, or a positive lateral inhibitory component2. The null eigenvectors have eigenvalues equal
tozero,andtheeigenvalueoftheregulareigenvectorisλ∗ = λ∗ (1+ a∗2E − a∗2I).

Similar to the feedforward case, arbitrary multiples of the separately normalized parts of eigenvectors ofC∗

are fixed points. The only exception is the rightmost null eigenvector (cf. Sec.2.1.3). There, the inhibitory and
the excitatory weights are aligned such that the post-synaptic activity is zero, which does not allow for arbitrary
scalingoftheexcitatoryandinhibitoryweightnorms. InsertingthesefixedpointsintoEquations155&156,provides
conditionstodeterminea∗Eanda∗I.

5.2Stability analysis
WeareinterestedinthestabilityofthecircuitdescribedintheintroductionofSection5andconsiderthestabilityof
aregulareigenvectorv∗

w∗ = v∗ =

©­­­­­­­­­«

v∗

a∗E
a∗I
v∗

a∗E
a∗I

ª®®®®®®®®®¬
, λ∗ = λ∗

(
1+ a∗2E − a∗2I

)
, [166]

This means we donotconsider arbitrary scalings of the excitatory and inhibitory parts of eigenvectors ofC∗, but
assume that weight norms are fine tuned to match the norms of the excitatory and inhibitory parts of the regular
eigenvector3v∗.

When are such eigenvectors stable, and when are they attracted to a different input mode? To answer this
question, we consider small fixed point perturbations∆w(t0), where the excitatory neuron shifts its tuning in the
directionofadifferentfeedforwardinputeigenvectorv†:

∆w(t0) ∝

©­­­­­­­­­«

v†

0
0
0
0
0

ª®®®®®®®®®¬
= V∗e†. [167]

wheree† is a vector of zeros with a single non-zero entry that corresponds to the feedforward eigenvectorv† (cf.
Eq.164). The systemisstablewithrespecttoaperturbationiftheperturbationdecaystozeroover time. Tocheck
this,weconsiderthefollowingdifferentialequationthatholdsforsmallperturbations(cf. Sec.1.2.2)

d
dt

∆w(t) = J∗∆w(t), [168]

whereJ∗ istheJacobianevaluatedinthefixedpoint. Wewillconsiderthedynamicsinthenon-orthogonaleigenbasis
V∗ of the modified covariance matrixC∗ evaluated in the fixed pointw∗ = v∗. Note thatV∗ is not time-dependent,

1Inoursimulations,weconstrainsynapticweightstobepositive. Thennulleigenvectorswithnegativeweightsareonlyrelevantincombination
with regular eigenvectors: When a null eigenvector is added to a regular eigenvector, the net synaptic input does not change. For example,
a decrease in recurrent excitation due to a negative excitatory component of the null eigenvector is balanced by an increase in feedforward
excitation.

2Wecangeneralizethisapproachtothecasewhereneuronsaretunedtodifferentfeedforwardeigenvectors. Forexample,considerweadd
a second excitatory neuron that is, however, tuned to a different feedforward eigenvector,v†. This gives rise to an additional null eigenvector,
(v†ᵀa†E,0,0, −1, 0T )ᵀ, in the first block ofV∗ (Eq.164). In addition, one of the regular eigenvectors in the first column block ofV∗ (Eq.164)
becomes(v†ᵀ,0,0,a†E, 0T )ᵀ. Importantly, this is the case for each diagonal block ofV∗, i.e., we getDadditional null eigenvectors andDaltered
regular eigenvectors per additional neuron. This ensures that we always haveNE+ NInull eigenvectors andNFregular eigenvectors per block,
which allows to diagonalizeC∗ which is of dimension(NE+ NI)D× (NE+ NI)D, independent from the feedforward tunings of neurons – with the
caveatthatallneuronsmustbetunedtofeedforwardeigenvectors.

