Synthesis and import of GDP-L-fucose into the Golgi affect plant–water relations

Cezary Waszczak1, Dmitry Yarmolinsky2, Marina Leal Gavarrón1, Triin Vahisalu1, Maija Sierla1, Olena Zamora2, Ross Carter3, Tuomas Puukko1, Nina Sipari1,4, Airi Lamminmäki1, Jörg Durner5, Dieter Ernst5, J. Barbro Winkler6, Lars Paulin7, Petri Auvinen7, Andrew J. Fleming8, Mats X. Andersson9, Hannes Kollist2 and Jaakko Kangasjärvi1

1Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland; 2Institute of Technology, University of Tartu, 50411, Tartu, Estonia; 3Sainsbury Laboratory, University of Cambridge, CB2 1LR, Cambridge, UK; 4Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland; 5Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; 6Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; 7Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland; 8School of Biosciences, University of Sheffield, S10 2TN, Sheffield, UK; 9Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden

Authors for correspondence:
Cezary Waszczak
Email: cezary.waszczak@helsinki.fi

Jaakko Kangasjärvi
Email: jaakko.kangasjarvi@helsinki.fi

Received: 18 April 2023
Accepted: 13 October 2023

New Phytologist (2023)
doi: 10.1111/nph.19378

Key words: cell wall, fucose metabolism, plant–water relations, rhamnogalacturonan II, stomata.

Summary

- Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood.
- We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation.
- High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-L-fucose biosynthesis. High water loss observed in mur1 mutants was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-L-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants.
- Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of β-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant–water relations.

Introduction

The leaves and stems of terrestrial plants are covered with a hydrophobic layer called the cuticle, which directs the majority of plant gas exchange toward stomata. Stomata are epidermal pores surrounded by pairs of guard cells. Guard cells respond to multiple environmental factors, for example light, leaf internal CO2 concentration, drought, air humidity, pathogens and air pollutants such as ozone (O3), to optimize CO2 uptake and control water loss, or prevent the entry of pathogens into the leaf tissue. Perception of stomata-closing stimuli initiates a complex series of guard cell signaling events ultimately leading to guard cell plasma membrane depolarization and activation of Kout channels (Merlot et al., 2007; Hedrich, 2012; Sierla et al., 2016; Yamauchi et al., 2016; Pei et al., 2022). The release of ions into the apoplast leads to a decrease in osmotic pressure inside the guard cells, which provokes an efflux of H2O from the guard cell cytoplasm and vacuole. The consequent drop in guard cell turgor pressure results in closure of stomatal pores (Franks et al., 1998).

To allow the volume and pressure changes, guard cell walls exhibit a high degree of elasticity, which is determined by specialized wall composition (Amsbury et al., 2016; Merced & Renzaglia, 2018; Carroll et al., 2022). Plants deficient in pectin modifications exhibit defects in stomatal movements, which suggests that the status of pectin crosslinking determines the mechanical properties of guard cell walls (Amsbury et al., 2016; Chen et al., 2021). Furthermore, the cellulose microfibrils that fan out radially from the pore (see Shtein et al., 2017 for a recent visualization) provide a hoop reinforcement that limits the increase in guard cell radius and promotes guard cell elongation during the stomatal opening (Woolfenden et al., 2017). Moreover, the stiffness of guard cell walls is not uniform; the most...
rigid areas are localized at the guard cell poles and ventral walls directly surrounding the pore (Carter et al., 2017). Taken together, next to guard cell signaling, the mechanics of the guard cell walls has a profound role in the execution of stomatal movements (Woolfenden et al., 2018; Yi et al., 2019). Importantly, the expansion and flexing of guard cells need to overcome the turgor pressure of the neighboring epidermal cells. Recently, Nieves-Cordones et al. (2022) found that decreased pavement cell turgor, observed in mutants of K⁺ RECTIFYING CHANNEL 1 (KC1) channel subunit due to decreased K⁺ accumulation, results in wider stomatal apertures, higher stomatal conductance, and elevated loss of water from detached leaves. These results demonstrate that the counter pressure exerted onto the guard cells by the pavement cells is required for stomatal closure.

The synthesis of cell wall glycan polymers relies on the availability of nucleotide sugars that constitute the activated precursor forms serving as a donor of sugar moieties (Bar-Peled & O’Neill, 2011). The importance of nucleotide sugar synthesis and transport can be exemplified by the requirement of GDP-1-fucose for proper growth and development. The synthesis of GDP-1-Fuc is initiated by GDP-δ-mannose 4,6-dehydratases (GMD1) and MURUS1 (MUR1/GMD2) that catalyze the conversion of GDP-δ-mannose to GDP-4-keto-6-deoxy-δ-mannose (Supporting Information Fig. S1; Bonin et al., 1997, 2003).

In mur1 leaves the level of 1-Fuc is reduced by c. 98% (Reiter et al., 1993). Plants lacking MUR1 exhibit abnormal development (Reiter et al., 1993; Van Hengel & Roberts, 2002; Voxeur et al., 2017) and stress responses (Panter et al., 2019; Zhang et al., 2019). The product of the MUC1-catalyzed reaction serves as a substrate for the GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductases GER1 (Bonin & Reiter, 2000; Nakayama et al., 2003) and GER2 (Rhomberg et al., 2006) that complete the synthesis of GDP-1-Fuc (Fig. S1). Additionally, the 1-fucose salvage pathway involving a single bifunctional enzyme 1-FUCOKINASE/GDP-1-FUCOSE PYROPHOSPHORYLASE (FKGP) recycles 1-Fuc, released during, for example cell wall remodeling, back to GDP-1-Fuc (Kotake et al., 2008).

Following synthesis in the cytoplasm, GDP-1-Fuc is transported into the Golgi lumen by the GDP-FUCO-TRANSPORTER1 (GFT1; Rautengarten et al., 2016) where it serves as a substrate for fucosyltransferases (FUTs) that fucosylate molecules such as xyloglucan (FUT1/MUR2, Perrin et al., 1999; Vanzin et al., 2002), arabinogalactan proteins (FUT4, FUT6; Wu et al., 2010; Liang et al., 2013; Tryfona et al., 2014), and N-linked glycans (FUT11/FUCTA, FUT12/FUCTB, FUT13/ FUCTC; Leonard et al., 2002; Strasser et al., 2004). Moreover, 1-Fuc is found in rhamnogalacturonan II (RG-II), and the dwarf phenotype of mur1 mutants has been previously attributed to deficiency in boron-dependent dimerization of this pectin (O’Neill et al., 2001). In mur1, RG-II 1-Fuc residues are replaced by 1-galactose (Zablockis et al., 1996) which leads to an c. 50% decrease in RG-II dimer formation (O’Neill et al., 2001) caused by RG-II chain A truncation (Pabst et al., 2013).

