PNAS | ACCEPTED MANUSCRIPT

Synapse-type-specific competitive Hebbian
learning forms functional recurrent networks

Samuel Eckmann®{:2, Edward James Young?, and Julijana Gjorgjieva'?

TMax Planck Institute for Brain Research, Frankfurt am Main, Germany, 2Computational and Biological Learning Lab, University of Cambridge, Cambridge, United Kingdom,
3School of Life Sciences, Technical University Munich, Freising, Germany, B<ICorresponding author, Email: ec.sam@outlook.com

Cortical networks exhibit complex stimulus-response patterns that are based on specific recurrent interactions between
neurons. For example, the balance between excitatory and inhibitory currents has been identified as a central component
of cortical computations. However, it remains unclear how the required synaptic connectivity can emerge in developing
circuits where synapses between excitatory and inhibitory neurons are simultaneously plastic. Using theory and model-
ing, we propose that a wide range of cortical response properties can arise from a single plasticity paradigm that acts
simultaneously at all excitatory and inhibitory connections - Hebbian learning that is stabilized by the synapse-type-
specific competition for a limited supply of synaptic resources. In plastic recurrent circuits, this competition enables
the formation and decorrelation of inhibition-balanced receptive fields. Networks develop an assembly structure with
stronger synaptic connections between similarly tuned excitatory and inhibitory neurons and exhibit response normal-
ization and orientation-specific center-surround suppression, reflecting the stimulus statistics during training. These
results demonstrate how neurons can self-organize into functional networks and suggest an essential role for synapse-

type-specific competitive learning in the development of cortical circuits.

between recurrently connected excitatory (E) and in-

hibitory (I) neurons (7-4). In sensory cortices, response
normalization, surround and gain modulation, predictive pro-
cessing, and attention all critically involve inhibitory neurons (5-
10). Theoretical work has highlighted the experimentally ob-
served balance of stimulus selective excitatory and inhibitory
input currents as a critical requirement for many neural compu-
tations (7 7-76). For example, recent models based on balanced
E-l networks can explain a wide range of cortical phenomena,
such as cross-orientation and surround suppression (77, 18),
as well as stimulus-induced neural variability (79-27). A major
caveat of these models is that the network connectivity is usu-
ally static and designed by hand, albeit based on experimental
measurements. In contrast, in the brain, synapses are plas-
tic and adjust to the statistics of sensory inputs. How synap-
tic weights self-organize in a biologically plausible manner to
generate many of the non-linear response properties observed
experimentally is not well understood. Earlier theoretical work
on inhibitory plasticity has focused on the balance of excitation
and inhibition in single neurons (22-24), but has not been able to
explain the development of inhibition-balanced receptive fields
when excitatory and inhibitory inputs are both plastic. In more
recent recurrent network models, only a fraction of excitatory
and inhibitory synapse-types are modeled as plastic and neu-
ral responses exhibit a narrow subset of the different response
patterns recorded in experiments (74, 25-29).

Computation in neural circuits is based on the interactions

Here we present a Hebbian learning framework with mini-
mal assumptions that explains a wide range of experimental
observations. Our framework is based on two key proper-
ties: First, all synaptic strengths evolve according to a Heb-
bian plasticity rule that is stabilized by the competition for a lim-
ited supply of synaptic resources (30-33). Second, motivated
by the unique protein composition of excitatory and inhibitory
synapses, different synapse-types compete for separate re-
source pools. Building on classical work on Hebbian plasticity

(30, 37), we develop an analytical framework that provides an
intuitive understanding of the weight dynamics in recurrent net-
works of excitatory and inhibitory neurons. In numerical simula-
tions, we reveal how the synapse-type-specific competition for
resources enables the self-organization of neurons into func-
tional networks. Beyond the formation of inhibition-balanced
feedforward receptive fields, we demonstrate that emergent re-
current connectivity can generate a wide range of computations
observed in cortical circuits.

Results

Synapse-type-specific plasticity enables the joint develop-
ment of stimulus selectivity and E-I balance. To understand
plasticity in recurrently connected E-l networks, we considered
simplified circuits of increasing complexity. We first asked how

Significance Statement

Cortical circuits perform diverse computations, primar-
ily determined by highly structured synaptic connectiv-
ity patterns that develop during early sensory experience
via synaptic plasticity. To understand how these struc-
tured connectivity patterns emerge, we introduce a gen-
eral learning framework for networks of recurrently con-
nected neurons. The framework is rooted in the biologi-
cally plausible assumption that synapses compete for lim-
ited synaptic resources, which stabilizes synaptic growth.
Motivated by the unique protein composition of differ-
ent synapse types, we assume that different synapse
types compete for separate resource pools. Using theory
and simulation, we show how this synapse-type-specific
competition allows the stable development of structured
synaptic connectivity patterns, as well as diverse compu-
tations like response normalization and surround suppres-
sion.
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Figure 1: Synapse-type-specific competitive Hebbian learning enables the development of stimulus selectivity and inhibitory balance. (A)
Feedforward input to a model pyramidal neuron (blue triangle) during stimulation. The neuron receives direct excitation (lightblue) and disynaptic
inhibition (red). Plastic synapses are marked by *. (B) A single postsynaptic pyramidal neuron receives synaptic input from a population of
excitatory (wg), and a population of inhibitory (w;) neurons. (C) Excitatory and inhibitory input neurons are equally tuned to the orientation of
a stimulus grating (bottom, tuning curve of neurons tuned to 60° highlighted in dark gray) and exhibit a Gaussian-shaped population response
(orange, solid line) when a single grating of 30° is presented (orange plate, dashed line). (D) Hebbian potentiation of a synapse (**) is normalized
due to a limited amount of synaptic resources in the dendritic branch, here reflected by a fixed number of synaptic channels (green). (E) Weight
convergence of synapses of the feedforward circuit in B, where excitatory (blue) and inhibitory (red) weights are plastic according to synapse-
type-specific competitive Hebbian learning. All synaptic weights were initialized randomly. (F) Final synaptic weight strengths, after training, as
a function of the tuning peak of the corresponding presynaptic neurons. (G) Excitatory synaptic weight vector (blue arrow) of a single pyramidal
neuron with linear activation function. The pyramidal neuron receives input from two excitatory neurons (y4 and y,, compare inset). Each dot
corresponds to one input pattern. After training, the weight vector aligns with the direction of maximum variance, which corresponds to the
principal eigenvector of the input covariance matrix. (H & /) Same as in E and F, but for classic inhibitory plasticity. The development of stimulus
selectivity is prevented by fast inhibitory plasticity. (J) Excitatory (blue) and inhibitory (red) synaptic weight vectors of a single pyramidal neuron
with linear activation function. The pyramidal neuron receives input from two pairs of excitatory and inhibitory neurons (y1 and y», compare inset).
Each excitatory-inhibitory input pair has identical firing activities y;. After training via synapse-type-specific competitive Hebbian learning, the
excitatory and inhibitory weight vectors both align with the principal component, i.e., excitatory and inhibitory synaptic weights are balanced.

E-l balance and stimulus selectivity can simultaneously develop
in a single neuron. The neuron receives input from an upstream
population of excitatory neurons, and disynaptic inhibitory in-
put from a population of laterally connected inhibitory neurons
that themselves receive input from the same upstream popu-
lation (Fig. 1A). We studied the self-organization of excitatory
and inhibitory synapses that project onto the single postsynap-
tic neuron (Fig. 1B), assuming that input synapses that project
onto inhibitory neurons remained fixed (Fig. 1A). Following ex-
perimental results (34-37), we assumed that inhibitory and exci-
tatory input neurons are equally selective for the orientation of a
stimulus grating (Fig. 1C, bottom). We presented uniformly dis-
tributed oriented stimuli to the network in random order. Stimuli
elicited a Gaussian-shaped response in the population of input
neurons (Fig. 1C, top) and thus drove the postsynaptic neuron
(see Methods for details). Synapses are plastic according to a
basic Hebbian rule:

excitatory and inhibitory synapses:

Wy + AWA

Wy — Wy —————,
AT A lwy + Awg

2]
where A € {E,I}, and Wg, W, are the maintained total exci-
tatory and inhibitory synaptic weight, respectively. Shortly af-
ter random initialization, excitatory and inhibitory weights stabi-
lize (Fig. 1E) and form aligned, Gaussian-shaped tuning curves
(Fig. 1F) that reflect the shape of the input stimuli (Fig. 1C). As a
result, neural responses become orientation selective while in-
hibitory and excitatory inputs are equally tuned, which demon-
strates the joint development of stimulus selectivity and E-I bal-
ance.

Excitatory plasticity performs principal component analy-
sis. To uncover the principles of synapse-type-specific com-
petitive Hebbian learning, we analyzed the feedforward model
analytically. It is well established that in the absence of inhibi-
tion, competitive Hebbian learning rules generate stimulus se-
lective excitatory receptive fields (30, 37). In the case of a linear
activation function, r « u = W'y, the expected total synaptic

Awpy cyar, Ae{El}, [1]

where r is the postsynapitic firing rate, y, is a vector that holds

the presynaptic firing rates of excitatory (A = E) and inhibitory
(A =) neurons, and Aw, are the corresponding synaptic weight
changes. Experimental results have shown that after the induc-
tion of long-term plasticity neither the total excitatory nor the
total inhibitory synaptic area change (32). This suggests that a
synapse can only grow at the expense of another synapse —
a competitive mechanism potentially mediated by the limited
supply of synaptic proteins (Fig. 1D) (33). Motivated by these
results, we adopted a competitive normalization rule for both

efficacy changes can be expressed as (37):
(Wg) o« CWE — yWE, [3]

were C = (ygyg' ) is the input covariance matrix, with (-) be-
ing the temporal average, and y is a scalar normalization factor
that regulates Hebbian growth. Then, fixed points, for which
(Wg) = 0, are eigenvectors of the covariance matrix. The neu-
ron becomes selective to the first principal component of its
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input data, i.e., the fixed point input weight vector aligns with
the input space direction of maximum variance (30, 37) (Fig. 1G;
see Supplementary Material (SM) Sec. 1.2 for details). For non-
linear activation functions r = f(u), neurons become selective
for higher-order correlations, e.g., independent components, in
their inputs (38, 39). Such learning rules have been shown to
result in feedforward receptive fields that resemble simple cell
receptive fields in visual cortex (40, 47). In the following, we call
the fixed points of such pure feedforward circuits ‘input modes’.
This entails principal components, in the case of linear activa-
tion functions, and more complex, e.g., simple-cell-like, recep-
tive fields in the case of non-linear activation functions.

Classic inhibitory plasticity prevents stimulus selectivity.
We next examined how inhibitory plasticity affects the devel-
opment of stimulus selectivity. Previous work has suggested
that inhibitory synaptic plasticity in the cortex is Hebbian (42,
43) and imposes a target firing rate ry on the postsynaptic neu-
ron (23):

(W) < (y; (r = ro)), [4]

where synaptic change becomes zero when the postsynaptic
firing rate r is equal to the target rate ry. With this ‘classic’ in-
hibitory plasticity rule, inhibitory synaptic weight growth is un-
bounded. However, since an increase of inhibitory synaptic
weights usually entails a decrease in postsynaptic firing rate
r the plasticity rule is self-limiting and synaptic weights stop
growing once the target firing rate ry is reached. When excita-
tory synaptic weights remain fixed, classic inhibitory plasticity
leads to balanced excitatory and inhibitory input currents (23).
However, when excitatory synaptic weights are also plastic,
neurons develop no stimulus selectivity (24): Classic inhibitory
plasticity must act on a faster timescale than excitatory plastic-
ity to maintain stability (24). Then the postsynaptic target firing
rate is consistently met and average excitatory synaptic weight
changes only differ amongst each other due to different aver-
age presynapitic firing rates, which prevents the development of
stimulus selectivity (Fig. 1H & I; see SM Sec. 1.2.3 for details).

Synapse-type-specific competition enables balanced prin-
cipal component analysis. Synapse-type-specific competi-
tive Hebbian learning (Eg. 1, and 2) enables the joint devel-
opment of stimulus selectivity and balanced input currents.
In contrast to classic inhibitory plasticity, under synapse-
type-specific competitive Hebbian learning, inhibitory synaptic
growth is not stabilized by a target firing rate. Instead, as excita-
tory synapses, inhibitory synapses compete for a limited supply
of synaptic resources that maintain the total amount of synaptic
strength. As we did for excitatory synapses (Eg. 3), we incorpo-
rated the normalization step (Eqg. 2) into the update rule (Eqg. 1)
and considered the simpler case of a linear activation function
f(u) o u:

= w 0
(w>och—y( OE) —p( ) [5]
A
T T
— (W A YEY ~YEY
W= E,Cz EET E/T ’ [6]
w YIYE —Yiyi
where y and p are scalars that ensure normalization of excitatory

and inhibitory weights, respectively. In addition, we defined the
modified covariance matrix C. Then multiples of the excitatory
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Figure 2: Feedforward tunings are affected by lateral input in mi-
crocircuit motifs. (A) In addition to feedforward input from a population
of orientation tuned excitatory cells (blue circle), a neuron receives lat-
eral input from an excitatory neuron with fixed feedforward tuning (light
blue). * indicates plastic synapses. Feedforward tuning curves of the
two neurons are shown before (center row) and after (bottom row) train-
ing. (B) Same as in A, for lateral input from multiple inhibitory neurons
with fixed feedforward tuning. (C) Same as in A, for two recurrently con-
nected excitatory neurons with all feedforward and recurrent synapses
plastic. (D) Same as in C, for inhibitory neurons. All synapses plastic.

and the inhibitory part of the eigenvectors of the modified co-
variance matrix C are fixed points of the weight dynamics (see
SM Sec. 2 for details). When excitatory and inhibitory inputs
are equally stimulus selective, such that one can approximate
Yg « y;, the modified covariance matrix C is composed of mul-
tiples of the original covariance matrix C (cf. Eq. 6). This implies
that, if excitatory and inhibitory synaptic weights have identical
shape, wg « wy, equal to a multiple of an eigenvector of C, the
system is in a fixed point (Fig. 1J), where (W) = 0 (cf. Eq. 5).
Neurons become selective for activity along one particular in-
put direction, while excitatory and inhibitory neural inputs are
co-tuned, which explains the joint development of stimulus se-
lectivity and E-I balance in feedforward circuits, in agreement
with our numerical simulations with non-linear activation func-
tions (Fig. 1E & F).

Lateral inputs shape feedforward weight dynamics. We
wanted to understand how fully plastic recurrent networks of
excitatory and inhibitory neurons can self-organize into func-
tional circuits. Therefore, we next investigated the effect of
synapse-type-specific competitive Hebbian learning in recur-
rent networks.

In a first step, we considered how lateral input from an ex-
citatory neuron with fixed selectivity for a specific feedforward
input mode affects synaptic weight dynamics in a simple mi-
crocircuit motif (Fig. 2A, top). We observed that a downstream
neuron becomes preferentially tuned to the feedforward input
mode of the lateral projecting neuron (Fig. 2A, bottom; cf. SM
Sec. 3). Similarly, laterally projecting inhibitory neurons repel
downstream neurons from their input modes (Fig. 2B). However,
when two excitatory neurons are reciprocally connected, they
pull each other towards their respective input modes, and their
tuning curves and activities become correlated (Fig. 2C). This
contradicts experimental observations that brain activity decor-
relates over development (44, 45). In line with these results, in
our model, interconnected inhibitory neurons repel each other
and their tuning curves decorrelate (Fig. 2D).
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Figure 3: Tuning curve decorrelation in plastic recurrent networks. (A) Top: A population of recurrently connected excitatory and inhibitory
neurons receives input from a set of input neurons that are tuned to different stimulus orientations (cf. Fig. 1B, bottom). Every 200ms a different
orientation is presented to the network (vertical gray lines). At the same time, all synapses exhibit plasticity according to a synapse-type-specific
Hebbian rule (see Methods). Bottom: typical firing rate activity of one excitatory (blue) and one inhibitory (red) neuron before and after training. (B)
Feedforward tuning curves of Ng = 10 excitatory neurons before (tg, top), during (t1, center), and after (to, bottom) training. Synaptic weights were
initialized randomly. Different color shades indicate weights of different postsynaptic neurons. Compare SM Movies M1 & M2. (C) Feedforward
population tuning uniformity (see Methods) of excitatory and inhibitory neurons in B. Time points ty,t1,t> correspond to time points in B. (D)
Connectivity matrices after training a network of Ng = 80 excitatory (blue) and N; = 20 inhibitory (red) neurons. Neurons are sorted according
to their preferred orientation 6, as measured by their peak response to different oriented gratings. W@B;X is the largest synaptic weight between
population A and B; A, B € {E,I}. (E) Normalized (norm.) recurrent weight strengths as a function of the difference between preferred orientations
of the pre- and postsynaptic neurons, A = épost - épre, averaged over all neuron pairs. Input weights to excitatory (solid) and inhibitory (dashed)
neurons overlap. (F) Average firing rate response of inhibitory and excitatory neurons to a stimulus orientation 6, relative to their preferred
orientation, A8 = § — 6, averaged over all neurons. Curves for excitatory (blue) and inhibitory (red) neurons overlap. (G) Same as in F, but for
average excitatory and inhibitory inputs to excitatory neurons. (H) Inhibitory input to an excitatory neuron with preferred orientation close to 90°.
Each curve corresponds to the input from one presynaptic inhibitory neuron for stimuli of different orientations 6.