3Wepresumethatwhenconsideringthestabilityofnon-eigenvectorfixedpoints,itispossibletomakeasimilarargumentasinSection2.2.3
and consider regular eigenvectors of a different modified covariance matrixC′ with adjusted plasticity timescales,kEτE,kIτI. Here we consider
thecaseofτE= τIandregulareigenvectorsofC∗,i.e.,kE= kI= 1.
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becauseitisevaluatedinthefixedpoint. Inthisstaticbasis,wecanexpressperturbationsas

∆wv(t) = V∗−1∆w(t), [169]

⇒ ∆wv(t0) = V∗−1∆w(t0) ∝ e†, [170]

wherethesubscript(·)vindicatesavectorormatrixexpressedinthisbasis. Theperturbationdynamicsbecomes

d
dt

∆wv(t) =
d
dt

(
V∗−1∆w(t)

)
= V∗−1d

dt
∆w(t) = V∗−1J∗∆w(t) = V∗−1J∗V∗∆wv(t) = J∗

v∆wv(t), [171]

wherewedefinedthetransformedJacobian,J∗
v= V∗−1J∗V∗. Withoutlossofgenerality,weassumethateigenvectors

inV∗ are sorted such that the first entry ofe† is non-zero, i.e., the first column ofV∗ is proportional to the initial
perturbation∆w(t0) (cf. Eq.167). Next,wewillderivethetransformedJacobian.

5.2.1The transformed Jacobian

First,weconsidertheregularJacobianJ∗. WerewritethedynamicsinEq.159as1

¤w=

[
1 − (wEF+ wEE)cEE

ᵀ

cEE
ᵀ (wEF+ wEE)

− ...
]

Cw, wEF=

©­­­­­­­­­«

wEF

0
0
0
0
0

ª®®®®®®®®®¬
, wEE=

©­­­­­­­­­«

0
wEE

0
0
0
0

ª®®®®®®®®®¬
, cEE=

©­­­­­­­­­«

c
1
0
0
0
0

ª®®®®®®®®®¬
, [172]

wherethesecondterminthebracketcorrespondstothenormalizationofallexcitatorysynapsesontotheexcitatory
neuron, additional normalization terms are indicated by ellipsis2(cf. Eq.45), andcis a vector of ones. Then the
Jacobianhasthefollowingshape(cf. Eq.29)

J∗ =
d¤w
dw

�����
∗
=

[
1 −

(v∗EF+ v∗EE)cEE
ᵀ

cEE
ᵀ (v∗EF+ v∗EE)

− ...
] (

C∗ − λ∗1 + dC
dw

�����
∗

w∗

)
, [173]

wherev∗EF,v∗EEhave the same shape aswEF,wEEin Eq.172with entries corresponding to the respective entries
of the regular eigenvectorv∗ (cf. Eq.166). Note that we accounted for the weight dependence of the modified
covariance matrixCwhich results in the tensor dC/dw. To find the transformed JacobianV∗−1J∗V∗, we consider
thefirstbracket:

V∗−1

[
1 −

(v∗EF+ v∗EE)cEE
ᵀ

cEE
ᵀ (v∗EF+ v∗EE)

− ...
]

V∗ [174]

Thefirstentryremainsequaltotheidentitymatrix,astheeigenvectormatrixanditsinversecancel. Weconsiderthe
columnsv∗bofV∗ separately. Then,wecanwrite[

−
(v∗EF+ v∗EE)cEE

ᵀ

cEE
ᵀ (v∗EF+ v∗EE)

− ...
]

v∗b= −(v∗EF+ v∗EE)h
b
EE− v∗EIh

b
EI− (v∗IF+ v∗IE)h

b
IE− v∗IIh

b
II= −Hbv∗, [175]

Hb≡

©­­­­­­­­­­«

1hb
EE

hb
EE

hb
EI

1hb
IE

hb
IE

hb
II

ª®®®®®®®®®®¬
, hb

EE≡
cEE

ᵀv∗b
cEE

ᵀ (v∗EF+ v∗EE)
, hb

EI≡
cEI

ᵀv∗b
cEI

ᵀv∗EI
, [176]