To understand the processes controlling plant gas exchange, ozone (O₃) can be used as an apoplastic ROS donor to stimulate stomatal closure (Overmyer et al., 2000; Kollist et al., 2007; Vahisalu et al., 2010). Plants deficient in O₃-induced stomatal closure, or those in which epidermal integrity is affected, receive high doses of O₃ that triggers the formation of visible hypersensitive response-like lesions. Here, we describe the identification of the MUR1 mutant from an O₃-sensitivity screen and show that synthesis and import of GDP-1-fucose into the Golgi play an important role in regulating plant gas exchange. Our results are consistent with the hypothesis that the gas exchange phenotypes observed in mur1 mutants are independent from stomatal movements and we propose that changes in stomatal morphology, and likely also elevated water vapor permeability of mesophyll/epidermal barriers, contribute to the high rates of water loss observed in mur1 mutants.

Materials and Methods

See Methods S1 for detailed description of methods used in this study.

Plant material and growth conditions

Mutant T7-9/mur1-10 was identified from the genetic screen involving the use of environmental simulation chambers (ExpoSCREEN, Helmholtz Zentrum München) as described earlier (Sierla et al., 2018). Aside from mutant T7-9/mur1-10 that was in pGC1:YC3.6 genetic background and qua1-1 (Ws-4 background), all lines used in this study were in Col-0 background. See Dataset S1 for description of all Arabidopsis thaliana (L.) Heynh. lines used in this study. E. coli and Agrobacterium tumefaciens strains carrying the hpGFT1 construct (Rautengarten et al., 2016) were obtained from Joshua L. Heazlewood. T1 hpGFT1 plants were generated as described before (Rautengarten et al., 2016). Two-week-old T1 plants were transplanted to soil and grown for additional 3 wk as described below. The same selection procedure has been applied to select for empty vector lines. Other control lines were grown in parallel, except the selection antibiotic was not included in the growth medium.

Unless specified otherwise, seeds were suspended in 0.1% agarose solution, vernalized in the dark for 2 d at 4°C and sown on a 1 : 1 mixture of peat and vermiculite. Plants were grown in controlled growth rooms under 12 h : 12 h, light (200 µmol m⁻² s⁻¹); dark cycle, 22°C : 18°C (day : night), 60% : 70% relative humidity. If not otherwise specified, experiments were performed on 3.5-wk-old soil-grown plants.

Water loss assay

Two middle-aged leaves of 3.5-wk-old soil-grown plants were cut and dried abaxial side up at room temperature for 2 h, unless specified otherwise. Mass of leaves was determined before and after drying, and water loss was calculated as percentage of initial fresh weight loss.
Ion leakage assay

The ion leakage was performed by collecting whole rosettes of 3.5-wk-old soil-grown plants into 15 ml of MilliQ water and measuring the conductance of the solution after 6 and 18 h using conductivity meter (FiveEasy FE30; Mettler-Toledo, Columbus, OH, USA). Later, samples were frozen (−20°C) and thawed at room temperature, and the final conductance measurement was performed. Ion leakage was calculated as (%) of conductance recorded after thawing.

Toluidine blue dye-exclusion assay

Toluidine blue dye-exclusion assays (Tanaka et al., 2004) were performed on middle-aged leaves of 3.5-wk-old soil-grown plants. Two 4 μl drops of staining solution (0.05% w/v toluidine blue, 0.01% v/v Tween 20) were applied to adaxial side of the leaves, one on each side of the central vein. Subsequently, plants were covered with transparent lids to maintain high humidity. After 2 h, leaves were abundantly sprayed with water to remove the staining solution. After water has evaporated, leaves were detached and photographed with Nikon D5100 camera equipped with AF-S Micro Nikkor 40 mm 1 : 2.8G objective (Nikon, Tokyo, Japan).

Infrared imaging

Three middle-aged leaves were detached and imaged with Optris PI 450 infrared camera (Optris GmbH, Berlin, Germany) equipped with 10 mm lens. Images were captured at 2-s interval, and leaf temperatures were extracted with the use of Optris PI Connect (v.2.9.2147.0) software.

Metabolomics

The GDP-L-fucose was quantified with UPLC-6500+ QTRAP/MS system (Sciex, Redwood City, CA, USA) in negative (ESI-) multiple reaction monitoring (MRM) mode.

Waxes were extracted by individually dipping 5–6 middle-aged leaves of 5-wk-old soil-grown plants into chloroform for 30 s. The samples were dried under a stream of nitrogen, and analysis of wax monomers was performed as described previously (Fahlberg et al., 2019).

Approximately 0.5 g of leaf material collected from 4.5-wk-old soil-grown plants was processed as described earlier (Jenkin & Molina, 2015). Levels of individual cutin components were analyzed by GC–MS.

Gas exchange analysis

The gas exchange experiments were performed with multicuvette gas exchange system (PlantInvent Ltd, Tartu, Estonia) as described previously (Sierla et al., 2018). Leaf conductance was calculated as transpiration divided by the difference in molar concentrations of water vapor inside the leaf and in the ambient air in the measuring chamber (Kollist et al., 2007). To characterize minimal leaf conductance, plants were incubated for at least 1 h in darkness at 800 μl−1 CO2 to induce maximal stomatal closure. After stabilization of leaf conductance, rosettes were detached from the roots with a razor blade and leaf conductance measurements were continued for 64 min. The stabilized new levels of leaf conductance were defined as minimal leaf conductance.

Mapping by next-generation sequencing

Rosettes were harvested in bulk and used for preparation of nuclear DNA. The nuclear DNA-enriched sample was sequenced (2 × 150 bp) using NextSeq 500 sequencer (Illumina, San Diego, CA, USA) to an c. 50-fold genome coverage at DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki. Data were analyzed according to the procedure described earlier (Sun & Schneeberger, 2015).

Expression analysis by qPCR

For gene expression analysis of T-DNA insertion mutants, plants were grown vertically on half-strength Murashige & Skoog medium (Duchefa Biochemie, Haarlem, the Netherlands) in controlled growth chambers (model MLR-350; Sanyo, Osaka, Japan) under 12 h : 12 light (130–160 μmol m−2 s−1) : dark cycle, 22°C : 18°C (day : night). For every biological replicate (three in total), c. 10 whole 2-wk-old plants were pooled, frozen, and ground in liquid nitrogen. For analysis of GFT1 transcript level, whole rosettes of T1 hpGFT1 plants (minus two middle-aged leaves that were used for water loss assay) were frozen in liquid nitrogen and ground with a mortar and pestle. RNA isolation, cDNA synthesis, qPCR, and data analysis were performed as described previously (Xu et al., 2015).