Tuning curve decorrelation in fully plastic recurrent E-I net-
works. Recent experimental studies have suggested that in-
hibitory neurons drive decorrelation of neural activities (46,
47). Hence, we asked whether the interaction between ex-
citatory and inhibitory neurons can serve to decorrelate not
only inhibitory but also excitatory neural activities. To address
this question we explored the consequences of synapse-type-
specific competitive Hebbian learning in a network of recur-
rently connected excitatory and inhibitory neurons. We pre-
sented different oriented gratings in random order to a net-
work where all feedforward and recurrent synapses are plas-
tic (Fig. 3A, top). We observed a sharp increase in response
selectivity (Fig. 3A, bottom) that is reflected in the reconfigura-
tion of feedforward synaptic weights (cf. SM Movies M1 & M2):
Shortly after random initialization (Fig. 3B, top), excitatory neu-
rons predominantly connect to a subset of input neurons with
similar stimulus selectivities (Fig. 3B, center left). We quantified
the uniformity of the distribution of feedforward tuning curves
during training (Fig. 3C, see Methods) and found that inhibitory
neurons maintained a much wider coverage of the input stim-
ulus space than the excitatory population (cf. Fig. 3B, center,
t4). Eventually, tuning curves of excitatory as well as inhibitory
neurons decorrelate and cover the whole stimulus space with
minimal overlap (Fig. 3B, bottom), in sharp contrast to circuits
without inhibition, where tuning curves become clustered (cf.
Fig. 2C). After training, neurons are organized in an assembly-
like structure. Neurons that are similarly tuned became more

strongly connected (Fig. 3D & E), as is observed experimen-
tally (48-58). We found that inhibitory neurons become as se-
lective for stimulus orientations as excitatory neurons (34-37)
(Fig. 3F), while excitatory input is balanced by similarly tuned in-
hibitory input (Fig. 3G) from multiple overlapping inhibitory neu-
rons (Fig. 3H), in agreement with experimental results (72, 59—
64); but see (65-70).

In summary, we find that synapse-type-specific competitive
Hebbian learning in fully plastic recurrent networks is sufficient
to decorrelate neural activities and leads to preferential connec-
tivity between similarly tuned neurons, as observed in cortical
circuits.

Inhibitory neurons balance excitatory attraction and enable
decorrelation. To uncover how recurrent inhibition can pre-
vent all neurons from becoming selective for a single input
mode, we investigated the fundamental principles of synapse-
type-specific competitive Hebbian learning in recurrent net-
works analytically (SM Sec. 5). In the simplified case of linear
activation functions, input modes are eigenvectors of the input
covariance matrix (cf. Eq.3). Since these eigenvectors are or-
thogonal by definition (Fig. 4A), the activities of neurons that
are tuned to different eigenvectors are uncorrelated, and their
reciprocal connections decay to zero under Hebbian plastic-
ity (Fig. 4B). Then, neurons that are tuned to the same input
mode form recurrent ‘eigencircuits’ that are otherwise sepa-
rated from the rest of the network (SM Sec. 4). We characterize
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Figure 4: lllustration of eigencircuit decomposition and attraction.
(A) Feedforward synaptic weight vectors w,, wy, of two neurons that
are tuned to two different principal components (top, purple and green)
of the input data. Each dark blue dot represents one presynaptic firing
pattern (cf. Fig. 1G). (B) Synaptic weights w,;, between neurons that are
tuned to different eigenvectors decay to zero, while neurons tuned to
the same eigenvector form recurrently connected eigencircuits (purple).
(C) As single, laterally projecting neurons shape the effective attraction
of their input mode (left; cf. Fig.2), eigencircuits also increase or de-
crease the effective attraction of their respective eigenvector direction
(right). (D) A recurrent network of excitatory (triangles) and inhibitory
(circles) neurons that are distributed across four decoupled eigencir-
cuits (EC, top). Each excitatory neuron contributes plus one (+), each
inhibitory neuron minus one (-) to the eigencircuit attraction, Agq (solid
line, bottom). Due to synaptic plasticity, neurons are pulled towards
the most attractive eigencircuit, EC3 (gray dashed arrows, top). After
all neurons integrate into the same eigencircuit (EC3), its attraction be-
comes negative, while the now unoccupied eigencircuits (EC1, EC2,
EC4) are neutral (dashed line, bottom).

a mode’s effective attraction as a number such that, if a mode
has a higher attraction than a competing mode, then neurons
responding to the mode with lower attraction are unstable and
shift their tuning towards the mode with higher attraction (see
SM for details). Just like single, laterally projecting neurons (SM
Sec. 3), eigencircuits also modify the effective attraction of their
input mode (Fig. 4C). The decomposition of the network into
eigencircuits allows to write the effective attraction A of each
input mode as the sum of a feedforward component A and the
variances of the firing rates of the neurons that reside in the
respective eigencircuit (cf. SM Sec. 4.1 & 4.2):

A=2A+2Aeig=A+) 02~ ) of, [7]
i j

where we defined the contribution of recurrently projecting neu-
rons to the effective attraction of an input mode as the eigen-
circuit attraction, Aeig- Note that, in general, variances UE_ I de-
pend on the total synaptic weights, and the number of exci-
tatory and inhibitory neurons in the eigencircuit (SM Sec. 4.2).
This reveals that the attractive and repulsive effects of excita-
tory and inhibitory neurons can balance each other. In a sim-
plified example, we assumed that all input modes have equal
feedforward attraction, equal to A, while each excitatory neuron
contributes plus one and each inhibitory neuron minus one to

the effective attraction (Fig. 4D, top). Then the eigencircuit at-
tractions becomes Agjg = ng — n; (Fig. 4D, bottom, solid line).
In this configuration, the network is unstable: All neurons are
attracted towards the input mode with the highest effective at-
traction (EC3), which suggests that all tuning curves will even-
tually collapse onto the same input mode. However, when all
neurons become selective to the most attractive input mode,
that mode would become repulsive (Fig. 4D, bottom, dashed
gray line), as each increase in attraction due to an additional
excitatory neuron is balanced by a decrease in attraction due
to two additional inhibitory neurons. Consequently, the result-
ing eigencircuit is unstable and neurons are repelled towards
non-repulsive, unoccupied input modes; distributed across the
stimulus space.

While this example conveys the core principle of how recur-
rently connected neurons adjust their tunings, the actual dy-
namics of synaptic weights are more complex (SM Sec. 5). In
particular, neurons do not switch their tuning between input
modes in discrete steps but shift their tuning gradually. Due
to the recurrent nature of the circuit, even small tuning shifts
affect the attractions of the respective eigencircuits (cf. SM
Sec. 5.2.3). In our simulations, we therefore never observe a full
collapse of all tuning curves onto the same input mode before
neurons distribute across the stimulus space. Instead, neurons
rapidly develop tuned feedforward receptive fields that gradu-
ally shift to maximise tuning uniformity, with little to no oscilla-
tory dynamics (Fig. 3B & C and SM Movies M1 & M2).

In the simplified case of linear activation functions, we derive
the following condition that prevents the collapse of all tuning
curves onto a single input mode:

NEO'E < NIU'IZ, [8]
where cr,f_, a,2 are the average of the variances of the excitatory
and inhibitory firing rates, and Ng, N, are the total number of
neurons in the network (cf. SM Sec. 5.2.4). These results show
that recruiting recurrent inhibition can prevent tuning curve col-
lapse and enables decorrelation, where a lower number of in-
hibitory neurons can be compensated by an increase in neural
activation.

Plastic recurrent E-l networks perform response normal-
ization and exhibit winner-takes-all dynamics. Our results
thus far reveal how synapse-type-specific competitive Hebbian
learning can explain the development of structured recurrent
connectivity. We next asked whether synapse-type-specific
competitive Hebbian learning can also explain the emergence
of non-linear network computations. For example, the firing
rate response of neurons in the visual cortex to multiple over-
layed oriented gratings is normalized in a non-linear fashion
(71, 72). While this form of normalization is mostly of thala-
mic origin (73-75), there is most likely also a cortical compo-
nent(72, 76). A recently introduced E-lI network model with
static, hand-crafted connectivity can explain these modula-
tions (78, 77). We explored if the recurrent connectivity can
instead be learned from a network’s input stimulus statistics.
We consider a circuit with fixed feedforward tuning and plas-
tic recurrent connectivity (Fig. 5A). After training the network
with single oriented grating stimuli (Fig. 5A, bottom), we found
that neural responses to a cross-oriented mask grating that
is presented in addition to a regular test grating are normal-
ized, i.e., the response to the combined stimulus is weaker than
the sum of the responses to the individual gratings (Fig. 5B,
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left). When the contrast of the mask grating is lower than the
test grating’s, the network responds in a winner-takes-all fash-
ion: The higher-contrast test grating dominates activities while
the lower-contrast mask grating is suppressed (Fig. 5B, right).
As observed experimentally (77, 72, 78), we found that this
orientation-specific response normalization is divisive and shifts
the log-scale contrast-response function to the right (Fig. 5C).

Sensory input statistics shape computational functions of
recurrent circuits. We next investigated how the stimulus
statistics during training affect receptive field properties. We
considered a plastic network where two neural populations re-
ceive tuned input from either a center or a surround region of
the visual field (Fig. 5D). During training, we presented either
the same oriented grating in both regions (Fig. 5E, top, pur-
ple), or a single grating in just one region (Fig. 5E, bottom, red),
at 50% contrast (cf. Table 1). These stimulus statistics heav-
ily influenced the recurrent connectivity structure in the net-
work. When identical oriented stimuli are presented to the cen-
ter and surround regions during training, neurons with similar
orientation tuning become most strongly connected, indepen-
dent from which region the neurons receive their feedforward
input (Fig. 5F). However, when the center and surround regions
are stimulated separately during training, neurons only connect
to similarly tuned neurons within the same region and cross-
region connectivity decays to zero (Fig. 5G). These differences
in the recurrent connectivity structure are also reflected in the
networks’ response properties. We found that after training, the
response of center-tuned neurons exhibits orientation-specific
surround suppression, reflecting the stimulus statistics during
training. When the center and the surround regions are stim-
ulated separately during training, iso- or cross-oriented stimuli
in the surround both elicit minimal suppression of the center-
tuned population’s response to a center stimulus (Fig. 5H & I,
red). In contrast, in the case of correlated stimulation of the
center and surround regions during training, the response of the
center population is markedly suppressed when an additional
surround stimulus is presented (Fig. 5H &/, purple). Importantly,
suppression is stronger for iso- compared to cross-orientations
(Fig. 51, solid and dashed lines), as has been reported exper-
imentally (79-82). We further investigated the lateral interac-
tions between neurons tuned to the center and surround re-
gions by presenting an oriented stimulus only in the surround
region, while observing the total excitatory and inhibitory inputs
to excitatory neurons (Fig. 5J). We found that the total excita-
tory input to stimulated excitatory neurons in the surround was
larger than the total inhibitory input (Fig. 5J, right column). When
center and surround neurons were stimulated together during
training, both center and surround received similar, balanced
E and | recurrent input, but the surround cells also received
feedforward excitation, yielding more total excitation (Fig. 5J,
top, purple). When center neurons were not stimulated with the
surround neurons during training, they received no input from
a surround-only stimulus (Fig. 5J, bottom, red). In the case of
correlated stimulation of the center and surround regions during
training, this lateral input was orientation-specific. Center neu-
rons tuned to the same orientations as stimulated neurons in the
surround received stronger input than center neurons tuned to
different orientations (Fig. 5J, top left), reflecting the input stim-
ulus statistics during training (Fig. 5E) and the resulting recur-
rent connectivity (Fig. 5F). A similar balance of excitatory and
inhibitory lateral inputs has previously been observed in bar-

rel cortex (83). Together, this demonstrates that synapse-type-
specific competitive Hebbian learning produces extra-classical
receptive fields that modulate feedforward responses via recur-
rent interactions that reflect the input statistics during training.

Discussion

Our results suggest that synapse-type-specific competitive
Hebbian learning is the key mechanism that enables the for-
mation of functional recurrent networks. Rather than hand-
tuning connectivity to selectively explain experimental data,
our circuits emerge from a single unsupervised, biologically
plausible learning paradigm that acts simultaneously at all
synapses. In a single framework, our networks readily explain
multiple experimental observations, including the development
of stimulus selectivity, excitation-inhibition balance, decorre-
lated neural activity, assembly structures, response normaliza-
tion, and orientation-specific surround suppression. These re-
sults demonstrate how the connectivity of inhibition-balanced
networks is shaped by their input statistics and explain the
experience-dependent formation of extra-classical receptive
fields (84-88). Unlike previous models (89-94), our networks
are composed of excitatory and inhibitory neurons with fully
plastic recurrent connectivity.

Early theoretical work on inhibitory plasticity assumed that
synapses evolve to maintain the mean firing rate of postsynap-
tic excitatory neurons (23). When excitatory input is static, this
leads to neural tunings where inhibition and excitation are bal-
anced. However, when excitatory synapses are simultaneously
plastic according to a simple Hebbian rule, the circuit is unsta-
ble and can not explain the joint development of feedforward
stimulus tuning and inhibitory balance (24) (SM Sec. 1.2.3). The
system can be stabilized when the Hebbian growth of exci-
tatory synapses is controlled by a BCM-like plasticity thresh-
old. This introduces fierce competition between different input
streams in the form of subtractive weight normalization, which
leads to winner-takes-all dynamics among synapses that do
not allow for the development of extended receptive fields (24,
31, 95). Later models have proposed more intricate plasticity
rules, some of which consider, e.g., voltages or currents, in ad-
dition to pre- and postsynaptic action potentials (Agnes2024,
25, 28, 96-100, 102), as summarized in several recent reviews
(74, 103-106). In recent years, there has also been a resurgence
of interest in normative approaches (28, 29, 107). In these ap-
proaches, it is postulated that synaptic plasticity rules act to
optimize an objective function that describes a desirable net-
work property. Motivated by the notorious instability of recur-
rent networks, one obvious objective is stability, e.g., in the form
of firing rate homeostasis.