1Rememberthatwesetτ = 1.
2Ingeneral,thereare2× (nE+ nI) normalizationterms.
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whereHbis a diagonal matrix with entries corresponding to the respective normalization constraint, of which we
givehb

EEandhb
EIasexamples. Theneachcolumnv∗bofV∗ istransformedintoamultipleoftheseparatelynormalized

partsofthefixedpointeigenvectorv∗ (Eq.166). Aftertransformation,thebthcolumnbecomes

V∗−1Hbv∗ = N−1

©­­­­­­­­­«

N V\∗
ᵀ 0 0

v∗ᵀ a∗E −a∗I
aEv∗ᵀ −(1− a∗2I) −a∗Ea∗I
−aIv∗

ᵀ −a∗Ia
∗
E 1+ a∗2E

0

0
. . .

ª®®®®®®®®®¬

©­­­­­­«

hb
EEv

∗

hb
EEa

∗
E

hb
EIa

∗
I
...

ª®®®®®®¬
=

©­«
0
...

ª®¬, [177]

where, as before, ellipsis indicate potentially non-zero entries. Importantly, after the transformation, the firstNF−1
entries are zero, independent of the column index,b, becausev∗ is orthogonal to the columns ofV\∗. Overall, we
canwrite

⇒ V∗−1

[
1 −

(v∗EF+ v∗EE)cEE
ᵀ

cEE
ᵀ (v∗EF+ v∗EE)

− ...
]

V∗ =

©­­­­«
1 0 0 0
...
...
...
...

0

0
. . .

ª®®®®¬
, [178]

wheretheblockstructurearisesfromtheblockstructureofV∗−1(cf. Eq.177).
Aftertransformation,thesecondbracketofEq.173becomes

V∗−1

(
C∗ − λ∗1 + dC

dw

�����
∗

w∗

)
V∗ =

(
Λ∗ − λ∗1 + V∗−1dC

dw

�����
∗

w∗V∗

)
. [179]

We next consider the first columns ofdC
dw

���
∗

w∗, for which we compute the matrixdC
dwb

EF

����
∗
, wherewb

EFis thebth feed-

forwardweightontotheexcitatoryneuron.

dC
dwb

EF

�����
∗
=

d
dwb

EF

©­­­­­­«

C CaE −CaI
aE

ᵀC aE
ᵀCaE −aE

ᵀCaI
aI
ᵀC aI

ᵀCaE −aI
ᵀCaI

0

0
. . .

ª®®®®®®¬

�����������
∗

[180]

=

©­­­­­­­­­­­«

0 C daE
dwb

EF

����
∗

−C daI
dwb

EF

����
∗

daE
ᵀ

dwb
EF

����
∗

C
(
daE

ᵀ

dwb
EF

����
∗

Ca∗E+ a∗
E
ᵀC daE

dwb
EF

����
∗

)
−

(
daE

ᵀ

dwb
EF

����
∗

Ca∗I+ a∗
E
ᵀC daI

dwb
EF

����
∗

)
daI
ᵀ

dwb
EF

����
∗

C
(
daI
ᵀ

dwb
EF

����
∗

Ca∗E+ a∗
I
ᵀC daE

dwb
EF

����
∗

)
−

(
daI
ᵀ

dwb
EF

����
∗

Ca∗I+ a∗
I
ᵀC daI

dwb
EF

����
∗

) 0

0
. . .

ª®®®®®®®®®®®¬
, [181]

whereweusedthedefinitionofCfromEq.158. ThevectorsaEandaIaredefinedinEq.155&156. Itfollows:

daE

dwb
EF

�����
∗
=

1

1− w∗
EE+

w∗
EIw

∗
IE

1+ w∗
II

eb≡ µEeb, [182]

daI

dwb
EF

�����
∗
=

1

1+ w∗
II+

w∗
IEw

∗
EI

1− w∗
EE

w∗
IE

1− w∗
EE

eb≡ µIeb, [183]

whereebis a vector of dimensionNFwith entries equal to zero, except for thebth entry equal to one. Additionally,
wehave(cf. Eqs.161&162)