Stomatal morphology

Cotyledons (one cotyledon per plant, four–six plants per line per biological replicate, three biological replicates) were processed (see Methods S1), and serial images (1800× magnification, 10% overlap) were taken with Quanta FEG 250 (Thermo Fisher Scientific, Waltham, MA, USA) scanning electron microscope at the Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki. Images were stitched in ImageJ (Schindelin et al., 2012) implementing MIST plugin (Challion et al., 2017). For each cotyledon, from 1 to 2.5 mm² area was analyzed, containing 100–350 stomatal complexes. Stomatal morphology was assessed visually and assigned into one of the four categories: normal appearance, not determined, covered, and abnormally large/obstructed. The size of stomatal pores was determined with the use of ImageJ.

For observation of stomata on abaxial side of true leaves c. 4 × 4 mm fragments of middle-aged leaves were excised, mounted on aluminum stubs, and plunged into slush nitrogen. Samples were coated with 5 nm platinum in Quorum PP3010T Cryo-SEM preparation system, and SEM images were acquired with JEOL JIB-4700F Multi Beam System at the OtaNano-Nanomicroscopy Center, Aalto University. Five to six 0.2 mm² images per each leaf fragment were captured, and the stomatal density and morphology were assessed with the help of ImageJ.
Projected rosette area

Rosettes were photographed with Nikon D5100 camera equipped with AF-S Micro Nikkor 40 mm f:2.8G objective (Nikon). The projected rosette area was determined with ImageJ.

Atomic force microscopy

For AFM experiments, seeds were stratified for 7 d at 4°C, then grown in a 3 : 1 compost : perlite mix. Growth conditions were as follows: light intensity 170 μmol m⁻² s⁻¹, 12 h : 12 h, day : night, (21°C) : (17°C), 60% humidity. Leaves from c. 21-d-old plants were analyzed as described previously (Carter et al., 2017). Dissected and plasmolyzed (0.55 M mannitol; minimum 45 min) leaf blocks (c. 5 × 5 mm square) were indented using a Nano Wizard 3 AFM (JKP Instruments, Berlin, Germany) mounted with a nominal 5 nm diameter pyramidal indenter (Windsor Scientific, Slough, UK) on a cantilever of nominal 45 N m⁻¹ stiffness. Cantilever stiffness was calibrated using the thermal tuning method available in the JPK controller software. Cantilever sensitivity was calibrated by performing indentation measurements on a glass slide and was repeated for each experiment.

For each leaf block, an area of 100 × 100 μm was indented by splitting the area into a grid of 128 × 128 indentations. Indentations were stopped when an indentation force of 1000 nN was reached, which corresponds to an indentation depth of between 100 and 1000 nm. Force indentation curves were analyzed with the JPKSPM Data Processing software (JKP Instruments; v.spm 5.0.69) using the following steps: Raw voltage values converted to force values using the calibrated cantilever sensitivity and stiffness, baseline corrected for offset and tilt, displacement offset corrected, indentation calculation, and material property calculation using a Hertzian indentation model to the approach curve. Use of the Hertzian model assumes an infinite homogenous elastic half space, which is clearly not the case for the leaf surface. For this reason, we report results as an apparent modulus (Ea).

Retraction curves were discarded due to numerous complications with adhesion between the tip and sample surface.

Observation of dark-elongated hypocotyls by confocal microscopy

Seeds were stratified, surface-sterilized, and sown on agar-solidified (0.8% w/v) 1/2 MS (Duchefa Biochemie) supplemented with 0.5 g l⁻¹ MES pH 5.8 and 1% sucrose. Following 7 h exposure to light, plates were incubated vertically for 4 d in controlled growth chambers (MLR-350; Sanyo) at 23°C, 60% humidity. Seedlings were stained with 0.2 mg ml⁻¹ Propidium iodide (PI) excitation was performed using a 552 nm solid-state laser, and fluorescence was detected at 600–650 nm. Seedlings were sprayed with a solution containing 5 μM ABA (Duchefa), 0.012% (v/v) Silwet, and 0.05% (v/v) ethanol or mock solution. After 45 min, two middle-aged leaves per plant were detached and the abaxial side was immediately coated with Xantopren M Mucosa (Kulzer GmbH, Hanau, Germany). After 24 h, the molds were peeled off and coated with transparent nail polish. The nail polish imprints were imaged with the use of Leica DMLB microscope equipped with Leica 20× Fluotar objective. Two images per leaf were captured, one per each side of the central vein. Images were analyzed with ImageJ, and stomatal apertures were calculated as stomatal length : width ratio.

Results

Lack of MUR1 results in high rates of water loss

To identify novel regulators of plant gas exchange, we performed a multistep forward genetic screen based on O₃-sensitivity (Sierla et al., 2018; Takahashi et al., 2022). The screen was performed on EMS-mutagenized pGC1:Yellow Cameleon 3.6 (YC3.6, Yang et al., 2008) line. Aside from O₃-sensitivity, the water loss assay, also known as ‘mass loss of detached leaves, MLD’ (Duursma et al., 2019), was used in this screen as a simple indicator of minimal leaf conductance (gmin). The gmin is a sum of cuticular conductance (gcut) and residual stomatal conductance observed after the detachment of leaves (minimal stomatal conductance, g₉ₕ min).

Elevated water loss can be observed in mutants impaired in stomatal closure (Vahisalu et al., 2008; Hörak et al., 2016; Sierla et al., 2018) or cuticular/epidermal integrity, for example those deficient in cutin biosynthesis (Bessire et al., 2007; Jakobson et al., 2016) or epidermal cell adhesion (Bouton et al., 2002; Mouille et al., 2007).

From this screen, we isolated mutant T77-9 that exhibited high water loss from detached leaves (Fig. 1a) and altered gas exchange dynamics in response to O₃, high CO₂ concentration, ABA, and darkness (Fig. S2). To identify the T77-9 causative mutation, we applied the SHOREmap backcross pipeline (Hartwig et al., 2012). Approximately 21% of the BCI₁₂ plants (123 out of 593) exhibited increased water loss, indicating that the trait was determined by a single recessive mutation.

Screening of the mutant lines for the five candidate genes (Table S1) revealed that three independent mutant lines: murl-1, murl-2 (Reiter et al., 1993; Bonin et al., 1997) and murl-9 (SALK_057153, Fig. S3), carrying mutations within AT3G51160 (Fig. 1b), exhibited highly elevated water loss (Fig. 1c), while mutant lines for the remaining candidate genes did not (Fig. S4). Monitoring of leaf temperature during the water loss experiment revealed that, in Col-0, detachment of leaves significantly increased leaf temperature while the temperature of murl leaves closely resembled that of ghr1-3 indicating comparable rates of g₉ₕ (Fig. S5).

AT3G51160 encodes GDP-mannose-4,6-dehydratase MURUS1 (GMD2, MUR1), which catalyzes the first step in de novo biosynthesis of GDP-1-Fucose (Fig. S1; Bonin et al., 1997).
Therefore, we investigated the level of GDP-L-Fuc in the T7-9 mutant. Like in other mur1 mutants, we were not able to detect this metabolite in T7-9, suggesting complete loss of MUR1 enzymatic activity (Fig. 1d). Finally, an allelism test between T7-9 and mur1-2 mutant revealed lack of complementation, confirming that the T7-9 MUR1 E175K mutation (hereafter referred to as mur1-10) conferred its high water loss (Fig. 1e).