Following early theoretical work that suggested such a home-
ostatic role for synaptic plasticity of inhibitory synapses onto
excitatory neurons(23), two recent studies propose a similar role
for the plasticity of other recurrent synapse types (28, 29). In-
deed, such plasticity rules allow the formation of inhibition bal-
anced receptive fields (28), and stabilize network activity, even
when faced with strong recurrent connections (29). However,
none of these rules have been applied in fully plastic recur-
rent networks with structured feedforward input. Even in com-
plex models that use many different forms of plasticity, some
synapse types are kept static after initialization, to maintain sta-
ble network activity (Agnes2024, 23, 26, 27). While such net-
works still show many interesting dynamics, they lack the rich
computational functions of circuits with structured connectiv-
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Figure 5: Cross-orientation and surround suppression in trained neural networks. (A) A plastic recurrent network of excitatory and inhibitory
neurons (top) receives input according to fixed feedforward tuning curves (bottom). Input amplitudes were modulated with stimulus contrast.
Tuning curve of neurons with preferred orientation of 90° highlighted in dark gray. (B) Response of 80 excitatory neurons to a test grating (orange,
45°) and a mask grating (green, 135°) of different contrast levels (insets, grating contrasts increased for better visibility). Gratings are presented
separately (orange & green) or together (dark blue). Each open circle corresponds to the response of one excitatory neuron. (C) Contrast response
curve of a single excitatory neuron with preferred orientation § = 45° to the test and mask gratings in B. Different mask contrasts are indicated
by different color shades. The bottom/top circles correspond to the left/right contrast level configurations in B. (D) Center (left) and surround
region (right) with different oriented stimuli. (E) Example stimuli during training with different stimulus statistics. Top: Neurons tuned to the same
orientation, but different regions (center region, left; or surround region, right) receive identical input; two example stimuli are shown in solid and
transparent purple, respectively. Bottom: Neurons tuned to the center and surround regions are stimulated separately; two example stimuli are
shown in solid and transparent red, respectively. Either the surround or the center regions are stimulated, while the other region receives zero
input. (F) Recurrent connectivity matrix between excitatory (blue) and inhibitory (red) neurons (cf. Fig. 3D) after training the network with correlated
center and surround stimuli (corresponds to purple color in E, top). Neurons are sorted according to their feedforward orientation tuning. Color
shades indicate tuning to the center (dark) or surround (light) region. (G) Same as in F, but for a network trained with single gratings that were
presented either in the center or the surround region (corresponds to red color in E, bottom). (H) Suppression of excitatory population activity
in response to increasing surround stimulation for two networks trained under different stimulus statistics. Left: network stimulation. Neurons
tuned to the center region are stimulated by an oriented grating of constant, 100% contrast (not shown) while neurons tuned to the surround
region are stimulated with an oriented grating of increasing contrast (shades; compare insets). Identical stimulation protocol for both training
statistics. Center and right: network response. The activity of excitatory neurons that are tuned to the center region is suppressed with increasing
surround contrast. The magnitude of suppression depends on the stimulus statistics during training (purple vs. red, colors as in E). (/) Response
of one excitatory neuron to center and surround stimulation after training. A center stimulus of preferred orientation was presented at constant
contrast while the contrast of a cross- (dashed) or iso-oriented (solid) surround stimulus changed. Colors indicate different stimulus statistics
during training (as in E). (J) Total excitatory (solid) and inhibitory (dotted) input to excitatory neurons during stimulation of only the surround region
with an oriented grating of 90°. Excitatory input due to feedforward stimulation (ffwd. stim.) is shown in light gray. Colors (top vs. bottom)
indicate different input statistics during training (as in E).

ity between all neuron types (78, 77). In contrast, our learning tic growth that is stabilized by competitive interactions. Im-
rule is minimalistic and only relies on general Hebbian synap- portantly, our theory does not depend on a specific biophys-
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ical implementation of the Hebbian plasticity paradigm. We
only require that synapses follow the basic Hebbian principle
of synaptic strengthening following concurrent pre- and post-
synaptic activity. In the past, competitive Hebbian learning has
been investigated theoretically for excitatory synaptic inputs to
single neurons (30, 37, 39, 108, 109), but not for inhibitory in-
puts or in recurrent networks. Our analysis demonstrates that
competitive Hebbian plasticity is a suitable learning mechanism
for networks of recurrently connected excitatory and inhibitory
neurons, while being analytically tractable and biologically plau-
sible.

Competitive interactions between synapses have been ob-
served in many different preparations and have been attributed
to various mechanisms (Lopez2024, 7170-7217). While previous
work has focused on competitive interactions between excita-
tory synapses, our results support the notion that similar com-
petitive processes are also active at inhibitory synapses (32,
122). The local competition for a limited supply of synaptic
building blocks is a biologically plausible normalization mech-
anism (33, 115, 120, 123, 124). Many synaptic proteins are
specific to inhibitory or excitatory synapses and reside in one
synapse-type, but not the other (725, 126). Therefore, in this
work, we assume a synapse-type-specific competition for dif-
ferent synaptic resource pools and implement separate normal-
ization constants for inhibitory and excitatory synapses. On a
finer scale, synapses of different excitatory and inhibitory neu-
ron subtypes also differ in their protein composition (726-729).
In principle, this allows for the precise regulation of different in-
put pathways via the adjustment of subtype-specific resource
pools (730-136). Furthermore, axons of different neuron sub-
types target spatially separated regions on the dendritic tree,
allowing for pathway-specific local competition. For example,
somatostatin-positive cortical Martinotti cells target the api-
cal dendritic tree of pyramidal cells, while parvalbumin-positive
basket cells form synapses closer to the soma (7), which sug-
gests that afferents of these cell types compete for separate
resources pools. We anticipate such subtype-specific mecha-
nisms to be crucial for the functional development of any net-
work with multiple neuron subtypes (737, 138).

In the brain, total synaptic strengths are dynamic and home-
ostatically regulated on a timescale of hours to days (739-742).
In addition to maintaining average firing rates in response to
network-scale perturbations, a prominent framework puts for-
ward homeostatic scaling of synaptic strengths as a stabiliz-
ing mechanism of Hebbian growth (743). However, theoretical
models suggest that homeostatic scaling is too slow to balance
rapid synaptic plasticity (744). In our networks, Hebbian growth
is instead thought to be stabilized by the competition for a lim-
ited pool of synapse-type-specific resources, while total synap-
tic strengths remain fixed. This competition is fast due to rapid
interactions on a molecular level (33, 720). Compared to Heb-
bian growth, infinitely fast, as a synapse can only grow at the
expense of another. Therefore, we suggest that homeostatic
scaling of total synaptic strengths is not required for immediate
network stability but instead controls the operating regime of
the network (76, 77, 145).

Our results demonstrate how multi-synaptic, inhibitory inter-
actions can decorrelate excitatory neurons. In contrast, in-
hibitory neurons can inhibit each other mono-synaptically and
do not require additional recurrent interactions for decorrela-
tion. Accordingly, we observe that during training, inhibitory
neurons are more decorrelated compared to excitatory neu-

rons (Fig. 3C). These insights complement recent experimen-
tal results that suggest an instrumental role of inhibition in the
decorrelation of excitatory networks in mouse prefrontal cortex
during early development (47). Recent experimental studies in
ferret visual cortex report conflicting evidence — either support-
ing (46) or contradicting (746) aligned developmental trajecto-
ries of excitatory and inhibitory populations. In our simulations,
we observe similar developmental trajectories for excitatory and
inhibitory populations. However, we focused on synaptic plas-
ticity and did not consider other processes, like critical periods
(147, 148), that are known to shape circuit development.

Cortical computations rely on strong recurrent synaptic
weights that result in neural activities that can deviate signifi-
cantly from the input stimulus pattern (75, 76, 78) (cf. Fig. 5B,
left, combined grating response). Such a decoupling of net-
work activity from feedforward input due to recurrent interac-
tions can lead to neural tunings that do not reflect the input stim-
ulus statistics (cf. SM Sec. 3). In our theory (SM Sec. 4), we as-
sume that neurons are tuned to feedforward modes and thereby
implicitly assume that network activity is dominated by feedfor-
ward input. In our numerical simulations of fully plastic recur-
rent networks, we find that for intermediate levels of recurrence
(cf. Table 1, Fig. 1, 2 & 3), the network’s activities are indeed
dominated by feedforward inputs. In case of strong recurrence
(Fig. 5), we ensure feedforward dominance by presenting single
oriented gratings that match the fixed feedforward tunings of
neurons (cf. Fig. 5). Such gratings elicit a Gaussian-shaped re-
sponse that is sharpened due to the recurrent connectivity, but
maintains the general correlation structure compared to purely
feedforward-driven networks (compare tuning widths in Fig. 5A,
bottom, and B, single grating response). Biological cortical net-
works are strongly recurrently connected (749-753). However,
neural activity and the induction and polarity of synaptic plas-
ticity are regulated by neuromodulators (754-158), which may
control the destabilizing effect of strong recurrent connectiv-
ity. In addition, different synapse types do not develop simul-
taneously but progress through different developmental stages
(737, 159, 160). For example, the development of recurrent ex-
citatory connections is delayed compared to that of feedfor-
ward synapses (737, 167). Taking these factors into account
will be essential for future models of developing recurrent cir-
cuits.

In our networks, structured feedforward input is crucial for
the development of orientation selective receptive fields. How-
ever, already at the time before eye opening cortical neurons
exhibit substantial selectivity for stimulus orientation, without
having been exposed to the statistical regularities of visual in-
puts (762-164). One hypothesis is that, instead, spontaneous
activity in the retina provides the statistical structure required
for the initial development of orientation selectivity (765-767).
In our model, circuit formation depends only on the statistical
regularities between input streams and is agnostic with respect
to their origin. Therefore, we expect our approach to extend be-
yond sensory cortices and to provide a fundamental framework
for plasticity in recurrent neural networks.

Materials and Methods

Computational model. We consider networks of rate coding exci-
tatory (E) and inhibitory (/) neurons that receive input from themselves
and a population of feedforward input neurons (F). Membrane potential
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vectors u evolve according to
Aec{EN, [0

where 74 is the activity timescale. W,g are matrices that hold synap-
tic weights between the presynaptic population B and the postsynaptic
population A with B € {E,I,F}. All differential equations were numer-
ically integrated using the Euler method in timesteps of At. Entries of
weight matrices were drawn from a normal distribution with mean
equal to two times the standard deviation oy, which yields mainly pos-
itive entries. Negative entries were set to their absolute value. Before
the start of the simulation, excitatory and inhibitory weights were nor-
malized as described below. Unless stated otherwise, prior to normal-
ization, all recurrent excitatory weights were set to zero, i.e., initially
networks were dominated by feedforward input. Firing rate vectors ry
are given as a function f(ua) of the membrane potential u,:

f(ua) =alug —bl], Ae{El}

Tala = —Ua + Warre + Waere — Wy,

ra =f(ua), [10]

with [-]+ = max(0, -) and scalar constants a, b, and n.

Plasticity and normalization. Plastic weights evolve according to
a Hebbian plasticity rule

Wyp = eagrars’, Ac {E)1}, Be{ELF} [11]
where 45 is a scalar learning rate, and T indicates the transpose. After
each plasticity step, synaptic weights are normalized such that the total

excitatory and inhibitory postsynaptic weights are maintained:

(i) WXE)
i
Wap — WAEZ~W(’7) 3w [12]
j W AE kW AF

) 0)
wh —wy—A— Ac{El), Be({EF) [13]
Al (i)

Wy

where Wxe, Wy, are the total excitatory and inhibitory synaptic weight
norms. Weights are updated and normalized in every integration
timestep At, in sync with the network dynamics.

In Fig. 1, we set the activity of the inhibitory input neurons equal to
the activity of the excitatory input neurons, i.e., r, = re. For panels H &/
of Fig. 1, inhibitory weights evolved according to the classic inhibitory
plasticity rule (23) without normalization:

Wg = eg (re — ro)ny, [14]

where r is a target firing rate.

Input model. The activity of feedforward input neurons depends on
the orientation 6 and contrast ¢ of an input grating:

A €F|2)
Lakia
20F

re = CAf exp( (18]

where the vector 6 holds the preferred orientations of the input neu-
rons that are evenly distributed between 0 and 180°, of is the tuning
width, Ag the maximum firing rate, and |-, -| is the angular distance ,
i.e., the shortest distance around a circle of circumference 180°. During
training, single gratings, sampled from a uniform distribution between
0° and 180°, were presented to the network for 200ms, before the next
stimulus was selected.

In Fig. 5 network stimulation is realized via static feedforward
weights. Neuron were assigned a preferred orientation 8, evenly dis-
tributed between 0° and 180°. Static feedforward weights were initial-

ized as
W 6.6r
= ex| .
AF p 502

0

(6]

For Fig. 5, feedforward weights are normalized separately to Wge be-
fore the start of the simulations (cf. Table 1). In this case, feedforward
weights are fixed and are not taken into account when normalizing re-
current weights. Feedforward weights of static neurons in Fig. 2A & B
are processed in the same fashion. For Fig. 5, parameters were se-
lected to result in stimulation patterns as in Rubin et al. (78). Weight
norms W were also adapted from Rubin et al. (78). See Table 1 for
an overview of used simulation parameters.

Tuning curve uniformity measure. In Fig. 3C, we quantified the
uniformity of the distribution of tuning curves during learning and de-

fined:
A _ (i) (i)
pj = ZWAF/ZWAF’
i i

where p}“ is the normalized total synaptic output weight of input neu-

ron j onto the excitatory (E) and inhibitory (/) neural population. Then
Z,-p;“ =1, and we can define the tuning uniformity U, as the normal-

ized Shannon entropy HpA.

Ua = Hoa/log(Ne) = = 3 pfiog(e) log(NE). A {E.1}. (18]
i

Ae{EI}, [17]

U, is maximal, equal to one, if pA is uniformly distributed, and minimal,
equal to zero, if all synaptic weight is concentrated in a single input
neuron. Such a concentration is highly unlikely. In our simulations,
weight distributions are much closer to a uniform distribution, and the
uniformity measure is close to one.
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1. 2St2ability anal ysi s
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conditions fixedpointsarestable.

Formally, afixedpoint inalinear systemis stabl e whenthe
marginally stablewhe3p.i The wgiugh tt @ yznearnoi € s w*rcoaunn ko ea af pi pxr eodx p mi
withits Tayl or expansi on:

) - dw .
W= W +Zd—WiL(W1—Wi), [ 19]
dw )
—m*(W—W), [ 20]
=J" (W —w"), [ 21]

whewei s zero, by deXi st hieadmcamd anevaluatedat thefixedpoint

dviry vy
dW1>k dWN
dw
J'= : : = —| . 22
. =l [22]
dviry dviy
dWl* dWN*
Afixedpointisstableif small per tAwr=bvaii, odnescawatyofzreornot, hie. fei. x
d L .
aAW:W_W =W~ J"Aw, [ 23]
wher e we apprvowiitmait ed Tayl orle)x,panatcen hEperturwasicdmbse $ ma
fixedpoint. Theresultisalinear differential equationthat
Aw(t) = e x (f7t)Aw (to), [ 24]
whereall vector components decdyatenegatAvaael wiilgeheal aesrf
rewritethe weightydysnami cs ( Eq.
W =Cw-wy, [ 25]
T
:CW_WCCW’ [ 26]
cTw
—[11 WCT]CW [27]
- cTw '

IThiscanbeseenby formul ati ngtﬁ.e'ﬁlysm,emlhamemtereiixge;nWﬂst(p*t))\i’f:aelxbmta,omresr:e
Vhol ds ei genvAgc ¢ ardsi agadnal matri xthat ol dstheeigenvaluesof

2lngeneral, thereal part of theeigenvaluesof theJdacobianhatCedabewnarmiadno
matrix, itispositivedefinitewithpadgitthatef rroemat heiisgieny @all tews Weavti I hes eeée ¢
alsoreal.
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It folll ows

; # T T # T T
aw| _ _vc] [_ﬂc L vece [28]
dw |, cTv+ cTv:  (cTv*)?2

T

YE lic-a, [29]

clv*
whervvg:w*:av*isthefixed\/*mceiimtgvaintehigeCaneh:eteaiaJd;famelengthoft

point wei gli( whkicaclcanXies s hamred genvTad fuientdot he ei genvaliyevseof t

di agonalisasvd t chingtot e Wheesabaeimaodfr i xthat hol €a¢ beleigrn

onegets

T aw vz[n—vTi ][VTCV A*ﬂ] [ 30]
dw |, cT
Tv
[ﬂ—ecT—[A A 1], [31]
clvs
wheAé s adi agonal matrix that GoWis hdbeteli genwdlgueenseofal i ty, w

first covisnenqaval ThetrVivii s acolumnvector of zeros, except for f
toone. Then, the first bracket becomes anupper triangul ar ma
di agonal entry, which i s ztelrat. tFhreo enitdhd rsy, ail tu e e lolf otwrse Jacobi an

[32]

| i s t he | argest ev*ige mvhaull utel ,pil eeo.f,t he prC,ntch @ig &arded gegateictemo
andthefixedpointis mar gi nialAt, ytshteachd rer.elsips he b e tpixMes asdat he f
i sunstable. Therefore, theeigenvector correspondingtotherg
point. I nsummary, |inear Hebbianlearningcombined with mul-'t
principal eigenvector of theinput covariance matrix andthus
we consider what happens whenaneuronal soreceivesinhibitor