Ca∗E= λ∗a∗Ev∗, Ca∗I= λ∗a∗Iv
∗, [184]
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whichresultsin

⇒ dC
dwb

EF

�����
∗
=

©­­­­­­­­«

0 µECeb −µICeb

µEeb
ᵀC 2λ∗a∗EµEv∗ᵀeb −λ∗ (µEa∗E+ µIa∗E)v

∗ᵀeb

µIeb
ᵀC λ∗ (µIa∗E+ µEa∗I)v

∗ᵀeb 2λ∗a∗IµIv∗
ᵀeb

0

0
. . .

ª®®®®®®®®¬
, [185]

⇒ dC
dwb

EF

�����
∗

w∗ =

©­­­­«
βECeb

g1v∗ᵀeb

g2v∗ᵀeb

0

ª®®®®¬
, w∗ = v∗ =

©­­­­­«
v∗

w∗
EE

w∗
EI
...

ª®®®®®¬
, βE= µEw∗

EE− µIw∗
EI, [186]

whereg( ·) arescalars.

⇒ dC
dwEF

�����
∗

w∗ =

©­­­­«
βEC

g1v∗ᵀ

g2v∗ᵀ

0

ª®®®®¬
. [187]

Wefindothercolumnsinasimilarfashionandwrite

⇒ dC
dw

�����
∗

w∗ =

©­­­­­«
βEC g3v∗ g6v∗

g1v∗ᵀ g4 g7
g2v∗ᵀ g5 g8

0

0
. . .

ª®®®®®¬
, [188]

where,again,g( ·) arescalars. Afterapplyingthetransformation,weget

V∗−1dC
dw

�����
∗

w∗V∗ = V∗−1

©­­­­­«
βEC g3v∗ g6v∗

g1v∗ᵀ g4 g7
g2v∗ᵀ g5 g8

0

0
. . .

ª®®®®®¬
©­­­­­­«

V\∗ v∗ v∗a∗E v∗a∗I
0 a∗E −1 0

0 a∗I 0 1

0

0
. . .

ª®®®®®®¬
[189]

= V∗−1

©­­­­­­«

βECV\∗ g9v∗ g12v∗ g15v∗

0 g10 g13 g16

0 g11 g14 g17

0

0
. . .

ª®®®®®®¬
[190]

= N−1

©­­­­­­­­­«

N V\∗
ᵀ 0 0

v∗ᵀ a∗E −a∗I
aEv∗ᵀ −(1− a∗2I) −a∗Ea∗I
−aIv∗

ᵀ −a∗Ia
∗
E 1+ a∗2E

0

0
. . .

ª®®®®®®®®®¬

©­­­­­­«

βEV\∗Λ\∗ g9v∗ g12v∗ g15v∗

0 g10 g13 g16

0 g11 g14 g17

0

0
. . .

ª®®®®®®¬
[191]

=

©­­­­­­­­­«

βEΛ\∗ 0 0 0

0 g18 g21 g24

0 g19 g22 g25

0 g20 g23 g26

0

0
. . .

ª®®®®®®®®®¬
. [192]
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ThefullytransformedJacobianis(cf. Eq.179)

J∗
v= V∗−1J∗V∗ = V∗−1

[
1 −

(v∗EF+ v∗EE)cEE
ᵀ

cEE
ᵀ (v∗EF+ v∗EE)

− ...
]

V∗

(
Λ∗ − λ∗1 + V∗−1dC

dw

�����
∗

w∗V∗

)
[193]

Finally,byinsertingEq.178&192wefind

V∗−1J∗V∗ =

©­­­­«
1 0 0 0
...
...
...
...

0

0
. . .

ª®®®®¬
©­­­­­­­­­«
Λ∗ − λ∗1 +

©­­­­­­­­­«

βEΛ\∗ 0 0 0

0 g18 g21 g24

0 g19 g22 g25

0 g20 g23 g26

0

0
. . .