Impaired import of GDP-L-fucose into the Golgi apparatus results in high rates of water loss

Following the identification of mur1 mutant, we set out to investigate the water loss of mutants impaired in the GDP-L-Fuc salvage pathway and import into the Golgi. The water loss of fkgp mutants (fkgp-1, fkgp-2, Kotake et al., 2008) was similar to that of Col-0 (Fig. S6), indicating that the L-fucose salvage pathway has little impact on plant gas exchange. Further, we focused on characterization of the GDP-L-Fuc transporter GFT1. Loss-of-function mutants of GFT1 are not viable; therefore, we utilized the hairpin RNAi strategy used earlier by Rautengarten et al. (2016) to generate GFT1 knockdown plants (hpGFT1).

MUR1 is required for regulation of plant gas exchange

To further characterize the gas exchange dynamics in mur1 mutants, we subjected them to a variety of treatments provoking stomatal movements and followed time-resolved whole-rosette

Fig. 1 Mapping of Arabidopsis thaliana T7-9 mutant. (a) Leaf fresh weight loss of T7-9 and control lines (YC3.6, Col-0, slac1-4, and ghr1-3) recorded after 2 h. Data bars represent means ± SD (n = 12 plants). (b) Positions of mutations in mur1 mutants used in this study. (c) Leaf fresh weight loss of T7-9, independent mur1 mutants (mur1-1, mur1-2, and mur1-9) and control lines (YC3.6, Col-0, slac1-4, and ghr1-3) recorded after 2 h. Data bars represent means ± SD (n = 12 plants). (a, c) Asterisks denote statistical differences (***, P < 0.001) to respective control lines (Col-0 or YC3.6) according to one-way ANOVA followed by Sidák’s post hoc test. (d) GDP-L-fucose content in T7-9, mur1 mutants and respective control lines measured by UPLC-MS. Data bars represent means ± SD (n = 4–5 plants); nd, not detected; FW, fresh weight. (e) Leaf fresh weight loss of T7-9, mur1-2, F1 T7-9 x mur1-2, and F1 YC3.6 x mur1-2 and control lines recorded after 2 h. Data bars represent means ± SD (n = 9–12 plants). Asterisks denote statistical differences (*, P < 0.05; ***, P < 0.001) to Col-0 according to one-way ANOVA followed by Dunnett’s post hoc test. (a, c, e) Experiments were repeated three times with similar results. Results of the representative experiments are shown.
transpiration and leaf conductance (Kollist et al., 2007; Jakobson et al., 2016). Gas exchange measurements were performed for mur1-1 and mur1-2 mutants (Reiter et al., 1993; Bonin et al., 1997) using gfr1-3 (Sierla et al., 2018) and bhl-2 (Hashimoto et al., 2006) as nonresponsive controls in closure and opening assays, respectively.

As observed earlier in T7-9 (Fig. S2) in response to a 3-min O₃ pulse, plants lacking MUR1 displayed the rapid transient decrease in leaf conductance (Figs 3a,b, S8a, S9a) with lower magnitude than Col-0 plants whereas O₃ response was not present in gfr1-3 plants (Sierla et al., 2018).

Similarly, a decreased response upon treatment with elevated CO₂ concentration (800 μl l⁻¹), 5 μM ABA spray or application of darkness during the light period was observed in mur1 mutants (Figs 3c–h, S8b–d, S9b–d; Dataset S2). During diurnal light/dark cycles, the transition to darkness induced a rapid drop in transpiration and leaf conductance of Col-0 plants while mur1 mutants exhibited a much less pronounced response (Figs S8e, S9e).

The stimuli provoking stomatal opening, such as exposure to low CO₂ concentration (400 → 100 μl l⁻¹) or increase in light intensity (150 → 500 μmol m⁻² s⁻¹), did not show any differences between mur1 mutants and the wild-type (WT; Fig. S10).

To estimate minimal leaf conductance, we treated mur1 and Col-0 plants with a combination of stomata-closing stimuli (elevated CO₂ concentration and darkness) for 1 h, after which the rosettes were separated from roots to ensure maximal stomatal closure. Such treatment triggered reduction of leaf conductance in all tested lines; however, in mur1 mutants the leaf conductance stabilized at values two times higher than in Col-0 (Fig. S11). Taken together, our data indicate that stomata of mur1 plants responded to O₃, high CO₂ concentration, ABA, and darkness; however, with no regard to the stimulus, the post-treatment leaf conductance always remained higher than that of the WT plants indicating general impairment in gas exchange regulation.

MUR1 is involved in stomatal development

To assess stomatal development, we performed scanning electron microscopy-based examination of abaxial epidermis of mur1-1 and mur1-2 cotyledons. No consistent phenotype related to stomatal density was observed in mur1 mutants. The stomatal density in mur1-2 mutant was higher than in mur1-1, which had a similar stomatal density to Col-0 (Fig. 4a). The average size of stomatal pores appeared covered with cuticle (Fig.4c).

Examination of middle-aged rosette leaves, that is leaves which were used for water loss assay, by means of cryo-SEM revealed similar phenotypes (Dataset S3a), except no abnormally big/
obstructed stomata were detected. The stomatal density was elevated in mur1-2 (Fig. 4d), and in both mutants, c. 10% of stomata were covered with OCLs (Fig. 4e). Overall, despite the differences in stomata size and morphology, in the majority of experiments, the daytime whole-rosette leaf conductance of mur1 mutants did not differ significantly from that of the WT plants (Figs S8E, S13). We however observed that the leaf conductance of mur1-2 tended to be smaller than that of Col-0 (Fig. S13). This difference is probably associated with the higher frequency of ‘covered’ stomata observed in this mutant (Fig. 4e).

High rate of water loss is independent of stomatal movements in mur1 mutants
A series of experiments was performed to elucidate whether altered plant gas exchange dynamics observed in mur1 mutants is related to impaired guard cell signaling or stomatal movements. We crossed mur1-1 and mur1-2 to slac1-4 (Vahisalu et al., 2008), aba2-11 (González-Guzmán et al., 2002), ost1-3 (Yoshida et al., 2002), and ghr1-3 (Sierla et al., 2018) and assayed the stomatal function of the double mutants via water loss assay. In every double mutant, an additive effect of combining two mutations could be observed (Fig. 5a), indicating that the phenotypes observed in mur1 plants were independent from the canonical guard cell signaling pathways.