1. 2ClI3assiclnhibitoryplasticityprevents stimul us

Previous work suggested ahomeostaticd)inthatbiemdmwoy ced apptoisct pls
firingrate

Wy oy (r—ro). [ 33]

However, whencombinedwithexcitatoryplasticity, thisclass
(cf .1KE&F) . For compl eteness, webrieflyrecapietu@lat &e &0 ssrieds
asimplifiedcircuit of asingle podth-agdyrneacpeiivcerseluaNoenn Wil bihntfpaur
neurons, whileall neurons  receive fedddxaiwtaa tdoir’nfpeufe .ufsFaigs. a p
Theyanvarevectorsthat holdthefiringratesof theexcitator)
self-organizationof excitatomgamd,itnthatbpt off gcstyomapoit beasi g
uron, whil e i@tphuatspyrnoajpescetsont oi nhi bi tory netuglonsheamat hdris
atclassicinhibitoryplasticityisrequiredtoactfasS)erth
r muchfaster inhibitoryplasticity, thedynamics of excitat
ar at y fromthe

O P TS
[ s B B (@ i B¢)]

einhibitwgcgmwbeghinsi deredsep el fixedpoints

dinhibitoryinputs areequallystimulus selective, the fas

ringrateis cromrgiasndcept hgtmedi,ty of excitatory synapses only
t“ant s

W)=0 = (Wg)x(ye)ip-nor mal i zation [ 34]

ITo make sense of thevector notatiobhtH t:dwletg%pmhdfoﬁlsseﬁﬁéuavhrste/qdaasrtbrheeh vector
componewnt of

2Becausetheeigenval ues of aproduct of twotriangular matricesisequal to't

SNot e Nhdaotes not necesNgari |l y equal

“More precisely, weassumethat excitatory anyti:@‘l”ryl.bFr o y= D nvpeud(sgt)a=r(g)ip,i mi | ar

which after mudthiepc oyni@stym v (Qly)rg. Then, for excitat or(wegp#t &Flyir)cintoy malkigzeattsi or
(Ye)fo—nor malization,3as statedinEq.
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Whenall pre-synapticneur ons hdywerxyo minldawea \gert asgcehfainrgienognraad le
thanactivities, asisthecasebiologically, theaverageexci
(Wg)cCygfp—nor mal j zati on [ 35]

whercies avector of ones. The average synapticweight change i s i
devel opment of sti mulEk§)s.eTreenefvoneg,(dFliggssi cinhibitoryplas
ratecannot explainthejoint development of stimul us sel ecti
as excitatory weights, alsoinhibitory weights areconstrain
i nhibitoryinputthat aneuronreceives.

2Synapse-type-specificnormalizat

Di fferent fromthenormalizationof excitatory weights, thenc
reqguirement for stability. InhibitorysynapticplasticitytHh
i nhibitory weights eventually prevent the neuronfromfiring
vatethenormalizationof inhibitory synaptic weights by the ¢
bl ocksthat may al sodriveexcitatorynormalization (see Mai nt
proachoutlinedintheprevious Sections for excitatory wei gh
andinhibitorynormalization. We consi der 1t hZ e m&®) gwictuh t atr
dynami cs

T = =1 +ye W=y, TwT = —r+y" (2) _O]])VT/, [ 36]
_|w _
W:( E)’ yz(yE)7 yleyE’ [37]
W Yi

wheflies theunit matrix with  apeon@aniratce diomeznesrioosnand appropr.i
we definedthe modi fiedwewgh{ ahidmidpmputtwelcdfoarseg, we assume f 3
<1l andwritetheHebbianpart of thetime-averagedweight dyn

_ = - __ 0\
7 (W) = gn) = (v >( _ﬂ)w, [38]
—vey, T _
YEYE YEle W = Cw, [39]
YYe' -
wherewedefinedthemodi Ci éd gewariaan oweenaastsruime t hat al |l synap
or inhibitory, change equally fastthpotftls tThadlté mgscahen,of heex m
e =Ttg, and inhibiter=yltplaassmatitges onthe diagonal, andis zer
we dropthe bracktombeateomeadability. As inthecase of only
mul tiplicativenormalizationbyadditional constfaintter ms
TW = CW — yWe — pW, |, [ 40]
WE=(WE), W.=(O), [41]
0 W

wheoiendi cates vectors of zer osNpafn&lp) ptrtogptr wa tde diomesnpseicanf ¢ f or
Theconst r ajamtdff alclt @wsr omt herequirement thattheweight vec
of the constr&iamtd.v eHetreervee choose themsuch that the sums over
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wei ghts remainconstant, i .e., thelLl-normof theexcitatory a
ce'W=0, ¢"w=0, [42]
el = (1,...,1,0,...,0), eT = (o,...,o, 1,...,1), [ 43]

wherethenumber of nogm-ndéd rsoeqrutarl itecstine nu mNgearnafi ehé bt a4 N@ Iyyn e |
respectively. Basedontheserequirements wederipamepgexpressic

Ce' Cw c'Cw
= = , = — 4 4
Y (_:ETVT/E P C|TW| [ ]
Finally, wecanwritetheweight dynamics as
= = T w=T
. WEgC wic,' | =
= ?W:[ﬂ——_EE ——_"_}Cv—v. [ 45]
CETWE C|TW|

2.Hi xed points

For thefixedpoints we hawegftorfwhidcvheti hgeht W*m'resdeeqruisavlattcb ¥Yer o:

TW =CW" — yWg — pW; [ 46]
= TG+ =T B+
- ce' Cw c' Cw
=Cw - g2 = gl [47]
CeTWp cTwr
whichisequivalent to
CW"* = AeWy + AW |, [48]

f oApkandibeingarbitrary scal ar.

2. lEilgenvectorsof themodifiedcovariance matri x a

't isstraightforwardtocheckiothathenmotii pli esl ¢ fCevii g hasiegrimatasl
arefixedpoints:

CU=AVE+AV, = AgVe + AV, = Ag=A =A. [ 49]
I nthe foll owing, we will refer toeigenvectors of the modi fie
toeigenvectors of the feedforwaCasefxeéedfad owygrcdowiageé mneetnoarts
tospecifythe eC.gémvgeecnteorrasl gfeCdepeedtnoorns-ofi vially onthe't
projectingpopud ag#a 20ln (Hofwe $ec, t he probl emsi mplifies whent
neurons aretunedtomultiples of eigenvectors of the excitatoa
woul d expect whenthe post-syangtihe e xdiithattywrhwy tppradcmt verexc
i nput fromthe same exygammdad ymragpisre s d gioonnt he ext ernal popul at
are plasticaccordingtoaHebbianrule wi3®8) muAlttihpdu gchatve vseh o
Sectl.oxh2at without recurrent interactionsonlytheprinciopal
withsuitablerecurrent interactions any f e®&bf. Jr.v8& o d malgleynwe

Yi=Q¥ =ATV g, [50]
where eacMQe=AWbifs t he feedf orward wei ght vector of aninhibito
mul tiapbe&.,an ei gemfvebée@®xcitatory Cevwaygh.adfbemoaltdsi al | ei genve
columnsAj smdnatri x whereeachmultipleistheonl!l yAoins-z et agd rec
matrix. Wewill nowshowthat inthisscenariomultiplesof the
the modi fiedcovGarieafniceemapoiixts. As afirst step, weexplicit

IThechoiceof thelLl-normis motivatedbythes
of resourcelinearlyincreases synapticstreng
recurrent networks, theycand.p3adtoinstabilit

napticcompetitionfor afixe
hs. Higher-order L-norms dor
es

y
t
i (cf. Sec.
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2. l1Ei2genvectors andeigenvalues of the modi fiedcov

Intheprevioussection, we Wavea heemotdh dti e d g @wa eedfta oxoeed npaoti rnit xs

section, wewill findanexplicitexpressionfortheseeigenve
eigenvectors, i.e., inhibitoryvoéurhensxaridad attne g Codalgieny @ E
of Et he modi fi edcovariance matri x becomes
(_: yEyET —yEy|T C -CVA C -VAA [ 51 ]
\Myye™ vyl \ATVIC —ATVIcV A (ATAVT ATAA)
Then, afafl |l isredarl yindepeViamrdat lee igr/i' n 8 eggti a/esn a s
_ (Vv Vv _ (1-AA) 1 0 VT -A
V= o Vl= , [ 52]
AT 1 0 (1-ATA) I \-ATVT 1
where each cWilsuaimmdn-nor mali zedeigenvector. Theeigenvalue
AN
cVLivA =>7\=("(“ OAA) 0(). [ 53]
Similar tobefore, wecall eigenvectors of t he moaitftireadCtiofviaerri-
ent fromthecase of only excitatory feedforwardinput, eigenyv
negative. Inthiscase, we cal | rtehpeud(amrifrvesSplondi ng ei genvector
For eigenvectorsintheViingBhg. mdtereixxcé ¢ lawmm wfand i nhi bi tory c
brane potential exactly cancel, post-synaptic firingrates al
synapticneuronsrwiwhlerf eé eiacd natue®ni stunedtoone of theseei(
(1T 0\~ — \Y _ Yy
T 0 o E T\T
r= Ve, Vo= , = , =A"V'yg, 54
y(o _1 ﬂ/j y (m) Yi Ye [ ]
Y
—(y.T _y.T -
= r=(ye"-ve"V A ﬂj 0. [55]
Sincetheseeigenvectorsresult inpost-synaptic fi rGmmagtmratxe s
(E§Y, wecall them® null eigenvectors’ or “null fixedpoints’
‘“regul ar’ eigenvectorsor fixedpoints. Notethat for eachadd
eigenvector, thereisanadditional null eigenvector, sincein
inal, andtheadditional inhibitoryneurontocaNoallpesgesyara
anMgregul ar ei § eMovteedti Baatsmat ri x withexactlyonenon- 5dr. o ¢ laenne
we can see frdme&Etgt he exci tatory part of eachnull eigenvector i
regul ar eigenvector. Inthefollowing, whenwe speak of regul a

we meaneigenvectors withproportional excitatory component s

We have already shawit.hlmtSetgeo@acedrixofl points. Eacheigen
exact ratiobetweentheexcitatoryandinhibitory weight nor m.
excitatory andinhibitory synapticweights, reachinganyof t
the point of initialization. Inthenext section, we showa mor
finetuningof weight nor ms.

2. 1INd@Bn-eigenvector fixedpoints

I nthissection, we showthat thereexist fixedpointsthat are |
particular, arbitrary multiplesof theexcitatory andinhibidt

INot e Ama®Aare of di NexN,i awd s of di nmBguNj) & (Ng+N)).

2To showWhias t he i nVier s s aifsef ul todefinethaMeaTraAPeards oti &ylbedsde ! =
(1-ATA)IAT,

SSsimilarly, eachadditional |laterally projectingexcitatory neuron adds ar
component andthe feedforwardexcitatory weight component havé gppositesign
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resultinnon-zeropost-synapticactivity, ar éeVfht xledispfoii nd d p 0
as columns and hasthe shape

__ V Kk
* _ i 56
ATK, [ ]
wheKeandandaredi agonal scalingmatricesof arbitraryconst ar
Egq4 8 s
__ WEA
» L [TETEY [57]
WA,

We nowshowt h&i Kwe aay finddi agbhenmt maatt f ukb 61 't Weswordntdei @x plni

__ C VAA (VK | [V KEAE
ATAVT  —ATAAJ\ATK, ATK|A
CVEK-VAAAK, =V KAE, [ 59]
ATAVTV K — ATAA A K, = ATK/A,. [ 60]
VIA-VKAAA=ZVKAE [ 61]
ATKEA —ATKAA A L ATKA, [ 62]

where we made use of the fact that i ndie e mdrethmaotfrt lteisras @ bdsicargic
commute. By comparingtheleft andright sides of theequations

AEzA(ﬂ—KE1K|AAT), [ 63]
A=A(K'Ke-AA), [ 64]
which are di agonal mat Biedos e ave coqusi ded t he stabilitd. o2ive hes
first showthat thereisanadditional set of fixedpoints.
2. 1Gedneral fi xedpoints
Havingcoveredvariousspecial casesof fixedpointsforthedyl
that fi xedpoints aredefliBnedtosatisfy Equation

CW* = AgW; + AW/ [ 65]

ExpandingthisusingCdER P x pwreecsasn 9@ef ohat thisisequival ent t

VAVTWE - VAA W = Agw, [ 66]
ATAVTWE — ATAA W = Aw;, [67]
andequivalently
ANVTWE - A W) = AgVTw, [ 68]
ATANVTWE - A W) = 4w [ 69]
I nsertingthefirstintothesecondexpression, wecanconcl ud
AEATVIWE = Aw;. [70]
lFokg=1ang,=(AA)lcol umWshoofl ds nul | ei genvectorsthat canbeformedbWailvenrear
i n BE5q4
2l ngeneral, thi S|sn0t thecasefor null eigenvect oMST.=KeTATY KW pnled s ames t e

condit iARAMuat be di ag
i.e., whenmultApbkdod

0 I ngeneral, thisisnotthecase, e.g., whenmultip
h a mrasmefvector uptoaconstant factor.
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| Xe=A#0, t hen we k woiwtahnagdi genvector of themodifiedcovaRi anden
I nthe cagerh@dtwe havethenull eigenvect2orlis\We sbessédn e Bew B
thecaskgthat
We begin wit Ri#beTchaessnewe can 7V 6 ;nd robBEEg.arri ve at
/‘ * *
A(H—A—'TAAT)VTWEzAEVTWE, [71]

which, togetheéeérgwveb Be@cessary andsufficient cofdiwei ommnrscflourd
t h¥twii s aneigenvector ofA(ﬁe%@AA&)gvonmlem@wdniMImEi sone-hot, t
the vewtcomsi sts of anarbitrary multipleof the excitatory an

coveredimmSécBi on
We nowturnour attenti VTrWEiostnhoetcsaisnepwryeornee- hot. Wecannows a\)

nerchVTw’;Ewhi chisnon-zero, thefollowingequationmust hol d:
Aj(l—%(AAT)j)iz/\E. [ 72]
[
Thisisalinear systemigangh/d.pwWe wof kwandabltéde mil dassumption
A, thediagonaAAel eamantthsei Ai(pApauedi stinctTheseaomdi tions wi
holdinthe absence of fi mgatndnpirnogv.i d @t wWo siegsees of freedomart
sol uti o)dTSNEMhsemat most) two-hot, havijmmnbhoBuekesolcompomesias, s

_ _ Ty
A _ A,(AAT)Hl AE/A|’ [73]
Ak AAA )k 1\ e
whi ch we cansolvetoobtaintheexpressions:
AR + (AR AR + (AN
AE=/1j/1k( )i T (A Ak k /\|=Aj)lk( )i 1 ( )kk. [74]

(A A+ A(A Ak Aj = Ak

Thecomponents of thetwo-hot soluti on ar e #gestce wgrai nmkie=cc,bw;,t h e k
whi ch are kept const ant. tAn rtohuoguhgohutt wior-ahionti fnigx ed poi nts do not r e
andinhibitoryweight norms, wedidnot observetheminanyof ou
areunstabl e.

The final casetobe c)loznOsA'E:d@rlerdtiksivshsein?ﬁeetlilcsnmﬂ's@qh.sat ntheker

ofATandthereforeinthekernAN? fBtyhuesd it § giogn@ad nmtah eri xf or e conc |
ARANVTWE-AW) =0. [ 75]
We wor k under theassumptionthat Ahag tiesatbisremntc e corf-fzierreoted mgiemg
thefirst termi s Equaewiammgt al so be in ANakeéthmelrefore iATt he k
Sow'i s i nthe KWeAamed tohfer ef or e A hByk Equ@d itodin s t e | AVEwu s A\ at,
andt hek/TeNEios @anei genAmeictthoe iogfgen Wiel tubeer ef ore arri ve at afi xed

whi ¥lwzi s one-hot with suppdit amgihseikret helke fThmeéls ownpyj=i0eccf .
Egq50) whichisbiologicallyimplausi bl evsanndcfeiwei yptyardaterpasisni &y 1va

Under mil d assumpthiammdsr eveahradvienghus exhaustively character
system.
2.2t ability anal ysi s
We first consider the stability of fixedpointsthat areregul
di scussthecaseof non-eigenvectordbifxoerdtphoei B ¢csdadiltdey wish( d § .
_-|  _dw vice' Ve |2 -,
il =7=| =|1- - C-X1{, 76
3T [ e é.Tvr[ | [76]

!Briefly, thetwo nor makg=zxhuyj mnk|d:urTanH:fbed\ﬁ\§\/\a*Er avhere we ursCe@tE@n, by i ngelrting
we get twolinear equations for tiwg twoiwrhkmaomwb e s mple&einin séefrcrasnotfhen i nsert t he
fowgi nt o7Elgo obwjaiwhi chtogether definesall components of theeigenvector.