ª®®®®®®®®®¬

ª®®®®®®®®®¬
. [194]

⇒ J∗
v=

©­­­­«
(
Λ\∗ − λ∗1 + βEΛ\∗

)
0 0 0

...
...
...
...

0

0
. . .

ª®®®®¬
, [195]

whereΛ\∗ containseigenvaluesofC∗ thatcorrespondtoregular,non-fixedpointeigenvectors.1

5.2.2Stability conditions

Thedynamicsofageneralfixedpointperturbation∆wvintheeigenbasisofC∗ is(cf. Eq.171)

d
dt

∆wv= J∗
v∆wv=

©­­­­«
(
Λ\∗ − λ∗1 + βEΛ\∗

)
0 0

...
...
...

0

0
. . .

ª®®®®¬
∆wv. [196]

NotethatthetransformedJacobian(Eq.195)hasatriangularblockstructure,andeachrowofJ∗
vcorrespondstothe

growthofaperturbationinthedirectionofadifferenteigenvectorofC∗. Weareonlyinterestedinperturbationsthat
grow in the direction of a non-fixed point feedforward eigenvector,V\∗. Therefore, we focus on the first rows ofJ∗

v,
which correspond to growth in these directions. Except for the first diagonal block, these rows are zero. It follows
thatperturbations∆wv(t0) thatdonotalreadycontaincomponentsinthedirectionofnon-fixedpointeigenvectors,
also do not develop such components in their later dynamics. In contrast, perturbations in the direction of a non-
fixed point feedforward input mode, e.g.,∆wv∝ e†, can induce perturbations within the original eigencircuit that
corresponds to the feedforward eigenvectorv∗ 2. For example, a decrease in feedforward and recurrent excitatory
synaptic weights within the eigencircuit balances the increase of feedforward excitatory synaptic weights due to
the perturbation towards a different eigencircuit, to maintain the weight norm. However, as explained above, these
‘second-order’perturbations,withoutcomponentsinthedirectionofnon-fixedpointfeedforwardeigenvectors,V\∗,
arecontainedwithintheeigencircuit,i.e.,theycannotinducesubsequentperturbationsinthedirectionofnon-fixed
point feedforward input modes,V\∗. Therefore, to answer the question of when an eigencircuit is stable, we only
consider the dynamics along the direction of the original perturbation (cf. Eq.167) by projecting the dynamics onto
theperturbationvectorattimezero,∆wv(t0) ∝ e† (cf. Eq.170):

e†ᵀ d
dt

∆wv=
(
λ† − λ∗ + βEλ

†
)

e†ᵀ∆wv, [197]

whichprovidestheeigencircuitstabilityconditionfortheexcitatoryneuron

λ† − λ∗ + βEλ
† <0 . [198]

1NotethatinourspecificnetworkthetopleftblockofΛ∗ isequaltoΛ\∗,i.e.,Λ\∗ = Λ\∗,becausetherearenoneuronstunedtotherespective
feedforwardeigenvectors. Inparticular,λ† = λ† (cf. Eq.152)

2Thisisduetothepotentiallynon-zeroelementsintheblockbelowthetopleftdiagonalblockofJ∗
vinEquation196.
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Figure S4:(A) Two excitatory neurons (triangles) are tuned to two different, but equally attractive input modes (circles, green and purple). (B)
ThesamecircuitasinA,unfoldedtohighlightpre-synapticpartners. Bothinputmodesarebalancedintheirattraction. (C)Perturbingthepurple
excitatory neuron towards the green input mode (dashed lines) shifts its tuning (dark blue) such that it now responds to both the green and the
purple input modes. (D) The unfolded circuit fromC. Due to the perturbation, the green input mode is now more attractive, and the previously
purpleexcitatoryneuronshiftsitstuning. Seetextfordetails.

IfEq.198holds,perturbationsinthedirectionofnon-fixedpointeigenvectorsdecaytozero,andtheeigencircuitis
stable. ForβEwehave(cf. Eqs.186&182f.)