Because of the additive effects and the previously documented role of MUR1 in cell wall development, we investigated the mechanical properties of mur1 guard cell walls with atomic force microscopy (Carter et al., 2017). The patterning of the apparent modulus (E_a) in the stomatal complexes of mur1 mutants was comparable to that of the control lines. However, comparison of the absolute E_a values derived from the AFM scans indicated that

Fig. 3 Characterization of mur1 gas exchange dynamics. (a–h) Leaf conductance responses of Arabidopsis thaliana mur1 mutants to stomata-closing stimuli. ABA, abscisic acid. Relative and absolute values were calculated from the data presented in Supporting Information Fig. S8. (a, c, e, g) Time course of relative leaf conductance (normalized to the last time point before the treatment) of 3- to 4-wk-old mur1-1, Col-0, and ghr1-3 plants in response to (a) O$_3$ pulse, (c) elevated CO$_2$, (e) ABA spray, and (g) darkness. The indicated treatments were applied at t = 0, and whole-rosette leaf conductance was recorded. Data points represent means ± SE; n = 7–10 (a), 10–12 (c), 9–11 (e), 6–11 (g) plants analyzed in two (a, e, g) or three (c) independent experiments. (b, d, f, h) Changes in leaf conductance of Col-0, mur1-1, mur1-2, and ghr1-3 in response to (b) O$_3$ pulse, (d) elevated CO$_2$, (f) ABA spray, and (h) darkness. Values were calculated by subtracting the initial leaf conductance at t = 0 (d, f, h) or t = 1 (b) from the leaf conductance at (b) t = 7 min, (d, f, h) t = 40 min. Data bars represent means ± SE; n = 7–10 (b), 10–12 (d), 9–11 (f), 6–11 (h) plants. Asterisks denote statistical differences to Col-0 (**, $P < 0.01$; ***, $P < 0.001$) according to one-way ANOVA followed by Dunnett’s post hoc test.
mutant had significantly stiffer pavement cells (approximately twofold increase on average) and the same difference was observed when values obtained for guard cell walls were compared (Fig. 5b). We therefore conclude that lack of MUR1 affected mechanical properties of the leaf epidermis.

To investigate whether these properties affect stomatal movements, we assessed the closure of mur1 stomata in response to ABA spray by means of microscopic imaging of stomatal width : length ratio in epidermal imprints. For this, whole rosettes of Col-0, mur1-1, mur1-2, and the ABA-unresponsive ghr1-3 mutant (Sierla et al., 2018) were treated with ABA and the stomatal apertures were recorded after 45 min. This treatment led to a pronounced decrease of stomatal aperture in Col-0 while the ghr1-3 mutant was largely unresponsive (Fig. 5c). In contrast to ghr1-3, the stomatal apertures of both mur1 mutants decreased nearly to the same extent as those of Col-0 plants, indicating capability for the execution of stomatal movements in response to ABA (Fig. 5c). Analogical treatment with ABA performed 1 h before leaf excision was not sufficient to suppress the elevated water loss of mur1 mutants (Fig. S14) indicating little correlation between the outcome of water loss assay and initial aperture of stomatal pores.

Furthermore, by microscopic real-time imaging of stomatal movements, we investigated whether mur1 stomata close during the water loss assay. In these experiments, ost1-3 mutant was used as a control. Before leaf excision, stomatal apertures were significantly larger in ost1-3 while no differences between Col-0 and mur1 mutants were observed (Fig. 5d,e). Leaf excision induced a decline, and stomata of mur1 mutants reacted to this treatment similarly as those of Col-0 (Fig. 5d,e; Video S1). The stomatal apertures of ost1-3 remained significantly higher than those of Col-0 and mur1 throughout the experiment. Moreover, a large number of ost1-3 stomata were open at the final time point of the experiment (45 min). We therefore concluded that high water loss observed in mur1 mutants was uncoupled from stomatal movements.

Additionally, we investigated whether reduction of leaf conductance observed in mur1 mutants during the day/night transition (Fig. S8e) can affect the outcome of water loss assay. For this, we performed water loss experiments 2 h following the onset of illumination and the night period, respectively. In these experiments, ost1-3 and ghr1-3 mutants were used as controls because ost1-3 exhibits high gs during the day and a clear decrease during the night while ghr1-3 maintains high gs irrespectively of the diurnal rhythm (Sierla et al., 2018). In ost1-3 mutant, values recorded at night decreased by half compared with daytime water loss, suggesting that the decrease in gs observed during day/night transition was sufficient to limit the nocturnal water loss in this mutant. In contrast, the night-time water loss of ghr1-3 and both mur1 mutants was nearly as high as that recorded during the day, albeit a statistically significant difference was observed in mur1 (Fig. 5i). We therefore conclude that high nocturnal water loss observed in mur1 mutants was independent of the decrease in leaf conductance observed during the day/night transition.

Epidermal permeability, cuticle composition, and cell adhesion in mur1 mutants

The apparent lack of correlation between the whole-rosette leaf conductance and stomatal movements as well as high nocturnal water loss suggested that mur1 mutants lose water through non-stomatal paths. Therefore, we set out to assess their cuticular and epidermal integrity. No phenotypes related to cuticle
permeability were detected in mur1 mutants by means of toluidine blue dye-exclusion assay (Fig. S15a); however, a moderate but consistent (albeit not always statistically significant) increase in whole-rosette ion leakage could be observed (Figs 6a, S16).

The total content of cutin monomers in mur1 mutants was comparable to Col-0; however, differences in relative abundance of monomers could be observed (Table S2). The analysis of cuticular wax composition revealed much more pronounced differences (Fig. 6b; Table S3), with total wax levels nearly doubled in mur1 mutants compared with Col-0. In both mutants, increased abundance of fatty alcohols, fatty acids, and sterols was observed, while the abundance of long-chain aldehydes was reduced in mur1-2 (Fig. 6b; Table S3). Taken together, we conclude that impaired function of MUR1 had little effect on the adhesion of epidermal cells, and loss of epidermal cell adhesion requires ESMERALDA1 (ESMD1) and its interaction partner, fucosyltransferase SPINDLY (Zentella et al., 2002) as the impaired uptake of boron was previously demonstrated to affect not only the dimerization of RG-II (Miwa et al., 2013; Panter et al., 2019) but also membrane integrity (Cakmak et al., 1995; Han et al., 2008). We found that a soil-grown bor1-3 mutant (Kasai et al., 2011) exhibited high water loss which could be fully reverted by supplementing the soil with 50 μM borate, while lower concentrations (10 and 20 μM) had less effect (Fig. 7b). The water loss of mutants impaired in fucosylation of xyloglucan (mur2-1; Vanzin et al., 2002); arabinogalactan proteins (fut4 fut6; Tryfona et al., 2014) and N-glycans: fucTa fuctb (Strasser et al., 2004), fucte-1 (Rips et al., 2017) was comparable to that of Col-0 (Fig. 7c), suggesting that high water loss observed in mur1 was not related to impaired fucosylation of these cell wall components. Collectively, our data supported the hypothesis that high water loss observed in mur1 plants is related to a deficiency in RG-II crosslinking and/or membrane integrity.