2Not et h(At) kleaAA)and kfle ek e(ATA), for anyAmat ri x

Eckmannet al ., Suppl ementary Material | 30 April 2024



PNASAICCEPTED MANUSCRI |

whevieandaretheexcitatoryandtheinhibitomwy=pawittdhfet lp&evaglkt
withanadditional set of zerostoreachthe cdr.recf idnadeéheiedga
AMof the Jacobian, weswitchtotheeigenbasisof the modifiedcoc

V[A-X1], [77]

where we i Wslexrit efche resul t i s ablocktriangul ar matri x where e
tooneregul ar eigenvector andits potentially multiplemnull
andsecondparstephEatel yeaWeldewhiod remains adiagonal matri x
excitatoryandinhibitor ¥essVMlegapges$eon nBedi agomnale,definition
matrix andit$D)nweewrsiet(eEq.

_ _ [a-AA)1? 0 VT -A\feg O\[V V
vizlv= [ 78]
0 (1T-ATA)IN-ATVT 1 {0 ¢/\AT 1

(1-AA)T 0
- 0 (1-ATA)2

As one woul d ee¢cpect hif i s equal toascalar timestheidentityn
rows such that pairs of regul ar andcorrespondingnull eigenve
matrix. Notethat this does not changethedeterminant or the ¢
thereisacorrespondingcolumnswitchthat maintainsthe-char
that the matri x Yared ges Welmteerast r eady appropriatelysorted. W
assumethat the fVarsd tcrod timredpoiahd et gemveetsprondi ng nul |
wr i’t e

€E — €|A AI' (€E - €|)A

. 79
(€| - EE)AT €| — €EATA [ ]

(1-aTa")?! 0 ce—ea’a’ (ee—e)a’
V1lz 1V = 0 (1-aaT)? (e1—ep)a” e —ega’a’’ [ 80]

0 0

wheme s a columnvector that holds the multiples of the inhibi!t
eigenvwicAsmhebDare matrices of zeros and appropriatedi mensi on
bl ocksonthediagonal withsimilartermsthat belongtotHhKenon

Similarly, wecanwrite/ttheabtoonld paramdguBgar matri x. Before

I Tl | s q T
_ . |vec vet]. _ _ [vide
VIEE vyt [vngTw;‘d'T]:v—l( =) [ 81]
Ce'Vf C'V vid,
|
= T =Ty
ce' V c'V
deT === gT==L" vi=ve v =ATe, [ 82]
CeTVL cTv’ F !

whedef andTarerowvectorsthat holdthelLl-normsof theeigenve
fractionofthelLl1-normof thefixedpointeigenvectstareroexacietpd
oneentry, equal toone, whichcorresponds tvo tWeecfointed chp@ibrytnfud
theinverseeig&m¥eomdrhmdterfitx

-1 _

vide’ VI —A\[VedeT ede’ —AAedT
=N [ 83]

vid,T —ATVT 1 \ATerd/T ~ATe*deT +ATe'd,T /|

INotethat we must make use of theinverseinsteadof the tVi 8 msopgoretshiomcoe ,miah g e
Notethat whaTMesratbeldock di agonal matrix. Furthfirs abwmaytedibedoral, .t he matr

SThedi mensional itiesof theseblocks dependonthenumber inhibitoryneuron
arn%i nhibitoryneuronstunedtoaspéctifd ¢if eeerdsioa nalridteyi gfe n e c olae ¢ sopoomed i @& g W
ei genvecnfa)orarnedspondi ngnull eigenvectors.
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wherewedefinedthe nbomalhiez antviear s maeti rgiétn o fe S otromanprrioxv e r e ad
It foll owsthatthematri xaboveholdsnon-zerovaluesinonlya
(topblock) anditsnull eigenvectors (bottomblock). After re
dt —aTa*d* d®T —a*Ta*d®T
e*dET—AATe*d|T E ! E ! [ ]
=N —a*d* +a*d* _a*d®T+a*d®T 84
_ATe*dET+ATe*d|T E | 0 E |

whededandlT,d’Tarethe ernt'rdetshaft correspondtothe fixedpoint
eigenvectors, respectively. As before, ellipsisindicateadd
de,diwe use the deV(imbBg) tomnwof t e

e
T_CeV_ 1 T T
_To
r_&av__ 1 TAT T
d, _E|T\7|*_C|TATe* (c. A', c 1]). [ 86]

After rearrangingtheentriesthat correspondtothefixedpoi
get

6" = (62 82T, ) = b eV e eeTvaT) < (1 a7 ), o7
E
A = (8 47T, ) = s (eTATe o) = ) [88]

wheereesel ects the propeticsod ummwsvaercd or of ones of appropriate
Eg8 &8 8 nt o8Ea@nd find

1-aTa* 0 1 0
- vice' ViET TonN n [80]
+ = a‘c kT = * R
CeTvL GV 0 7o -aa 0 M
0 0
-1 a*CT
Mo=(1-aal) (S —aaT), [90]
cTax

wher e we definevd.t he matri x
I nsummary, we findthat afffiesrarlelacclahgemeagu]| &qgqmatri x.
ee —egata* (eg—e)a*T 0 0 0
V=N| (e1-ep)a” e -egaa’’ 0 1-M" T|[A-21], [91]
: 0 0 1

= V1]

wher e we usl3dadnEIgBg. Therefore, tofindtheeigenvalues, we consi
We make the simplifyingassumptionthat thereisexactly one i
vector .abhielhecomes a Nan#iaATbecome di agbMh-al, @ahdtransfor med .
remainstriangul ar and becomes

€E — 6’|a*2 (eg —gpa’ 0 0 0
= V13 V=N|(e—ep)a e -ega? 0 o T|[A-21]. [92]
* 0 ... 0 ‘]]

wi 2%2bl ocks onthediagonal of whichweonlyshowthefirst, that
thefixedpoint eigenvect ofrormitthse maltir € X goer novdeuccttoabove, we s ee

1Since we assumed that thereis exactly oneinhibitory neuronper feedforwar
feedf orwardeigemvector (cf. Eq.
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eigenval ues must be zerosincethefirsttwocolumns of thesecc
directionof anon-fiwedpobsmtuél gd gweerovtecrt or we have toconsid
O 1 —ega'? - AT-2* 0
3=Vt vt cEmes LS - [ 93]
« 1 a2 ( €E+€|)aT —€EaT + € 0 —A*

wheWei s atwo-col umn mavtarndkitthsah thloll dsgenvector. Theeigenval
under twoconditions. First, itsdeterminant must bepositive,
determinant, we find

- 1 v o\ <
ded) = ————— (1-2a+a™)ege (A —2T) 2%, [ 94]
(1_3_1‘2)2( ) ( )
. 1 - o\ - -
[ Y T _ _ atf2 * _Aat2731 _ _ af2 *
t(ﬂ*)—(l_alz)(eE[/\ (1 a )/I]+s|[a}l (1 a )A]) [ 95]
Finally, thetwostabilityconditionsread
ded)>0 = —(J\*—/‘\*)Z*eEe.>o, [ 96]
t@h<o = ee(A' = 1) & (247 + 1) <0, [97]

where, for thetraceterm, WéTmAféle—aTZ%(eooff.Etmqt.eqlex_ﬁ.ll ate

2PRrli nci pal component analysisininhibitionmodi

first stability condition abdwe $hattheesl|tahragte danleayivgie ecvaanix & e
table, andthenonlyif itisnotrepulsive, i.e., provided
envector canbecomerepul sive if ixBEYli-taP)o<0i=s guf1 i Thiexnnt |
l'ies that post-synapticneurons tunedtorepulsiveeigeny
ults i n negat kybvi-iygTvag<Oatfadse 1( cf .58g.However, inbiology,
ge inhibitorythanexcitatory input are hyperpodOarlirzeldear
|OWI ng, we call the combinationof the exci tAatofr.y I5.¢kpd fuesr w
contributionoflaterallyprojectingneur ona?),i nheebfcacste
raxXtobm,feedforwardinput mode.

Fodi=eg, t hesecondcondititfimn0DedbicebB hol dsif thefirstcondit,
-synapticneuronbecomestunedtotheeigenvector of then
e, i .e., it performsprincipal component analysisonamod
forwardeigenvectorsismodifiedbyl!l atcéifr,raWé wplk bjfactihreg
tionof amodified3nput spaceinSection

he
e s
g
mp
es
ar
ol
ny
tt

2. 2FE&st inhibitionincreasesstability

I nour networks, stationarystatescanstill emergewheninhibi
extremecase of s¢abitchienhiebondsnhabilityconditionisstill s
islarger thanthe fexdf amwaotdheatrtelaglédxloewtenr i nhi bi tory wei gt
theyremaintunedtothe fixedpoint andtherepua’sdoe obmpadr e
for stability. Thisexplainswhy we halVefttohccoefsfi edcetriiormal tyhtehfed a t:
termof thesecondstability coed, ttihoeni. nHd weewnecre, off otr hgerionwh intgi t
eigenvectorsincreases, correspondingtoanincreasingiy neg
Then, for sufficientl ygfsag, ttihnehsdc oody phaisti entay ways hol ds
slightly faster inhibitorythanexcitatoryplasticityinour

IHer e, we make use af=tAhe- Ea&)ual ity

2Notethat weconsider nonA*r@antsinhe bi xedyoéentens wi tah @ ¥as istuicwhet fhiar i tnhger saet
terminthesecondstabilityconditionisalwaysnegative.
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2. 2St3abilityof non-eigenvector fixedpoints
Before, we consi deredthe\ﬁ*ttahbaitleirteymifg?f@irhwtaakltepmi)ﬂitfsi ed covari
C. Weight vectors of that shape put astrongconstraint onthe c
theeXC|tatoryandtheinhibitoryweightnormsisgivenbythe
the eigenvecir Thé.i £9 was solvedinthat we foundthat arbi
excitatory and inhibi

ue

tory components of regul &2r. i gWe we d¢ tl ora
consider the stabl Il ity of suchnon-eigenvector fixedpoints.
Let the shape ofwabfei (xefdpbBq nt

v—v*z(kEV'E :(“kE O)v*sz*, [ 98]
k|VT

0 1k
whekeankhiare scal ar constants. Werecapitulatethelgeneral wei i

wos T Al
_Z[H—WECE _W|C| [99]

Ce'Weg ¢CTw,

I nstead of evaluatingthe eigenvalues of the Jacobian, we now
Jacobianwill have afamiliar shape. This is possiblesince fi
choiceof coordinates. Wedefine:

W =KW, = w=K"?W, [ 100]
fromwhichthe weight dynamics canbewrittenas

K"w ce™  KYwieT

W =K Y2 = K271 |1 - - K~2KY?C KI*W’, [ 101]
(_:ETK/ZWE oKW
where we i K¥§f+edWe nowmake use of thefollowingidentities:
= Tylar _  em T = var = T WaCAT s 12 WACAT
Cal KWy, =K CAT W), KPWCAT =K WHCAT, A=K =K A, VAc{EI. [ 102]
Ca WA Ca WA
We findtKk/Amatthrei ces i nsi det he br ack ekt Ycfarnoccnet h eamnid gwhet csaindutl d t
the bracket:
e
W = KV = Ktk [ - meee WO g gy, [ 103]
Celw, oW,
We introducethefoll owingdefinitions
- = o= 14 ke’ Ve 2 Y2 T\T
T =7K, C =K"CK:?= k§/2y| ( yeT, -k y.T) . [104]
|

Not e tChiasot he modi fi ed covariance matrix expressedinthennew
covariancematrixthat correspondstoanalteredinputywpyacew
arescakgzeki/zbyespectively. I nsummary, wecanwritetheplastici
systemas

o Ce' WO |,
T'W = |1-= i C'w’|. [ 105]
Ce'w CI'w
We areinterestedinthestabili®9g ofmttihe Miewecdopoidnthage sgrsi an
W™ = K2l = KT2Ky* = K720, [ 106]

IHerwlanH™arebothdiagonal matrices andcommut e.
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't isstraightf orwidrsdatnoegrgeeanfvebadbr of the new Mm@ &vi t heed gewam
A = (kg —ka?)A*: WiQde f i ne & ilwneFEgge. t

C_:rv—v/* 1/2 K/Z 1/2 * [ 107 ]
o C —VAA \[ V éke (108]
O \ATAVT _ATAA\ATe
” V éX*kg — VAA A e*k : |
=K 1009
ATe kg — AT AA A e*k
Ve _
=K' (ke — kja?)A* = WA, [110]
Ale*

wher e we dafaisntelde entry of t heAdlitahgaotn@ o rnmraetsrpioxn d s t w't hNeo & ie gt ehnavt
thisisindependent of thechange of vari ables, however, onl vy
modi fiedcovariance matr i X,wwh diraenparcet-usayl niarpg t tc § p kegked G @ @)f.e s a
Intheory, wecannowproceedinfindinaasltepl gé neXlidne&sattetfboer J

onefindsthat stabilityislargelydeterminedbytheeig&nval

Apart fromprovidingaprincipledwaytodetermineif anon-e
providesadditional insight: Let’s assumethetotal synaptici
thananyei g€Ewvoetdsrugibke<stl whid.e,theexcitatory weight normis
ke=1. As one woul dexpect intuitively, theneurondoesnnot exhib
(cf . 1Bdok<«1l , andits stability wouldbeprimarily deter mined
ei genvectorftha:dkgslqa*?)/l:e/l.,lnthe extreme case, whentheinhibit:
ki =

0, onlytheactivityof theexcitatory populationisrelevant
Whiletheeffectivetphd7s hiEcgiutayDliemesdaloen t he magni tude of tf
theinhibitorypart of the specificfixodmpantthanddadr coreiddoef
plasticityisdifferent fromthéebormriogienxad mpd remuwhaegn we T o rEsqiuc
withadecreasedinhikb&«totrlyewef fgedrdtnovremi nhi bitory plasts city
k. However, thiseffectisbalancedbythedecreaseinpre-syn
decre&siSngnil arly, thecoordinate systeminwhichwedescribe
speed of p'l akrtdamEgUa®we sree t hat we canfreelykKheéef wesecnal h @ gnona it
covariance matrix andthe plasticity timescal e byKgtulrloiurgd d iha
bracket (1c0j)2. BHBqoqwever, 2 nd8eccrtliyooonsi dered the stability of f
eigenvectorsof themodifiedcovari®&eKé@Wtarnidk=r, f hietrhikd@* c hos
(cf.1Bwoul dnot be aregulCarcéi gEhvecTlheroeff ore, our 2daefroiuv at i
not apply, and we woul dneedtofindadifferent waytoproof sta

SLateral i nput stretches andcompr e
space

Beforeweconsider howsynapse-type-specificHebbianplastic
we first buildadditional intuitionfor howstaticlateral inp
we knowt hat inthiscasetheeigenvaluesof themodifiedcovari
point stability,lagd.fiweikBeawttihcantst hese ei genvalues describe

thecorrespondingeigenvector that canbeattractiveorr repuls
When aneuronreceives only feedfS@df warhd ewed igtha t by nyaimi gwti (sFd g
covariancematrix witheigenvalues equal tothevariances al ol
space (cfl).. Sehcen t he wei ght vector inthe fixedpoint aligns wi

a2 =a*Ta*, cf .8BQ.