βE=
1

1− w∗
EE+

w∗
EIw

∗
IE

1+ w∗
II

w∗
EE−

1

1+ w∗
II+

w∗
IEw

∗
EI

1− w∗
EE

( w∗
EIw

∗
IE

1− w∗
EE

)
. [199]

FromEq.155&156wefind

dyE

d(wEF
ᵀy)

����
∗
=

1

1− w∗
EE+

w∗
EIw

∗
IE

1+ w∗
II

, [200]

dyI

d(wEF
ᵀy)

����
∗
=

1

1+ w∗
II+

w∗
IEw

∗
EI

1− w∗
EE

w∗
IE

1− w∗
EE
, [201]

andweget

⇒ βE=
dyE

d(wEF
ᵀy)

����
∗

w∗
EE−

dyI

d(wEF
ᵀy)

����
∗

w∗
EI. [202]

Followingthesameframework,wefindthestabilityconditionwhenperturbingtheinhibitoryneuron:

λ† − λ∗ + βIλ
† <0, [203]

⇒ βI=
dyE

d(wIF
ᵀy)

����
∗

w∗
IE−

dyI

d(wIF
ᵀy)

����
∗

w∗
II. [204]

Wewillnowinterprettheseresults.

5.2.3Eigencircuit stability depends on recurrent connectivity
Wefirstconsiderthecasewhentheeffectiveattractionofalleigencircuitsisthesame,i.e.,λ∗ = λ† (cf. Eqs.198&203).
ThenthestabilityisfullydeterminedbyβE,andβI. Infeedforwardcircuitswehavenotfoundanyβ-terms,because
inthatcase,themodifiedcovariancematrixdoesnotdependonanyplasticsynapticweights(cf. Eq.51&Sec.2.2).
Thisisnotthecaseinrecurrentcircuitswheretheperturbationinducesachangeinthetuningoflaterallyprojecting
neurons.
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To build some intuition, we consider a simple example: Think of a recurrent network of two excitatory neurons
withidenticalweightnorms,andanexternalpopulationofexcitatoryneuronsprojectingfeedforwardinputtoboth.
In the fixed point, the neurons are tuned to two different feedforward input eigenvectors of equal attraction and
are recurrently connected to themselves but not each other (Fig.S4A). Then the effective attraction of the two
eigencircuits is the same. In general, neurons receive synaptic inputs, but have no information about the overall
network structure, e.g., which synaptic inputs are feedforward or recurrent. Taking this perspective, we unfold the
recurrent network and observe that the effective mode attraction is a combination of the feedforward input and
the recurrent self-excitation (Fig.S4B). When we perturb one neuron towards the opposing input mode (Fig.S4C,
dashedlines),thetuningoftheperturbedneuronchangesslightlyinthedirectionofthatmode(Fig.S4C,darkblue).
From the perspective of the perturbed neuron, this tuning change leads to an attraction increase of the opposing
eigencircuit, which is now more attractive than the original eigencircuit of the perturbed neuron (Fig.S4D), and the
perturbationgrowsinthedirectionofthemoreattractivemode–thefixedpointisunstable. Similarly,iftheneurons
wereinhibitoryinstead,theperturbationwoulddecreasetheattractiontowardstheoppositeinputmodewhichwould
stabilizethenetwork.

In our mathematical analysis of the circuit shown in FigureS3D, the attraction increase or decrease due to the
tuning change of recurrently projecting neurons is reflected in theβ-terms in Equations198&203, which emerge
from the weight dependence of the modified covariance matrixC(cf. Eq.173). For example, when perturbing the
excitatoryneuron,theincreaseinattractionfromtheperspectiveoftheperturbedneuronis(cf. Eq.198)

βEλ
† =

(
dyE

d(wEF
ᵀy)

����
∗
λ†

)
w∗

EE−
(

dyI

d(wEF
ᵀy)

����
∗
λ†

)
w∗

EI, [205]

wherethebracketsreflectthetuningshiftsoftheexcitatoryandtheinhibitoryneuron1inresponsetotheperturbation
ofwEFinthedirectionofv†,whichisthenweightedbytherespectivesynapticconnectionontotheexcitatoryneuron,
w∗

EE,w∗
EI. Whentheinhibitoryneuronisperturbedinstead,thetermsforβIfollowthesamelogic(cf. Eq.204).