Discussion

Synthesis of GDP-L-fucose and boron uptake are required for normal plant gas exchange

Here, we report the identification of impaired regulation of gas exchange in plants lacking MUR1 – an enzyme catalyzing the first step in de novo GDP-L-Fuc synthesis pathway (Bonin et al., 1997). Plants lacking GDP-L-Fuc exhibited high loss of water from detached leaves (Fig. 1) and impaired decrease in leaf conductance in response to O₃, ABA, darkness, and high CO₂ concentration (Figs 3, S8, S9; Dataset S2). High water loss observed in mur1 appears independent from canonical guard cell signaling pathways (Fig. 5a) and was also detected in plants impaired in import of GDP-L-Fuc into the Golgi apparatus (Fig. 2). Therefore, we conclude that not only synthesis but also the import of GDP-L-Fuc into the Golgi lumen is required for normal gas exchange.

The fucosylation of cell wall components is thought to occur in the Golgi apparatus (Fig. S1; Chou et al., 2015; Strasser, 2016), and the majority of fucose is incorporated into the cell wall via the Golgi-derived vesicles (Anderson et al., 2012). We excluded the possibility that phenotypes observed in mur1 might be linked to impaired fucosylation of AGPs, N-linked glycans, and xyloglucan (Fig. 7c). The reversion of the mur1 water loss phenotype by borate supplementation (Fig. 7a), and high water loss observed in bor1-3 mutant (Fig. 7b), suggests that the phenotype was linked either directly or indirectly, to the structure and dimerization of RG-II. Recently, Panter et al. (2023) arrived at the same conclusions.

Depletion of GDP-L-Fuc also likely impairs protein o-fucosylation. The only characterized Arabidopsis protein o-fucosyltransferase SPINDLY (Zentella et al., 2017) was shown to be required for the great majority of o-fucosylation events (Bi et al., 2023). However, we did not detect high water loss in spy mutants (data not shown). Moreover, SPY is a nucleocytoplasmic protein while our data suggest that import of GDP-L-fucose into Golgi is required to restrict water loss (Fig. 2). Taken together,
we conclude that high water loss observed in *mur1* mutants was related to impaired RG-II crosslinking. However, based on data generated in this work, we cannot exclude additional functions of GDP-1-Fuc and boron, that could also contribute to gas exchange regulation (discussed further below).

Stomatal movements and cuticular barriers in *mur1* mutants

Our AFM data indicated that the cell walls of *mur1* guard cells and epidermal cells were significantly stiffer than that of WT
Fig. 5 Functional analysis of mur1 stomata. (a) Leaf fresh weight loss of Arabidopsis thaliana double mutants obtained after crossing slac1−4, ghrl1−3, aba2−11, and ostf1−3 with mur1−1 and mur1−2 recorded after 1 h. Data bars represent means ± SD (n = 13–16 plants). Asterisks denote statistical differences (***, P < 0.001) to respective single mutant lines (slac1−4, ghrl1−3, aba2−11, and ostf1−3) according to one-way ANOVA followed by Sidák’s post hoc test. Experiment was repeated three times with similar results. Results of the representative experiment are shown. (b) Average apparent Young’s modulus (E) values derived from atomic force microscopy (AFM) scans of pavement cells (PC) and guard cells (GC) of control (Col-0, YC3.6) and mur1 A. thaliana plants. Bars represent means ± SD (n = 2–3 plants, 2 stomata per plant). Asterisks denote statistical differences according to two-way ANOVA, followed by Tukey’s post hoc test (***, P < 0.001) to respective control lines (Col-0, YC3.6) observed within a cell type. (c) Normalized stomatal width: length ratio observed on epidermal imprints of abaxial side of A. thaliana middle-aged leaves 45 min after spray with 5 mM abscisic acid (ABA) or mock solution. Data bars represent means ± SD, n = 8 plants analyzed in four biological replicates (two plants per replicate, two leaves per plant, at least 30 stomata per plant). Within each replicate, values were normalized to mock-treated Col-0. Asterisks denote statistical differences (*, P < 0.05; ***, P < 0.001) to respective control lines (Col-0 and ostf1−3) after leaf detachment. Leaves were detached at t = 0. Data points represent means ± SE (n = 24–28 stomata per genotype (six plants per genotype, typically 3–5 stomata per plant). (d) Normalized stomatal pore width: length ratios observed on abaxial side of middle-aged leaves of Arabidopsis thaliana mur1−1 and control lines (Col-0 and ostf1−3) after leaf detachment. Leaves were detached at t = 0. Data points represent means ± SE (n = 24–28 stomata per genotype (six plants per genotype, typically 3–5 stomata per plant). (e) Statistical analysis of data presented in panel (d). Data points represent values recorded for individual stomata, red horizontal bars represent means ± SE. Red asterisks (*, P < 0.05; ***, P < 0.001) indicate significant differences to Col-0 within each time point according to two-way ANOVA followed by Dunnnett’s post hoc test. (f) Leaf fresh weight loss of A. thaliana mur1−1 and mur1−2 mutants and control lines (Col-0, ostf1−3 and ghrl1−3) recorded after 2 h. Experiments were performed 2 h after the beginning (Day), or end (Night), of the light period. Data bars represent means ± SD (n = 6–8 plants). Asterisks (*, P < 0.05; ***, P < 0.001) denote statistical differences (Day vs Night) within each genotype according to two-way ANOVA followed by Sidák’s post hoc test. Experiment was repeated four times with similar results. Results of the representative experiment are shown.

plants (Fig. 5b). While mechanical properties of guard cell walls are expected to change the dynamics of stomatal movements (Jones et al., 2003; Amsbury et al., 2016; Rui et al., 2017), our data clearly indicate that mur1 stomata were capable of closure (Fig. 5c-e; Video S1). Similar conclusions can be drawn from studies by Zhang et al. (2019) and Panter et al. (2023) who demonstrated nearly complete closure of mur1 stomata in response to ABA treatment. Moreover, we found that mur1 stomatal responses to opening stimuli were not impaired (Fig. S10), suggesting that altered mur1 cell wall mechanics does not have a profound effect on stomatal movements. Finally, we found that pretreatment with ABA or night stimulus which clearly decreased leaf conductance of mur1 mutants (Fig. S8e) had little effect on mur1 water loss (Figs S14, 5f). Thus, we conclude that high water loss observed in mur1 mutants cannot be readily compared to that observed in classical stomatal mutants such as ghrl1 or ost1 and likely has a different mechanistic origin.