2Thenewmodi fiedcovariance matr KX¥GK ¥ kKC rwigihneil geéthiovredcitnoartse s i s

SWe woul d havetoemploytheeigenvector basi Q’QKl/fVHmnawinad'gUiadicna/tairdzra.nce
“Achangeintheoverall weight norms, however, canaffectthe magnitudeof po
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FigureS2: Input space modi fi cAtToopn: daieitrogllaetree wn oiamEltivhefsi sy mefprtatned pppubat i
of excitator yoetuomnsi nput di stributionprojectedontothe firsttwoinput di
twoneurons duringoneinput pattern. (Contour I inesinlight gray). Under a/l
directionof maxi mumvariance, t hefiB)(sTtopr iSacnkdpead cmepoornth dc i eSaigtesmddi |
alaterallyprojectigwhiextci s dtumreyd n eoupmé etilgeeaviegi oal i nput covariance matr i X
spayddf thetarget neuron (darkbluetriangle) is war ghllsuuecdrtrhoaw) tihsesvtarreitacnhcee
totheabsol ute val ueaf Tthheecwenitgohutr vieicnteosrof t he or iAgirnead hiospnuit ndli isg hrti g@ay drmo f

Top: SamMé asal aterallyprojectinginhibitoryneuron. Bottom: Now, theeffec:
i nput spd@e (IMitghe foll owing, weintroduce asimilar perspect.i
beinterpretedtostretchandcompresstheoriginal feedforwa
the weight vector performs PCAonthis modifiedinput space.

We consider acircuit of twoneurons that bothreceive fegeedfo
(FiS@B, top). Let thefirst neuronhaveafixedqgamanf-iprliarsg I atset ¢

rq=q'y [111]
Wel et thefirstneuronproject!| aterall y oawmt witthheosuetcroe aenievuirnog
i nput itself. Thentheequilibriumfiringrateof thesecondne
r=Wgqrg +W'y [112]
where we assume ahdgtabetph asti caccordingtoastabilizedHebbi
Fromtheperspectiveof thesecondneuron, theinput spacei s |
|l ateral input, i .®k2l8d8swecanwriteEq.
r=w'y,  y=(y"aTy)T. W= (whwg)T, [113]

where, we definedthgaredtimgobmeicned wnEdtf evei ighelsy t his is st
net wor k without feedback, and Clhhéd gthatn ewgibwpalrtysaired &€ mmit m é x t
synapticweight dynami cs

" "
=_fT\_[[YY yYal\_
C_<yy>_<(qu>T/ qy 37q)>_

whe€Cés thecovariance matr iy.x Wd drhe ionti @r exxatl eidnipmht e e ggenakec
of this matrix for tworeasons. First, becausetheydescribeth
Hebbianterminour competitiveplasticityrule. Second, beca

C Cq
114
aTC qTCq), [ ]

Il nthi sCtasaet,ruecovariancematrix, sincethelateral projectingneuronise
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mostly determinedbytheeigenval ues. Eigenvectorsandeigeny

CvV = v, [115]
€ calve)oalvF. [116]
qa'C agCglvg Vg
whewend-arethel ateral andthefeedforwardcomponents of the
we focus onthefeedforwar dgcompfomlelndawsor di fferent
CV +C Vg = AVE, [ 117]
q"C v +qTC g = Avg. [ 118]
C (Ve +qvq) = AVE, [119]
q" C (VF +qvg) = Avg. [120]

I nsertingthefirst. ntot\/aqu\awhhdte,xwhesns'inosregtedsi ntothefi
i n:

c(n+qJ)vF=ZvF. [121]

Thisisagainaneigenvector equation, wherethe feegdfaarewtahan:
selveseigenvect@r+yg @) tNloe ma hmGweorecover thecase without | at
feedf orwardcomponents are mG@GWitt plag g b-hietiFigemgegncdtioals olfut i on
straightforward: Weconsider the equatl Dineicmmbe i nput ei gens|

eigenvect
simplifiedec Whenthefirst neuronhadpl abktthactfietewd wlr dva b c
toamultipleof aneigenvector of t,jev,ewi€tite A'wa M g,y ae'é’ainsc e me
diagonal withasinglenon-zdrReéensrob,vandstbmEdqeadif omnwar d ei
ofCareeigenvectors of the feedfthrawasrodllcZ@vEag.i ance matri x
Tofindthe ed geenviat sesonsi der feedf or wagtdnait gaer neverctgto o gcoonnaj

A(1+ava,T ) vev=Ave [122]
wi tAlbei ngt he di agonal matri x ofafnadetdifeos wins adreii mtenhea b west or i |
basi & olfnthis basis, Gargeennettvers=ef sshei®.a,vector of zeros wi
entry equal oone, correspondi ng t oqtchoent @a$ p s cctoimpeo @ ie 9 € B voef c
0
d

t
rguafTh & mat rdiixagonal an€,ed g @oveomtl vrestchfe equati on. H
e

VeoeviLgoavi = qTve«viTvi=o, [ 123]

Then it foll owsIifZrtohmalE qtuhaet ¢ omr espondi ng eigenval ue of the mod
eigenval ueof theoriginal covariance matr i w®owht lceéii rsp ubtyddiesfti
alongtherespectiveeigenvector.

= MF=a=0" [124]

Therefore, input modes that areorthogonal tothetuningof the
equal totherespectC vaenditgreemValt eesalolfy projectingneurondoe
dynamicsintheinput suwbhsplaeeemaihoigongpakeédf or wardeigenvect
t

VeV [g=agv’ = qlveeviTvi=1 = ' =2T+1al=0"+07, [125]

IMore pregWwaswllddconvergetoamultipleoftheprincipal eigenveqismpr tHeoret iwen
toanarbitraryeigenvector. Wewill seethat withsuitablelateral input, any
2However, theconstraint terminthe weight dynamicsintroducesignteraction
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where we agai n made usel tife &g s aetqiudanl, ttche L2- goamg=frlaii s t he firi
ratevariance of thel at'erBHdryegdroajegcttiemge@meanmrdneur on awj ust
asif thevariance alqmmagstihneceieﬁeﬁwmﬁemwtndttom). I nthat sense, t|
‘perceives’ itsfeedforwardinput spaceas stretchéeédXpanihawe s¢
describedby amodi fi éd &Mevnaortieatnlcaetmatt i 5 yye < ihbtlheatt oaahaorobsiet r a
of theinput space beq::o(l’ﬁjqulizmt?sle. For

C+h AC™Y)vg = Avg. [126]
( )

For i ncrlelagihregpri nci pal ei genwgev,offfifjr=0n stidxihd oph|f+» ®@m | n t he
foll owing, we only congsdisdpeartaHd e h ¢ e whmeno fCt hTeheing efnovre £ u fofr is coi
agandoe«vi, anarbitrary non-pviiwhthplteléesal@hagleccatnobecome st abl e.
case, thecorrespondingfixedpointisofthefollowingshape

* * T
= w=" =¥ ]V [127]
Wq q' w* agq
Whenthel aterally projectiSndg nteour)o ntihseimohdiibfiiteodr ¢ o(vRairg .an c
Eg5)

C_::(<1$f3 —;(T:gq)’ [128]

andit followsthat theinputgsp'qdFeSils bompoendsedal ong

AT =AT-ATad = 0™ - 0F. [129]
Inthecaseof ateral inhibitionagndmeaefifenveatby tandbevemeao
eigenvalue becomes negative. Geometrically, thiscotrhecpond
theorigin, whichcannolonger be Bwi2sualizedasintuitivelyas
We can generalize the overall approach to multipleexcitato

attractiontowards afeedforwardeigenvector becomes

A=A (L llael? - laili?), [130]

= |A=0?+|oel? - lloll? [ 131]

wheneo?, theveaegabobdthefeedforwardvector norms of thel ater e
totherespective feedf oonwaltag AE §Fely vhexcltdbt heastdandard devi at i

rates. Thisallowswritingtheregular fixedpointsas
w* \Y oV
W= |wi|«|ag =07 oe || [ 132]
WI* a o
Thisimpliesthat forregular fixedpoints, thetotal synapti c

tothestandarddeviationof their pre-synapticactivities. N
inhibitorypart of non-eigenvector fixedPpo3ntscandistort t}

I n summary, we demonstratedhowstaticlateral input canbe.
| andscape of afferent neurons. Notethat theseresultsareind
rons’ tuning. The second, afferent neurondoes not see’ what i

'FromEgqulaitweoinmme d i aje=l(nf)F iryhd=q'Cq=A'a3, f@=av’, where we assumed zépeOmeaninput

2Not e ChtattC)Tsi nCies atrue covari amed™Mar eisyy,mmeer j c.

S5l4gi st oo smallil<dfo=a*hdthe principal feedfFofCwat 8 ei g &n sesttuaedd e @i 0)7.

4 f noneof thelaterally projectingneurons i, tiuveLditvi aspeoirfiecperdif ong Wa
becomesviT,0of,0M)T.
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tuning. For example, inadditiontofeedforwardinput, | ater a
rent circuit of neurons that are a.l I'I'hegmrférdetsmthe‘samere'cgeneet
additiontothenormof thefeedforwardweight vectors. Howeve
not make any di fferenceaslongasthefiringratestatisticsof
sections, we will consider circuitswherethefiringratestat

4Ei gencircuits

I nthe previous sectionwe consideredneurons that receive fe
l ateral input fromneurons wit 58 i xWedffoeuenddf ohh aviat h ¢ anit ma ¢ i g1
wardinput modes i s determinedbytheeigenval ues of a modi fi e
contributionandacontributionduetothel aterally projecti
firingradesl(eEqhis section, weconsider networks of recurren
andexplorethevariances of their firingrates.

First, weconsider anetwork of ewgytthhadtoay eah dti enrha Ibliyt oo y meea
andeachother andreceive feedforward i npytWerasnstulme 4 d&arad d xhei
i thenetworkisdominatedby feedforwardinput suchthat neur
the feedforward c€w=ay y)arec g mattrhiexst eady.®f aat mefuirroinntghraatt ies t u
ei genvwgicd proporwiy¢ k).t onvherethe proportionality factor defy
rates of other neuronsthat aretunedt)a tThheematnheeea vgeernavgeec H® o b(is
synapsethat connectstwoneuronsthat aretunedtodifferent e

(Wa o< (YaYb) o (Va'Y YVp) =Val C b = ApVa' Vp = 0. [133]

Due tothe competitionfor synapticr resources, the synapse |l o
connect neurons that aretunedtothe same eigendBectEorentamalde
fe
r e

circuitisseparatedintosub-circuitsthat aretunedtodif
not bet weensub-circuits. Sincethereisonesub-circuit pe
call these decoupledsub-cirdpguits ‘“eigencircuits’ (cf. Fig.
4 . Mari ancepropagation
Sec3 iwenhave seenthat the attractionandthestability of a:
efiringratevariancesof |l aterallyprojectingneurons, inc

edforwardcircuitsthat weconsidered, it was straightforwa
rmsi(3Hlg.) . Wenowshowhowvariancescanbedeterminedinrecur
eeffectiveattractionof aninput mode.

We consider agenericeigencircuitandinvestigatehowvari al

I n
t h
fe
n o
t h

toexpressthestandarddeviationof aneuron’sfiringrateasa
input firingrates. For aneuroninaneigencircuit, all pre-s
tothe same feedforwaWea enlgegcoesi der thesenon-zeroentriesa
firingrateof anarbitrary ®8uroncanbewrittenas (Fig.
r=wly+we'ye-w 'y, [ 134]
ye=ag(V'y), y=a'y), [ 135]

Notethatapahmeireferredtofeedfor war d3yve iNohw tnhoersnes v(eccft.o 58 ano 1
expresshowfiringratevariancesrelatetotheinput variance a
maki ngany assumpti ons about howt hi s t ubtihmg arhii ssesss sWenwit | brs h
specifyhowthheaneraets bbb therecurrent excitatot&In6d2i nFhoirb i

IAnot her exampleis neurons that project fromoutsidethelocal circuit, e.
hierarchy.

2Sinceweassume Hebbianplasticitybetweenall typesof neurons ysangatraetory
thefiringratesof twoarbitraryvectorsthat arepart of twodifferent eigenc
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t he weight vectors, werequirethat theexcitatoryandinhibit
i nhibitoryandexcitatory synapticresources:

w v v
=Weg——, W =W——, [ 136]
Wg IVellp [IVillp

\'
VE =
ag

whewWgWarescal ar wei gvh,vy@aome mbeawrditatoryandinhibitorypart
(cf.Peowithentriesthat areproportional t o tlh32prTeh-esny ntatpa p €r
I, s maintaineddueto competi.tFomtioe sgntaps ywarpetsiocufriceisng r

, Vi=aq, [137]

_ (1+ lagll®,, _ llaul?

wi | (vTy). 138
velp " E Il ')(V ) L138]

The first bracket isascal ar pre-factor whichmakes it straigh

1+lla 2 a2 2+a 2.2 a22
L lael®,, _o?+llagl’o?  Jlal’o? (130]
IVellp lIvillp IVellpo IVillpo
E|2 12
I T N i 140
lo =Ml llell
aEz(a,oET)T, o"=a|, [ 141]
For anetworkinthesteadystate, i.e., whensynapticweightsc
neural firingratesinrelationtoeachother, i.e., it provide

as afunctionof the standarddeviations of2.it¢$¢ peecsybapthiocwis
deviationsandvariances ‘'propagate’ throughthenetwork. Int
equati ad)(tEgexpressthestandarddeviationsintermsof onlyth
devi at i on

4. Qonsi stencyconditions provideeigencirtr

We nowcons
aretunedt
havetoful
of eachneu
zeropre-sy
For exampl e,

ider asingl eceixgén aimicyhatnbd hteoorey neur ons arerecurr
othesamefeedforwardei géRiIEE@8Brt dmwihteh s tsd recarydsd eav
fil thevariancéepPod.opmadgatifoun ¢ g ucaotnincenct Eag.ei genci r
rondepends onthefiringratevariances of all other
naptic i Mpud+n.c®hb s ptrermwd yd e s NNdui ntkinoonwsnfsotratntide r d d e
t h

econditionfdreadisngl eexcitatoryneuron

_ _ 2 2 _ 2
G'E=W'EE(" + lloel )—W'E.(”"'” ) (142)

o+ lloelly lloill1

wherewechosetph=lLiononrommal i zat4d o ewhdiA.BefEac et het ot al sy
wei ght that a nRue omiovfetsyfpreomnB.uwe mabé t feesi mpl i fyingassump
have similar weiWhtWsgrvinA,Bé{Ed. ,Then, al sothestandarddevi at

aresimilar, andajeaph Ae{Eillmat e

o2 +|loal? o +nack
o+ |loally O +NACA

loal® = ) o ~naci, = [143]
i

IThe veawTowgS)Tand,ar e nor mal i z#(wTswEE)Hh}:hV\iEt anwfl,=W,. Thisisachievedbyscalin
andinhibitorypart of theregwher==eg/gvelp.v e vtbok=W/|vel, ( csfc ab.em g3

Notethat we all owself-excitationandself-inhidialisonapbears onmalialkiyghkt
equation, ascamredntry of
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The standarddeviations of excitatoryandinhibitoryneural fi

o2 +ngo? nio? o2+ Ngo? nio?
o =Wggl ———— | -We(|—]. oo=Wg——|-W |—]. [ 144]
o + Ngog n|oy O + Ngog nyoy

After some al gebra, thisyieldsthestandarddeviations as

_ W el _ WE W,
G'_1+W| 119CTE, ¢’—[WEE 1+le, [ 145]
1

This provides standard deviations as afuncti olnngi,t hkeriurmiver g
nNor Mg andthe standard deviationof the feedforwardinput ac!H
Vi a E¢,Jwe candetermine howt he eigencircuit modifiestheattr
effectivelastracti on

A=0%+ngof —nof = A+Aeisg [147]

where wedefinedtheattr atkt jomdoftthheeaetitgeancctiirocnuaftt herespect
vector. Inthefol Nowi eag¢ mwenrgefadorl vy as t he ef fectiveattracti
attractionof thefeedforwardinput mode.