Without going through the lengthy mathematical derivation, we now give some intuition aboutβ-terms of the
networkperturbationinFigureS3C.Inthefixedpoint,theperturbedexcitatoryneuronreceivesrecurrentinputfrom
all neurons in its eigencircuit, including itself. In the following, superscripts indicate the corresponding eigencircuit,
AorB. Then, as for the equivalent circuit (cf. Fig.S3D),βA

Ecomprises two terms, one due to the tuning shift ofyA
E,

and a second due to the tuning shift ofyA
I. Assuming the same weight norms, this is exactly equal to theβEfor

the equivalent circuit (Eq.198). Different fromβE,βA
Eis weighted with the effective attractionλB= λB+ λB

eig, instead
of only the feedforward attraction (cf.λ† in Eq.205), because the perturbation comprises not only the feedforward
eigenvectorcomponentbutthewholeeigencircuit(cf. dashedlinesinFigs.S3C&D).Thisiswhy,fortheequivalent
circuit, we chose the feedforward attractionλ† = λB= λB+ λB

eig(Eq.152). Then, the diagonal entries corresponding
to the respective perturbations in the upper left blocks of the transformed Jacobians are the same2(cf. Eq.195),
i.e.,

λ† − λ∗ + βEλ
† = λB− λA+ βB

Eλ
B. [206]

We find that perturbations in both circuits initially follow the same dynamics, while the later dynamics diverges: At
timet0, there are no lateral projections from eigencircuitBtowards eigencircuitA(cf. Fig.S3C), since in the fixed
point there are no recurrent connections between eigencircuits (cf. Sec.4), and the perturbation at timet0only
introduces connections from eigencircuitBonto eigencircuitA. However, as we just discussed, the perturbation
introduces a tuning shift in neurons of eigencircuitAin the direction of eigencircuitB. This shift leads to non-zero
correlationsbetweenneuronsofbotheigencircuits,andsynapticweightsfromeigencircuitAontoeigencircuitBstart
to grow. These growing synapses shift the attraction of neurons in eigencircuitBand thus impact the dynamics of
perturbationcomponentsinthedirectionofeigencircuitB. Therefore,thetransformedJacobianoftheoriginalcircuit
(Fig.S3C) has a more complex structure than the Jacobian for the equivalent circuit3. However, since we consider
an initial perturbation that is aligned with a regular eigenvector, i.e.,∆wv(t0) ∝ eBis one-hot (cf. Eq.170), the top
leftdiagonalblockoftheJacobianstilldeterminestheinitialdynamics4.

1Notethatalsothetuningoftheinhibitoryneuronchanges,althoughitisnotdirectlyperturbed.
2Recallthatλ†eig= 0and,therefore,λ† = λ† (Eq.152).
3TheJacobianoftheoriginalcircuit(Fig.S3C)hasadditionalentriestotherightofthetopleftdiagonalblockinEquation196thatarenon-zero.

These non-zero entries result in the growth of synapses ofyA
Ein the direction of eigencircuitBdue to ‘second-order’ perturbations of recurrent

synapsesfromeigencircuitAtoeigencircuitB.
4Non-zero entries of the Jacobian to the right of the top left diagonal block are cancelled by the zero entries in the initial perturbation vector

∆wv(t0) (cf. Eq.196).