Despite moderate increase in ion leakage (Fig. 6a) and changes in cutin composition (Fig. 6b; Table S2), mur1 mutants did not exhibit elevated leaf conductance (Fig. S13) or staining with toluidine blue (Fig. S15a; Lorrai et al., 2021; Panter et al., 2023) that is otherwise typical for cuticular and cell adhesion mutants (Jakobson et al., 2016; Fig. S15). In agreement with these data, we did not detect morphological symptoms of loss of epidermal cell adhesion in mur1 mutants (Dataset S3) and found that the introduction of esm1−1 mutation into the mur1 background did not reduce its water loss (Fig. 6c).

Loss of epidermal/cuticular barriers caused by impaired cutin deposition (Bessire et al., 2007; Voisin et al., 2009) or loss of epidermal cell adhesion (Lorrai et al., 2021) was found to cause strong resistance to Botrytis cinerea. However, in the same study Lorrai et al. (2021) observed no increased resistance to this pathogen in mur1 mutant, suggesting no radical changes in the permeability of epidermal/cuticular barriers. Taken together, our data suggest that gas exchange phenotypes observed in mur1 did not stem from general defects in cutin synthesis or epidermal cell adhesion, that is elevated g_{cuti}.

How do mur1 mutants lose water?

Due to the limited phenotypical similarities between mur1 and classical mutants impaired in stomatal movements, cutin synthesis or epidermal cell adhesion, mur1 mutants cannot be clearly placed into any of these categories. The apparent lack of correlation between measured stomatal apertures and leaf conductance and transpiration (Figs 3e, 5c), leaf conductance and water loss (Figs S8e, 5f) as well as normal stomatal movements following leaf detachment (Fig. 5d-e; Video S1) suggest that mur1 stomata are permeable to water vapor even in the closed state. This phenomenon, that is high minimal stomatal conductance, is thought to significantly contribute to g_{min} (Kerstiens, 1996; Duursma et al., 2019; Machado et al., 2021). High g_{min} can be associated with higher stomatal density, imperfect closure of stomata and possibly other structural features of guard cells or mesophyll. Our data (Fig. 4a,d), combined with earlier reports (Zeng et al., 2011; Panter et al., 2023) indicate that the stomatal density in mur1 mutants is not elevated. The size of stomatal complexes was somewhat elevated in mur1 mutants (Fig. 4b; Zeng et al., 2011; Panter et al., 2023); however, we found that this did not significantly increase the steady-state leaf conductance or transpiration (Figs S8–S10, S13). Thus, the gas exchange profiles of mur1 mutants might be explained by the imperfect closure of stomata that likely leads to an increase in minimal stomatal conductance.

An explanation for the elevated g_{min} might be offered by the observation of stomatal morphology in mur1 mutants. In agreement with earlier reports (Zeng et al., 2011; Panter et al., 2023), we found that mur1 stomata exhibit a range of structural defects, most notably, altered structure of outer cuticular ledges (Figs 4, S12; Dataset S3). It is tempting to speculate that changes in
cuticle composition observed in mur1 mutants (Fig. 6b; Tables S2, S3) might be responsible for the OCL-related phenotypes. Importantly, the same structural defects were recently identified also in boron uptake mutant (Panter et al., 2023) which implies a link between uptake of boron and morphology of OCLs. However, it cannot be excluded that the cuticle composition changes are a secondary effect of stress signaling (Voxeur et al., 2017; Chen et al., 2022). The precise function of OCLs is still poorly characterized (Hunt & Gray, 2020); however, changes in OCL structure provide little explanation for additive water loss observed in double mutants of mur1 and guard cell signaling components (Fig. 5a).

The excision of leaves leads to a rapid decrease in leaf water potential, leading to transient increase in g_w (usually described as ‘wrong way response’) and initial drop in leaf temperature, which is ultimately followed by maximal stomatal closure with g_w values reaching g_w_{min} (Powles et al., 2006) and increase in leaf temperature (Fig. S5). Under conditions of no water supply observed after leaf excision, the relative humidity in the substomatal cavities and mesophyll air spaces is expected to drop below saturation, ultimately triggering, and linking the evaporation rate to the active control of plasma membrane hydraulic conductivity (Wong et al., 2022), while primary cell walls were proposed to influence plant–water relations over 40 yr ago (Jarvis & Slatyer, 1970) and emerge as important regulators of mesophyll conductance to CO$_2$ (Evans, 2021), within the mesophyll the major resistance to water vapor is attributed mostly to plasma membrane aquaporins (Wong et al., 2022). Aside from controlling cell wall porosity (Fleischer et al., 1999), RG-II was demonstrated to form borate-dependent linkages with plasma membrane sphingolipids in cultured Rosa cells (Voxeur & Fry, 2014) and boron deficiency affects membrane integrity (Cakmak et al., 1995; Han et al., 2008). Increased ion (Figs 6a, S16) and chlorophyll leakage (Lorrai et al., 2021) observed in mur1 mutants likely stem from the same causes. It is thus possible that elevated membrane permeability, which otherwise does not affect the steady-state leaf conductance, gains significance under conditions of severe water deficit, contributing to high water loss observed in mur1 mutants. However, the relative contribution of stomatal morphology and membrane integrity to the observed gas exchange phenotypes awaits further investigation.

Fig. 6 Epidermal integrity in mur1 mutants. (a) Ion leakage in 6 and 18 h expressed as % of total ion content. Data bars represent means ± SD (n = 5–6 plants). Asterisks denote statistical differences according to two-way ANOVA, followed by Tukey’s post hoc test (***, P < 0.001) to Col-0 observed within each time point. Experiment was repeated seven times with similar results. Results of the representative experiment are shown. (b) Analysis of wax content by GC–MS. Data bars represent means ± SD (n = 8 plants) calculated based on data presented in Supporting Information Table S3. Asterisks denote statistical differences (**, P < 0.01; *** P < 0.001) to Col-0 within each compound group, according to two-way ANOVA followed by Dunnett’s post hoc test. (c) Leaf fresh weight loss of double mutants obtained after crossing mur1-1, mur1-2 and qua2-1 with esmd1-1, recorded after 2 h. Data bars represent means ± SD (n = 7–8 plants). Asterisks denote statistical differences (***, P < 0.001; ns, not significant) to Col-0 (black) or respective single mutant lines (red), according to one-way ANOVA followed by Sidák’s post hoc test. Experiment was repeated four times with similar results. Results of the representative experiment are shown. (a–c) Experiments performed on whole rosettes (a) or middle-aged leaves (b, c) of 3.5- (a, c) or 5-wk-old (b) soil-grown Arabidopsis thaliana plants.
We conclude that the abnormal gas exchange regulation observed in mur1 is linked to altered mechanical and morphological properties of stomatal complexes likely accompanied by additional defects, for example impaired membrane integrity. In summary, our study highlights the key role of fucose metabolism and boron uptake in determining plant–water relations.