I n summary, we assumed that neurons aretuié) anmnd srdWwed wamwd
net work decomposesintorecurrent eigencircuits. Wedemonstr
circuits, andquantifiedhoweigencircuitsmodifyt3héwntatact
projectingontoothd€y .nleut bed ot5 o vviernygi | $eschowt hat ei gencir c
fixedpointsof fullyplasticrecurrent networks andinvesti g:

4. Bnoteonthechoiceof weight norm

Thechoiceof the weight normthat i s maintainedviamultiplica
vatednormalizationbythecompetitionfor alimitedamount of
wherethelLl-normis maintained, andeachresourceunittransl
choicewouldbetomaintainthelL2-norm. | nltdh0ea hasicomaepdopdsg
whi ch becomes
o1 = oW - o [148]
Foll owing asimil ar4l.,dghe as denSdatciudn consi stency condition
comes ( clf4)2Eq.
W|E(2 2)%
== 149
o= o (0 +lloel?)” [ ]
where we once more assumed that all neuwarwsza@Wi.e Theniviaarn avec g h
excitatoryneuronbecomes
o2 = ©? (02 + |loe|1?) = @7 (02 + neog), [ 150]
¢2
1—<D2nE

For anincreasingnumberngftehxecfiitrait og y amteaswvansance of asingle
di ver gefsc£b.r For evengl amgérmances woul d havetobenegativetof.

INot e t hOastdf<dt here exi sts arcgal mde pe mgenftoo f
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Figur éAS2aneuronwitrf rayngenter) receivessynapticinputsaspart of arecur
synapwsfersoma popul ati on wp(fdiamrpkugumwrepdreontsott om). Excitatory (purple, triangle
wi t hfiryenyg rtehtagsar e part of thesameeigenci rwiua ¢ x cpivgagntdairtryh avtsée/tnaalplsye s n tRoercaiu n
synapticconnections t hataarreesnhoatwinnipnult isgohft ngeruaayon Not al |l synapt B Re@eanuwmrercd n tolr
connectedeigenrdiexcuittatodry neuron (pur2plnent bi aogyen)eandns (Il ight purpleci
same feedf orwardeigenvector (dark purplecfircpet biotitogny atTdhhe slt@amgahd depu
throughthenetworkandresultsindzanthfogf atEdsGafvaerd dietvatadriyonewrfons (tri a
inhibitoryneurons (circles, top) inarecurrentcircuitreceivefeedforward
correspondtotwodifferent ei*glB.nNeaoatons wirettengeguabdeénafixAdrmhiwittwi th
eigenci rcuiAQi,aé\fit(grcafclE)ti)..nSleuronsthat arepart of thesameeigencircuitarerec
wei ght s betweenneuronsthat aretunedtodifferent ei gehAics pewut tshaeadkizretr be dik
ei gencBi(rdcawsihte d D)i Bewsi)vall ent circuit withoneexcitatoryandoneinhibitoryne
aretunedtothe samefeedforwarm‘*.eirgem\eeucrtocnrsWiotrhneaingeeingveaqlf:lﬂ'é?mméxwviittahtaotrtyrraa:

perturbedinthedirectionof anot her fAb(edda sohrewdalr id nee )geeyi v, eacrhdy mr evd werbr.aetnttraarcd i @ ¢
synapti c wegivgWitps, ,wegW, F are showninbla&k53cfSeEgsext for detail s.

whichisnot possible. It fol hotwsetrleaetxfien swfffiixcedepoi gtisa.r g
L2-normbut hpl>ds $wechamgr ms all owfor al arger total synaptic w
di stributedacross multiplesynapses. Additional neurons pro
growt hof theeffectiverecurrent excitationuntil activitie:
suitablechoice of ®chenweiimgpt inmainmsl,e, become small enoughtob
neurons inanyeigencircuittomaintainpositivevariances.

whembecomes unexpectedly !l arge.

5E-I networkswithfullyplasticrec

We nowconsider fully connectednetworks of excitatory andinh
andrecurrent, areplasticaccordingtothecompeti t2i We v Hd Ui

first showthat eigencircuitsarefixedpointsandthenconsid
Speci fically, wewouldlIliketoknowwhenaneuronfromoneeigen:
eigenvector. Westart withsomesimplifyingassumptions.
Sinceeachneuroncanbebidirectionallyconnectedtoall oth
icsgrows quadratically withthenumber of neurons. We are onl
asimplifiedcircuitof twoexcitatoryandtwoinhibitoryn neur
Fi g6Cd without dashedlines), whereneuronaBrwicondnegacxeit at
oneinhibitoryneur.ohmpéehies geredrpoidintt, all neurons receivef
of input neurons but synapsesthat connect neur o4s oWheinfaf ee &m
i neigenmMdisrgaiittur bed t owar ds tBEeFoSdi,edaeshgeechti neg)t the tuni

rates of all neur ofcshiamgeé g eHoaierveui,tneumBaneiumaf Jeoatéed bwictaus
noconnections proj ectAit mgefi ye mBe i Tigheewriceifrocrwei,twe onl y consi der t
ei gencA ramditthi nk of i nput fromother eigencircuitsaseffecti:
anequivalent circuit where we perturbanexcit’'atony heuwriaret:
another ei gepdihraduddegs‘not containany neurons and has feedfo

Iwe wi Il |l showbntShectdiomencircuitsareinfact fixedpointsof the weight dynar
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attraction oB, etihgadtFidsg)c ui t

AT=28 =28 408

ei’g eiﬁ

0. [152]

The configurationandattract:i O’niosfetqhuearbetrot/@uirig)ﬁ@:.o\é’t,iﬁpg%mg:pigrcui
I n Secht.ize@3wi I | explaininmoredetai BE&w&D)tahreeskeitgwhol g/isricruiiltasr (W
their stability.

I nthe equival enfl) ¢ciwrecnuow c(oFnisgi.der t he generi c engd1ld X dirti autmofr
and=1linhibitoryneuronwithout takiSn any tuningintoaccount

YE = We £ Y +WE /e — We Vi, [ 153]
Yi=Wi EY+W) ¥E - W, [ 154]
wheykRrol dsthefiringraths opuwtpmegpurleand andive di d not assume an
feedforwarwgpmwe f Shithsce t he net work i sl inear, wecansolve for tt
1 T WEWII]—: T
= -———|y= 1
Ye e oy WV E(WEF 1w, |)y ag 'y, [ 155]
Wi
1 w T
1+w + EE
—WEE

wherewedefinedtheeffechtdaeThreedéogvbdyg nami 08 $ s

WEg P YV  YYE -y wWeRl fre O O WE
L WE E ~ Yey' YeVe -YeWi O [[wggl |0 ye O O [fwee e
W e [Ty owve vy weil |0 0 pe We ([ [ ]
: 0 S\ 0
whereellipsisindicatesimilartermsfor afferent weights of
matri X
(yy) <ye) -ow @ Ca -Ca
c- (Yey") (Veye) —(yew) O ~ ag'C a&'Ca -a'Ca O (158]
L wyTy  ve) - “la'™c a'Ca -a'Ca '
0 0
andwritetheaverage?§yfiabpdhdg.c change as
= 7Tw=Cw-TIw, [ 159]

whefés adiagonal matrix that hol ds t h®ehod alsatr heotnisrhe ad anlt efsafc
synapges$yg, andinhi bit e=yrns yomatphseedi,agonal . We makethesimpl if
plasticity of excitatoryandinbheEbEet.oflf WEsHwhawkiesch doeegqgsumd i ya f
fixedpointsor the st adbnd ivadgwlf the system

Notethat thisisahighlynon-1Ilinear dynamical systemsincet
the feedforwéaud ahpotosn t he pl ast wc isymalptité oveit @htthse wei ght d
normali zath.oMNefxatc,t we showt hat the eigencircuitconfiguratio

sectionisinfact afixedpoint of the weight dynamics.

1see Elgg.for t he definitionof t Ng.gi gencircuit attraction

2We omi ttedthe ata)tloeinmuoptractvieomeadabi | ity.
3't does not affect the signof the eitgesnalavays pdstihtei ¥acolbn gamj sdinglee, howe
excitatoryandinhibitory wei h)t2s can affect stability (cf. Sec.

Eckmannet al ., Suppl ementary Material | 30 April 2024



PNASAICCEPTED MANUSCRI |

5.Hi xed points

Il ngeneral , Winnuesd gailftid t he foll owingcondition

C'W* - MW" = 0. [ 160]

whe€d sthemodi fiedcovariancematrixevaluatedinthefixedp
]

neurons formasingleeigencircuit, tvunTeldetnowteheafneverdiftoea twhe &
inhibitoryfiringratesas

ye=ar'y=y'as, ap=awv’, [ 161]

yr=aly=y'a, a =aVv, [162]
whepeanddepend ontheexcitatory andinhibitory uéi&dhiosTand c .
demonstratesthat whenneurons aretunedvt otthltee s dme f a g dfadrewasr

theprojectionof ydhretaoctthevet geoewd ptucsrt i fi es ourl &5 3 bhmmtoida rf i |
covariancematrixinthefixedpoint becomes

C C vag -Cva C Afagv At
PR PR % sy T 5 P i * k2 ik o
. afve'C afvi'Cval -atvi'Cvay 0 ~ Aragv A —A'agay O (163]
avTC avi’Cva. -aviCva T rarv T rarar -atar? '
0 0
whichcanbediagonalizedbWarhkietisggenvecser matri x
v , NV T 0 0
« VOoval via'
\ E 1 V*T aE _al*
_ 0 a -1 0 O _ T 5 0
V= o - i vl = N1 apv? -1-a7) -aia , [ 164]
! —av*T —arar l+a?
0
0
N=1l+a?-a? [ 165]

wher et he s(ybiscdiicpat es t hat a matri x does not containanwntryt
I ngen@habonedi agonal bl DeN:oNc+Njpmreernrsé wmon i nt Ne+tdibt og.ikts, i
The@, s of di mBgwN)Dx(Ne+N)D. Therefor e, tCo dveame® NaiNze N)(Ng+N))
eigenvectorGhaBea blsosek di agonab)s twiutcht DulEbf|l Brgsktdr i vi ng devel
weight s ontotheexcitatombDkblluo ok é@dmidvtihnegsdeecvoenido p ment of wei ¢
neuron, theei gé&haredcipbs mavei xe havethesameblockdiagonal s
same sub-structure, we onl y k&s Astshuenfi inrgstthlalt oaclkl immekEiq.ons i nt h
feedforwardeigemMremgtmei geeentvewdd mars mifgencircuitmaddaoek, \
thenumber of excitatory andinhibitoryNre@egowhasriaitghecemywexg @c ts
null eigenvec2to).s2Rerf t ISespeci ficcircuitat hand, we have one
Ne=N =1, recurrentlyconnectedinthe sNgmbkediggeenrncd irrogusint+) ain.deh. |,
one eigencinEemq*i:tl.wfrhbfirst\_/éiomtElqlﬁnéoofrresponNFs—ﬂeitgheencircuit:
ne=n=0, i .e., withoneregular eigenvewotzer pat weetdbat waurld e e (
Thecorrespondi ngAgj swbne hlauresadrseo ei genval ues of t h@ freoerdf loe \
eigencircuitcu*ltMe$|m.emgdmifﬂ33eticgenveé*toTrhseoffirstisaregularei
| ast twoarenull eigenvectors, wheretheexcitatory feedfor we

INotethat heret Weisnudpiecrastcersi ptvari abl ethat i s evaluatedinthe fixedpointo
firingrateactivityymeddlerentdi hpet ggeyf.heunal activities
Remembe Ngihsat he number of i npuN, areat bes,oaatl excitatoryandinhibitoryneur
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excitatorylcompopesitivel ateraf.iThthéeé but breyi gempeonents have
tozero, andtheeigenvalue o7f*=tx\h(13+ra§gar;?).ar eigenvector is

Similar tothe feedforwardcase, arbitrary multiples@f the
are fixedpoints. The only exceptionis the)r.i3ghemesttmelilndii d
the excitatory weights are alignedsuch that the post-synapt:
scalingof theexcitatoryandinhibitoryweight n©&Inbsb.pr os éedek
conditions tapared.er mi ne

5.2t ability anal ysi s

We areinterestedinthestabilityof theci bzmundcadrersicdebedte st
aregul ar eivigenvector

<
*

, Z*zA*(1+ag2—a72), [ 166]

LS B R

This meansnweodosi der arbitrary scalings of the excitaG@prwand
assume t hat weight norms are finetunedtomatch the norms of t'
eigenvector

When are such eigenvectors stabl e, and when arethey attract
guestion, we consider smal |[AW(lopx ewdhg 0 ientthgeerxtcuirtbaattoiroynseur on s
directionof adifferent fewdforwardinput eigenvector

vi
0
_ O et
AW (tg) « 0 =Vel. [167]
0
0

wheeld s avector of zeros withasinglenon-zeroentrytwWwgecfcorr
Egql6)l. The systemisstablewithrespect toaperturbationif th

this, weconsider thefollowingdifferential edqu&ti2Zonthat hol
d _ T
EAW(t):J AW(1), [ 168]
\ivheﬁ*éstheJacobi anevaluatedinthefixedpoint. Wewill consi
Viof the modi fiedcoGavahuonatemht nitWwe=WVi xadtepMiimgnot ti me-depe
' nour simulations, weconstrainsynapticweightstobepositive. Thennull e
withregular eigenvectors: Whenanull eigenvector is addedtoaregular eige

adecreaseinrecurrent excitationduetoanegativeexcitatory component of
excitation.

2We cangeneralizethisapproachtothecase whereneuronsaretunedtodiffer
asecondexcitatoryneuronthat is, however, tvin@dito qidviefsfreireet ¢ aa dafdadri wa rod
(vTTaTE,O,O,—l,OT)T, inthe fir¥{mbd®ceklodf addition, one of theregular ei g&n(veedc@)r s i n
becom‘eTE,O,O,aTE,OT)T. | mportantly, thisisthe cal,eif.og.eBwd glidtaigoonaall nbulolcBaddfeaved t «
regul ar eigenvectors per additional neNg+dNmnuThies gr s uNge £ ahd &mwe iad evawesch av e
whichall ows t 6*aviha g biniasl d fz dNcmM JDsxi(MzN)D, i ndependent fromthe feedforwardtun
caveat that all neurons must betunedtofeedforwardeigenvectors.

SWe presumethat whenconsideringthestability of non-eigenvector f4d.x%e.d3poi
andconsider regul ar eigenvectors of aCdwiftfhea @jnt smoedd p i @ skicipkviatrhi earinene sneaat In & $x,d
the caseqgandregul ar ei G rivkeek,©9T.s of
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becauseitisevaluatedinthefixedpoint. Inthisstaticbasi s
AWy (1) = VIAW (1), [ 169]
= AWy (tg) = V' 1AW (1) « e, [170]

wher et he s(b sndriicatt es a vect or or matri x expressedinthisbasi

%Av‘vv(t) = %(V*‘lAV_V(t)) = \_/*‘1%Av_v(t) = VI AW (1) = VLIV AW (1) = T AW (1), [ 171]

wherewedefinedthetr anyftid'vmen I doatileons,s of generality, we a
i Vare sortedsuchthatfilenbinrgereantiy ®f,Viihe griapdrddlonmnd dfo
perturbmdtg){ ch .1EJ. Next, we wi ll derivethetransformedJdacobi :

5. 2THe transformedJdacobi an
First, weconsider tHeWegewai ttac¢t blkeidymaasmi cs i n Eq.

WE H 0 C
0 WE E 1
oo @eerWeated  lap o mio| O weee| O ece=|O] [172]
CeE (Wep+Wegp 0 0 0
0 0 0
0 0 0

wherethesecondterminthebracket correspondstothenormalii.
neuron, additional normalizati’ncfes4Brp.acnidiandéctaoredbyreed .
Jacobianhasthefoll®%ingshape (cf. Eq.