Eckmannetal.,SupplementaryMaterial|30April2024 31



PNAS|ACCEPTED MANUSCRIPT

In summary, recurrent synapses can stabilize or destabilize a circuit with respect to small perturbations away
from a fixed point. These stabilizing and destabilizing effects are described byβ-terms that depend on the specific
weight configuration in the fixed point (cf. Eq.199), which again depends on the weight norms that constrain the
total synaptic weights. In the following, we consider the case when synaptic weights are tuned such thatβ-terms
aresmall. Intheequivalentcircuit(Fig.S3D)thisisthecasewhentheinfluenceofthetuningshiftsoftheexcitatory
andtheinhibitoryneuronbalanceeachother1(cf. thefirstandsecondtermsinEqs.202&204).

5.2.4Decorrelation condition
We now consider how neurons self-organize to represent all parts of their input space instead of clustering all their
tuning curves around a dominant input mode. We consider the fixed point stability of different eigencircuit config-
urations. In particular, we consider the case when recurrent connectivity motifs do not influence the stability of an
eigencircuit. Theβ-termsinEquations198&203describethechangeinthecovariancestructureofthenetworkdue
toasmallperturbation(cf. Sec.5.2.3). Sinceweconsiderthestabilityofasingleneuroninalargernetworkofmany
neurons,NE,NI� 1, these changes in the covariance structure are small, and the dynamics is dominated by the
total attractions of the eigencircuits. Therefore, in the following, we considerβEandβIto be small, approximately
equal to zero This can be achieved by a suitable choice of weight norms2. Then, all eigencircuits are marginally
stablewhentheyareequallyattractive,i.e.,(cf. Eqs.198&203forβE/I= 0)

λa= λa+ λa
eig

!
= λb, [a,b. [207]

For homogeneous input spaces, where the feedforward attraction of all input modes is the same, i.e.,λa= λb =
λ, [a,b, the only alternative stable configuration is when all neurons are tuned to the same feedforward input mode
and form a single eigencircuit. Such a configuration does not reflect the tunings of biological neural populations,
whereallpartsoftheinputspacearerepresented. Topreventsuchaglobalclusteringofneuraltunings,werequire
that the corresponding eigencircuit is unstable. When allβ-terms are approximately zero, this is the case when the
effectiveattractionoftheonlyoccupiedeigencircuit,λ∗,issmallerthantheattractionofoneoftheNF−1unoccupied3

inputmodes,λ† = λ† (cf. Eq.198&203):

λ∗ < λ†, [208]

⇒
∑

i

σ2
E,i−

∑
I

σ2
I,j+ λ < λ, [209]

⇒ NEσ
2
E− NIσ

2
I<0, [210]

⇒ NEσ
2
E<NIσ

2
I , [211]

whereσ2
E,σ

2
Iare the average variance, andNE,NIthe total number of inhibitory and excitatory neurons. When this

condition is satisfied, the only stable solution is when the effective attraction of all eigencircuits is identical. The
simplestconfigurationwherethisisthecaseiswheneacheigencircuitcontainsthesamenumberofexcitatoryand
inhibitoryneurons.

6Movie captions

Movie M1: Decorrelation of feedforward tuning curves of excitatory neurons in plastic recurrent networks.Development of feedforward
tuningcurvesofNE=10excitatoryneurons(cf. Figs.3A&B).Synapticweightswereinitializedrandomly. Differentcolorshadesindicateweights
ofdifferentpost-synapticneurons.

1NotethattheterminEquation204thatcorrespondstothetuningshiftoftheinhibitoryneuroncanbepositivesincedyI/d(wIF
ᵀy) isnegative

when the circuit is inhibition stabilized (6), i.e.,wEE> 1. In that case, the first term in Equation204is negative, since dyE/d(wIF
ᵀy) is also

negative(cf.Eqs.155&156).
2SeeSection5.2.3foradiscussionofthecaseβE/I,0.
3Anunoccupiedinputmodecorrespondstoλ†eig= 0(cf. Eq.147).
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Movie M2: Decorrelation of feedforward tuning curves of inhibitory neurons in plastic recurrent networks.Development of feedforward
tuningcurvesofNI=10inhibitoryneurons(cf. Figs.3A&B).Synapticweightswereinitializedrandomly. Differentcolorshadesindicateweights
ofdifferentpost-synapticneurons.
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