Acknowledgements

We thank Julian Schroeder, Toshihisa Kotake, Pedro L. Rodríguez, Richard Strasser, Koh Iba, Grégory Mouille, and Paul Dupree for providing seeds of several mutants used in this study. We thank Joshua Heazlewood and Berit Ebert for providing Agrobacterium tumefaciens strain carrying the hpGFT1 construct, T1 seeds of hpGFT1 and corresponding EVC. Łukasz Wiczołek, Julia Palorinne, Anna Huusari, Konrad Łosiński, Jelena Odintsova, and Samuli Lundström are acknowledged for excellent technical help. Leena Grönholm and Valtteri Lehtonen are acknowledged for maintaining the plant growth facilities. Personnel of the DNA sequencing and genomics laboratory are acknowledged for the technical assistance with NGS. Mervi Lindman and Lide Yao are acknowledged for assistance with electron microscopy. We gratefully acknowledge Hans Lang for an excellent technical support during the ozone fumigation experiments at the EUS. We thank Andreas Albert and the technical staff of EUS for outstanding support during the experiment. Thanks to Mikael Brosch, Kirk Overmyer, Grégory Mouille, and Teemu Hölätä for helpful comments and discussions throughout the duration of the project. This work was supported by the Research Council of Finland Centre of Excellence programs (2014-2019; 2022-2029), Research Council of Finland postdoctoral fellowships (Decision 294580, CW; 266793, TV), Research Council of Finland Research Fellowship (Decision 333703, MS), University of Helsinki 3-yr research grant (CW, MLG), EDUFI fellowship (MLG), The Ella and Georg Ehrnrooth Foundation (CW, MS), Finnish Cultural Foundation (MS), Dora Plus Programme (Contract No. 36.9-6.1/1372, OZ), Estonian Research Council (PRG433, HK; PUT311, PRG719, DY), European Regional Development Fund (Center of Excellence in Molecular Cell Engineering CEMCE, HK). The ozone exposure experiments performed at the HMGU were supported by Transnational Access program of the European Plant Phenotyping Network (EPPN, grant no. 284443) funded by the FP7 Research Infrastructures Programme of the European Union.

Competing interests

None declared.
Author contributions
JK conceived the ozone-sensitivity screen; CW, TV, DY, MS, MLG, RC, NS, AJF, MXA, HK and JK designed experiments; CW, TV, DY, MS, OZ, MLG, RC, TP, NS, AL, LP, PA, AJF and MXA performed experiments and analyzed the data; JD, DE and JBW provided technological solutions for large-scale O3 exposures; CW, DY, HK and JK wrote the manuscript with comments from all co-authors.

ORCID
Mats X. Andersson https://orcid.org/0000-0003-4279-6572
Petri Auvinen https://orcid.org/0000-0002-3947-4778
Ross Carter https://orcid.org/0000-0002-6251-7545
Jörg Durner https://orcid.org/0000-0003-4436-4415
Dieter Ernst https://orcid.org/0000-0003-0503-0228
Andrew J. Fleming https://orcid.org/0000-0002-9703-0745
Jaakko Kangasjärvi https://orcid.org/0000-0002-8959-1809
Hannes Kollist https://orcid.org/0000-0002-6895-3583
Airi Lamminmäki https://orcid.org/0000-0002-6133-8553
Marina Leal Gavarrón https://orcid.org/0000-0002-2879-1516
Lars Paulin https://orcid.org/0000-0003-0923-1254
Tuomas Puukko https://orcid.org/0000-0001-8452-2030
Maija Sierla https://orcid.org/0000-0002-8493-3582
Nina Sipari https://orcid.org/0000-0002-0786-2493
Triin Vahisalu https://orcid.org/0000-0001-6050-0320
Cezary Waszcak https://orcid.org/0000-0002-5978-7560
J. Barbro Winkler https://orcid.org/0000-0002-7092-9742
Dmitry Yarmolinsky https://orcid.org/0000-0002-9372-6091
Olena Zamora https://orcid.org/0000-0002-0088-0867

Data availability
The data that support the findings of this study are available in the Supporting Information.

References

Voxeur A, Fry SC. 2014. Glycosylinositols phosphorylceramides from Rosa cell cultures are boro-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. The Plant Journal 79: 139–149.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Dataset S1 List of Arabidopsis thaliana lines and primers used in this study.

Dataset S2 Kinetics of changes in leaf conductance recorded for Arabidopsis thaliana mur1 mutants and control lines (Col-0 and ghr1-3) following exposure to stomata-closing stimuli.

Dataset S3 Cryo-SEM images of abaxial and adaxial epidermis images of Arabidopsis thaliana mutants.

Fig. S1 Synthesis and metabolism of GDP-1-fucose in Arabidopsis thaliana.

Fig. S2 Characterization of T7-9 gas exchange dynamics following exposure to stomata-closing stimuli.

Fig. S3 Relative MURI transcript level in Col-0 and mur1-9 plants.

Fig. S4 Water loss-based screen of Arabidopsis thaliana T-DNA insertion mutants of T7-9 candidate genes.

Fig. S5 Leaf temperature changes recorded in Arabidopsis thaliana mur1 mutants and control lines (Col-0 and ghr1-3) during the water loss experiment.
Fig. S6 Water loss of mutants impaired in t-Fuc salvage pathway.

Fig. S7 Phenotypical analysis of Arabidopsis thaliana hp GFT1 T1 plants.

Fig. S8 Leaf conductance responses of Arabidopsis thaliana mur1 mutants to stomata-closing stimuli.

Fig. S9 Transpiration responses of Arabidopsis thaliana mur1 mutants to stomata-closing stimuli.

Fig. S10 Responses of Arabidopsis thaliana mur1 mutants to stomata-opening stimuli.

Fig. S11 Measurement of minimal leaf conductance of mur1 mutants.

Fig. S12 Frequency and phenotypes of atypical stomata observed in cotyledons of Arabidopsis thaliana mur1 mutants.

Fig. S13 Daytime leaf conductance of mur1 mutants.

Fig. S14 Effect of ABA pretreatment on water loss of mur1 mutants.

Fig. S15 Cuticle permeability of mur1 and cell adhesion mutants.

Fig. S16 Effect of esmd1-1 mutation on ion leakage of qua2-1 and mur1 mutants.

Fig. S17 Phenotyping of cell adhesion in elongated hypocotyls of qua2-1 and mur1 mutants.

Methods S1 Detailed description of methods used in this study.

Table S1 High-frequency single nucleotide polymorphisms identified in BC1F2 mapping population of Arabidopsis thaliana T7-9 mutant.

Table S2 GC–MS analysis of absolute and relative abundance of cutin monomers in Arabidopsis thaliana mur1 mutants.

Table S3 GC–MS analysis of cuticular wax composition in mur1 mutants.

Video S1 Stomatal movements of Arabidopsis thaliana mur1 mutants and control lines (Col-0 and ost1-3) observed after leaf detachment. Leaves were detached from the rosette at t = 5 min (‘Excision’), and the imaging was continued for c. 40 min.

Please note: Wiley is not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.