C - A1+ d—(_:

- dw _ ﬂ_(vEFw*EE)(:EET
dw

J'= — = — — - ...
dw Ced (Ve etV g

v_v*), [ 173]

*

hewe VvVichave the samewgp@gemElQ7.®i th entriescorrespondingto!
f e regul arvdicdenBc thoort e t hat we accounted for the weight ¢
ovariandcCevmathirxesul ts iCidi.hdo énmadrtdhe transWidrUedelaocnbdi de
he first bracket:

v [174]

Geevpgeed |
Ced (Ve o+ Ve 0

Thefirstentryremainsequal totheidentitymatrix, astheeig
col umjosv*separately. Then, wecanwrite
(V*EF"'\_/EQCEET = % ok YWD ok b % ok mb  oxpb o
T d (v _H—/*E)_-" Vo = —(Ve g+ Ve ghg g= Ve g (= (V) ¢ Vi 2y = Vil = —Hu V7, [175]
EFTVE
b
Th o i
hg e A I I
h Cee V| Cel Vg
Hp = El h2 _= h2 = [ 176]
b > EE = o* T* ’ El = To*’
Th e Cee ( ertVeR CETVE,
hb
=
hb
[
IRemember thatiwe set
2lngener al 2xt(lenen@renal i zati onter ms.
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wheHgi s adiagonal matrix withentriescorrespondingtothere
gi hEeEankiEIas exampl es. Themed&tcihsctolannsnf or med i ntoamultipleof:t
partsof thefixedypoEaG©bB)ERI Afetnevret t a n sbf b rcrod tuimmnb, etctoeane s

NV, T 0 0 ey
vToa )
—av' T —aral 1+a? o A :
0
where, as before, ellipsisindicatepotentiallynon-zMNFbd entr
entries arezero, indepenthebt odluisedocdohomoralderW,heOueel amhs
canwrite
. 1T 0 0 O
_ Vi _+VE DT 1. . . . 0
- v*-lu—EEF_*—EQ_E,E—...v*z: P : [ 178]
CEE(VEF+VEIE)

0

wheretheblockstructureari sWéd(fefomEXh.e bl ock structureof
After transformation, theéBsecomedbr acket of Eq.

c dc A - a4t 9C
dw

vl C*—Z*n+d—v_v A VAR WV . [ 179]

* *

We next consider theg%

forwardweight ontotheexcitatoryneuron.

iwk, sft ocrowhiimnts wd c o mpa‘i‘\?v%
* EF

e wnne/v@qg{alsrttbhxh feed-

C Ca -Ca
c azs'C &'C —ag'C 0
dcC d E & & E aq [180]
b | T Ao T T AT
dwg 4, dwg la’C aCa -a' Ca
0 *
O C daE _C da|
dWEF* dWEF*
dac’ | o (dacl| o g ) geTC dac (el cgiarTC Ga 0
= deF thE)F* % E deF* dWEF* q E dWEF* X [ 18 ]_]
da, T da, «T da, da, T «T da,
dWItE),: C (dWItE’F*C%-'-al CWEEF*) —(WEF*C#+3| CWEF*
0

whereweusedt heCde oimEsfeiThre wfeagaondare defi ned&1lmEd¢Lt fol |l ows:

da 1
E = WEwr _Eb = HE®D, [ 182]
dwe 4, 1-w* Vi e
EE 14w,
da 1 wr
3 —| = W 1_\'NE €p = i€, [ 183]
we . 1+er+1l_v%/lg:z EE

wheed s avec

t or o Nedvii mehnesritorni es equal t obzleeat exegptlf oo bhe. |
we have (df&IEQS .

Cq =ANav, Cd=xav, [ 184]
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whichresultsin

0 UeC g -uC g
dC Hgey' C 20 aLpev' T ey ~A*(ugal + mas)viTe, 0 (185]
dWEF B TC /{* % *\y kT ZA* * T '
x| ey (pag + pea’)v' ey auVv ep
0
BeC & v
dC | _ gviTep| . . [Wee
t= , W =Vi=| o) = HEWE c— HIW 186
dWEF* ng*Teb Wi Be = HE g~ HIWEg, [ ]
0 .
whegegarescal ars.
BeC
dC T
=9 [ 187]
dWEF* g2V*
0
We findother columnsinasimilar fashionandwrite
BeC  gav* geV”
— «T
dC g1v Ja g7 0
— W' = " , 188
aw| ¥ TlovT g5 gg [ ]
0

where, gganescal ars. After applyingthetransformation, we gc¢

BeC  gsv* geV* Vie V0oVviag Vi
= «T *
-, dC _ _ 91V 04 gz Off 0 a -1 0 O
vl 2| W= 189
dw W 92v'T  gs Os 0 & 0 1 [ ]
0 0
BeC M. Qov' Q1 ¥ g1y
_ 0 gio0 013 016 O
=1 [ 190]
0 g11 914 Q17
0
NV, T 0 0
T R . BeVisAv QoV' 01 ¥" 01 ¥°
v a -4
1 T 2 s 0 0 gio 013 016 O
=Nt agv -(1-a°) -aq [191]
T - .2 0 911 Q14 Q17
e\ —ajac 1+ag
0
0
0 O18 921 0214 0
= 0 019 922 025 . [ 192]
0 020023 Q256
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The fullytransformeddacobianis (cf. Eq.

i Vi _+VEC I _ C _
3 =V = vt M A (A = aer vt 9C| oy [ 193]
CEET(VE FHVER dw *
Finally, by iln&edowe fiigid.
feA, O 0 O
10 0 00 0 J18 921 024 0
\AREN R VA BRI A=-21+] O QG199 922 OU25 ) [ 194]
0 0 920 923 926
0
(/_\\*—/_1*1]+/3EA\*) 0 0 O
_ 0
= Jy= : R s [ 195]

0
wheAgcontains ei g&hhat ces néspondtoregular, fon-fixedpoin:

5.2St2ability conditions
Thedynami cs of agener al fAwxiendtphoe @it goeErribtsugr ibda®IE q n

- 0
0

Notethat thetransfdOhédsadabiammgUEar bl ock siicoctesppmng te
growthof aperturbationinthedir@ctWeoar ®foatlyfifneareeretse e de mv
growinthedirectionof anon-fixe/d.pbhenrt effecerdef,owevé o d eslp e hee
whichcorrespondtogrowthinthesedirections. Except for the
that pert awytoatt Hh @tndo not already containcomponentsinthedireé
al sodonot devel opsuchcomponents intheir |l ater dynamics. |
fixedpoint feedf or waAWdxieh paua nmordcey cee.ger,t ur bati ons withintt
corresponds tothe feedf’orFwaredxaimpé eyeacd®ecr ease infeedfor wa
synaptic weights withinthe eigencircuit balances theincrea
theperturbationtowards adifferent eigencircuit, tomaintai
‘“second-order’ perturbations, without componentsinttgdire
arecontainedwithintheeigencircuit, i.e., theycannot induc«
point feedforwarvd.i ilpet enfoodrees,, t o answer the questionof when a
consider thedynamics alongthedirectilé)ily grhejoercitginngatl hpeed yt
theperturbation vawtioea(tct iln@gzer o,

I'Td v 3T 3 T T Ao

e avaz(/\ _2 +,BE/\)e AWy, [197]
whichprovidestheeigencircuitstabilityconditionfor the e

XX+ pea <0]. [198]

INotethat inour speci fic na?tiwmequml,eitcﬁg)#m*ftbbtaukeothereareno neuronstun
feedforwardeigenveld+d(¢(sf .NEParticul ar,
2Thisisduetothepotentiallynon-zeroel ement sknn Eqbd@ikknbel owt hetople
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A Recurrent network B Unfolded network

CA TO

Regular

o—

=]

(D)

£ . A

= e R

Sy ’ Ve

O] 7’ PR "

o @ O AGAO
Fi gur gAS&A'wo excitatory neurons (triangles) aretunedtotwodifferentB)but eg
The same ci rAcwintf asdedtohighlight pre-synapticpartners. BoPeitnmpubimogdie!ls eap
excitatoryneurontowards thegreeninput mode (dashedlines) shiftsitstuni
purpleinpuX Mmoheeusnf 0| de dCc iDruccutia tfreomer t ur bati on, the greeninput mode i s no
purpleexcitatoryneuronshiftsitstuning. Seetext for details.

| f EcpBol ds, perturbationsinthedirectionof non-fixedpoint
stabl gewEdrave (clfB.&EfEB. )

Be = e We e TR (1EWLE). [ 199]
1w eWi e Tow + 1 Be \L-Weg
EE 14w, P 1-wi
FromE§g&L5We find
dYET _ 1 . [200]
d(WeF Yl 1-w Vi e
EE 14w,
W*
dle _ 1 "e [201]
dweFy)l. Lw: wall WeE
1-wi,
and we get
dye dy
SN S [ v — (= [202]
S dwedyl FF dwedylF
Foll owingthe sameframework, wefindthestabilitycondition
XX+ paT <0, [203]
dye . dy :
= |fil= ————| W = ———| W . [ 204]
dw, Ey)l. ' F dw Ey)l. |
We wi ll nowinterprettheseresults.
5. 2Ei3gencircuit stability depends onrecurrent cont

WefirstconsiderthecasewhentheeffectivedtA(att iBag@disal | e
Thenthestabilityipg,faigtdy ddteeerdrhiomevdabd ci r cui tgs twerhmasy, ebneocta fi
inthat case, themodi fiedcovariancematrix does nbi&dege)d on
Thisisnotthecaseinrecurrent circuitswheretheperturbat:i
neurons.
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Tobuildsomeintuition, weconsider asimpleexample: Think
withidentical weight norms, andanexternal popul ationof exc
I nthe fixedpoint, the neurons aretunedtotwodifferent feec¢
arerecurrently connectedtothems®)l.vEBebnut hneo & fefaeccht 0 v le eart ¢ F
eigencircuitsisthe same. I ngeneral, neurons r receive synapt
networkstructure, e.g., whichsynapticinputs arefeedforwar
recurrent network and observethat the effective mode attract
therecurrent selSfB) exWhiethawé per{tFirghb one neurontowar dsi#he op
dashedlines), thetuningof theperturbedneuron &andaek bl iugl
Fromthe perspective of the perturbedneuron, this tuningchar
eigencircuit, whichisnowmoreattractivethanthé®dDr,ignadalhe
perturbationgrowsinthedirectionof themoreattractive mod ¢
wereinhibitoryinstead, theperturbationwoulddecreasethea
stabilizethenetwork.

I nour mat hematical anal ysis ©&fDft hédreiat ¢ wiatc shomwmn n arFe agsuer er
tuningchange of recurrently projfdtirmg n e uHqgouRastd,3dwhg fclheecrerdg
fromthe weight dependence of t h€ mofd.lfEie dFoa veaxra napnicee, mahtern me
excitatoryneuron, theincreaseinattractionfrom%theperspe:

1 dye T dy, A

ﬁﬂ:(— /U)W* —(— AT w? [ 205]

= T ldwedyl” ) TEE Ldwefy)l," ) TE!
wherethebracketsreflectthetuningshifltisnofetsipe ax e ittoatthoerp ez
ofveggi nt he di rvecwhiiocnhoifs t hen wei ghtedbytherespectivesynapt.
WeeWg, Whentheinhibitoryneuronis pgfrdiulrbwtdhe saemeadlpighe {ef

Wit hout goingthroughthel engthy mathemati cal f-etrervmast o b n ,h
net wor k pertur bSa@.ilomtiheFfiigcuerdepoi nt, the perturbedexcitator:
all neuronsinitseigencircuit, includingitself. Inthefoll
AomB. Then, asfor theequi D) ffrtompricses (wbt &ims, one dyle t ot
and asecond duetothyﬁ.tAnmSmrgiml’gitfheosfame wei ght nor ms Setfloirs i s
theequival entd)s.i Dc &f e fiedpfit § weimght ed Withthe?@fane-aSti,Livlesattaarde

of onlythe feedfor warndeEagd)s,r hetaoseg the perturbationcompri se
eigenvector component but the whol e eiSdte&Dy i rThuisti (scwh.yd a sohretdhl
circuit, we chosethef)lé:e,_thzclBHW%(JECaS)Z.rﬁhem,om he di agonal entri

totherespective perturbationsintheupper | eft b(lofcki€@pf t h

i . e.,

AT =2+ PeA’ = 2B - A + pEAB. [ 206]
We findthat perturbationsinbothcircuitsinitially followt
timetherearenol ateral proBeowaonds ér ¢éqeefiigeédugigicruéde i nt he
point there are norecurrent connect i nsamelttweee p eeritguetmloca tiriycouni
i ntroduces connecti oBiosnt ooenm gielpeliecwaica@éi {f as we j ust di scusse:
introduces atuningshiftAinnntehuer @in s eocft @ io@eonfcheirsg®mici r ¢ wiatd s t
correlationsbetweenneuronsof botheigenci Acrutid si @adrddsigrmdaupi
togrow. These growingsynapses shi ft thBRaatdttrhawcst i mp aocft ntehue o n
perturbationcomponentsinBhélerectoi entofhet gamsfi ocméd Jaco!
(FiS®&L) has a morecomplex structurethanthé&Jdoweévan,f i nche vee
aninitial perturbationthat is al AWgedeRi 6o ae-elgatl §)e,feti degn o p
I

eft diagonal bl ockof theJacobian?till determinestheinit.i

INot et hat al sothetuningof theinhibitoryneuronchanges, althoughitisno

2Recal Ml}@ofaamd, t helf eX 0 Eq5)2.

STheJacobianof the o¥®)glimsabddirtciuona(lFégt.ri estotheright olf9%hat ap éeabndza
Thesenon-zeroentriesresul tyéinntthfeegdiorwetchtdfoﬁybdeqiisa;eeaaaﬁ:oudit)rder’ perturhb
synapses fromAktigengemBcuri tuit

“Non-zeroentriesof theJacobiantotheright of thetopleft diagonal bl ock e
AWy (tg) (¢ f .1E).
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I n summary, recurrent synapses can stabilize or destabili ze
fromafixedpoint. Thesestabilizingarmdtdersmabhhbt diepeg p l foerct
wei ght configurationint9Be whixel pgoaint depenElgg.on t he wei ght r
total synapticweights. Inthefollowing, weconsi dertrB-ttheeranass ¢
aresmall . I ntheeqwiDyalhensticsitricarcadeEwhbentheinfluenceof th
andtheinhibitoryneurpaofbathaede eatpnptsec®nh@it erms inEqs.

5. 2Dedcorrel ationcondition

We nowconsider howneurons sel f-organizetorepresent all par
tuningcurves aroundadominant i nput mode. We consider thefi)>
urations. I nparticular, weconsider the case whenrecurrent c
eigencirguier mhe ElPREOBensri bethechangeinthecovariance ¢
toasmall perturbbhal.id6éhnfcéed weSeonsi der thestabilityof asingl
neur Np,8,>1, these changes inthecovariance structure are smal
total attractions of the eigencircuit sggalhetroeth ® senal In,t & g pfrool:
equal tozero This canbe achievedby &sTheablael ¢ heoiigceenafi we u igt

stabl ewhenthey areequal l[ly9&P OB aggt=iOve, i .e., (cf. Eqgs.
=224 23 =X, vab. [207]

For homogeneous i nput spaces, wherethe feedforwardiPatA eact i

AYab, t he only alternativestableconfigurationiswhenall neu
andformasingleeigencircuit. Suchaconfigurationdoes not
whereall partsof theinput spacearerepresented. Toprevent s

that thecorrespondingeigenf&itreaustairs wampptrokxlienaWaley aét o, t |
effectiveattracti onof t hié oinsl synoaclcluepri tetdaeni tgreen aNg&luanéotcicoirp o fe d
i nput mdea’fcf.1EB&20)3:

A< AT, [ 208]
= Zoé’i—20ﬁ+/l</l, [209]
i |
= NegoZ - Njo? <0, [210]
2 2
= NEO'E<N|O'I s [211]

Whevéeolzarethe aver ageNgaNjtilaemt et alndumber of i nhibitoryand ex:
conditionissatisfied, the only stablesolutionis whenthee
simplest configurationwherethisisthecaseiswheneacheige
i nhibitoryneurons.

6Movi e captions

Movi e M1: Decorrelationof feedforwardtuningcurves of eDevdladpmegnnteafr 6redf
tuningcgve@8@ excitatory néA&B)nsSyohptFigwei ght swereinitializedrandomly. |
of di fferent post-synapticneurons.

ngshift of t hyg/d(w )b istnoergyan é wre

INot et hat thet e GihmaE ccwartriesnpponds tot he ni
he f i2rOsittstneergmait m Be/d(@ifigwies dal s o

t
whenthecircuitis ithhiitwdet»ilonl sttahbaitl ¢ 2 & d,(
negati vel(5&fl.5)Eqs.
2See Secst.i2bo3r adi scussi gem X t he case
SAnunoccupiedinput mo)cgieﬁoocfelsamondsto

u
t
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Movi e M2 Decorrelationof feedf orwardtuningcurves of iDnehviebliotpommeynn eoufr o@eadif
tuning cWNr=vleGiofhi bitory n2ABpnsSycocaptFicgwei ghts wereinitializedrandomly. I
of di fferent post-synapticneurons.
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