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ABSTRACT

This thesis is devoted to the study of bargaining using the
In Part I (chapters

1 examine commitment inthe role of bilateralwe
bargaining. different notions of commitment inTwo
bargaining explored in different non-cooperativetwoare
infinite-time horizon sequential games with complete and
perfect information. (chapters 3 andIn Part II 4) we
examine the role of outside options in bilateral
bargaining. Two models are presented, each model is
cooperative infinite-time horizon sequential withgame
complete information. The differmodels in theirtwo
approach to modelling the interlacing of the search and
bargaining processes. finalthe this thesis,In ofpart

(chapter 5)zPart III ofpresentwe a a
decentralised market, based on
the market search for partners with whom to trade and when

they initiatebuyer and seller sequentialmeeta a a
bargaining process over the terms of trade.

methods of non-cooperative game theory.
and 2)

theory 
the idea that the agents of

a non-
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INTRODUCTION

pervasive phenomena in modern societies,a

a bazaar.
interesting. occupies important inMoreover, placean
economic sincetheory, the "pure bargaining is theat

This,
therefore,

In this thesis we non-
I and IIParts

with commitmentthe roles of and outside options in bilateral

The starting point this thesis isfor the classic bypaper
Rubinstein (1982) . that RubinsteinIn presentspaper, a non-
cooperative infinite-time horizon sequential with completegame
information, which represents a bargaining process. In that game, the

bargainers make offers alternately untiltwo theagreement on
partition of the surplus is reached. Rubinstein proved the existence
of a unique sub-game perfect equilibrium partition. One may interpret
the exemplifiesRubinstein that the role of time ingame as one
bilateral bargaining.

All the bargaining games to be presented in this thesis either are
based this alternating-offers sequential due toon game

infinite-time horizon sequential Furthermore,innotion game.an
thesis "method of will depend thatthe our on

In this thesis we shall restrict attention to bargaining games with
game is an example.

on
would bethat concern us . tothe issues

opposite pole of economic phenomena from
is another important reason to study bargaining.

shall study bargaining using the methods of 
cooperative game theory.

throughout 
presented by Rubinstein in his 1982 paper.

bargaining. Part III deals with embedding a bilateral bargaining model 
in a large market context.

complete information, of which Rubinstein's (1982) 
board this assumption so as to cast away the issues 

and thus be able to focus

problem"
"perfect competition".

proof"

UNIVERSITY 
LIBRARY 

CAMBRIDGE 
—“ 1,1 -J

alone the study of bargaining is useful and 
bargaining

entirely
Rubinstein or else incorporate the essence of this alternating-offers

Bargaining is a pervasive phenomena in modern societies, ranging 
from trade and wage negotiations to arms control talks to haggling in 

For this reason

We shall take on 
that arise with incomplete information;

A future research programme

of this thesis are concerned
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informationof differential thekinds models betocertain toadd

the outcomes. However t may a
will wait untilhave the confusion thatresearch to

in this Binmorecontext

(chapters 1 and 2) of the thesisI
commitment in bilateral different notions ofTwo

sequential with complete and perfectgames
information.

firstThe notion commitmentof that explore iswe

the future cost of backing down from committed bargaining positiona
(for example. budge from offer,not to not to acceptan or an

thisopponent's offer). notion, making commitment is costless,In a
but revoking a commitment is costly.

In the second notion of commitment that we explore, is
making iscommitment costly, commitmenttrue: isa a

costless. in that, a
bargainer chooses, strategically, the length of time for which he is
committed.

himself. Thus,a
a demand (i.e.,commitment la genuinea

unconditional take-it-or-leave-it offer) only if a bargainer chooses
to commit himself for an infinite length of time.

of this thesis we examine the role ofIn Part II
modelsTwooutside are

each model is a
account

essentially the issue is that
some

differ in their approachoutside toan

(1987b) provides a thought-provoking discussion of the possible causes 
of this confusion and the possible routes to remedy.

"Nash

Commitment in this second notion is irrevocable during the 
length of time that a bargainer has chosen to commit 

is irrevocable game"

programme 
currently resides in the literature 
with incomplete information" is resolved;

the following.
Bargainers can take actions during the negotiation process to increase

presented in this thesis and then investigate the resulting change in 
equilibrium outcomes. However, it may be noted that such

(chapters 3 and 4) 
options in bilateral bargaining. Two models are presented, 

non-cooperative infinite-time horizon sequential game 
with complete information. Both models explicitly take into 
the search dimension of the situation: 
the bargainers have to engage in some sort of search in order to find 

option. The two models

bargaining.
commitment in bargaining are explored in two different non-cooperative 
infinite-time horizon

In Part

on "the correct analysis of games

we examine the role of

but revoking
In this notion commitment has a time dimension,

the reverse
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oneone
to

market which the institution formationtheory of a
(i.e., the buyers and thedecentralised. The of the marketagents

location. The theory,sellers) do know each others'not, ex-ante,
matching technology within which thetherefore, includes agentsa

sellerpartners with When buyer andsearch for whom to trade. a a
the terms ofthey initiate a sequential bargaining processmeet, over

concerned with embeddingtrade. other words, chapter 5 isIn a
bilateral bargaining model in a large market context.

Throughout the thesis, the solution concept that we shall employ in
analyse bargaining is the perfectorder the sub-gameto games

equilibrium concept due to Selten (1965, 1975) .

Finally, caution. The chapters self-contained, inword of area
This has meantthat each chapter can be read independently. that(a)

statements will appear in each of the chapters, for example, thesome
definitions bargaining situation andof of the sub-game perfecta
equilibrium numbering equations,and (b) that the ofconcept,

chapter is independent from that of
any other chapter.

modelling the interlacing of the search and bargaining processes. Once 
takes the search dimension of the situation into account, one has

(chapter 5), we develop a 
of price formation is

"views"
"view"

In the final part of the thesis, 
in

to form a

footnotes and figures in any one

Part III

on how the search and bargaining processes ought 
be interlaced. Two such "views" are explored in chapters 3 and 4.
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Chapter 1

The role of commitment in bargaining I
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1 . INTRODUCTION

examine the rolethe shall ofthis and nextIn we
each of the two chapters,.commitment In a

notion of a non­
complete andwithgame

is cannotIt aonenow

Binmore (1987, 1) for(see and an
discussion of this point).

other hand,theOn

an importantThere isliterature. no

by paper
commitment offocused thewhere he on

thefact,In as a
that is,themselves to toto

bargaining positions.

and ofdefines commitment

or
of backing downthe future from one' scostincreasethat

demand.
model complete informationinbe a

(i.e., no

The Nash
there

A

Schelling views 
commit

aspects
bargaining process

great deal of attention in this
doubt that commitment must have

Schelling defines commitment impressionistically and by way 
examples, but the essential idea seems to involve making a demand and 
'burning one's bridges', or taking actions during the negotiation

bargaining.
struggle between bargainers 
convince their opponent that they will not retreat from - advantageous

(b) time and (c) information within the bargaining process 
introductory

a generalised version of this very idea will 
with

in which commitments are irrevocable. In the Nash demand game, 
is only one stage, in which bargainers simultaneously make demands.

chapter 
in bilateral bargaining.

model will be presented that will capture some of the features of the 
commitment in bargaining. Each of the models is 

cooperative infinite-time horizon sequential 
perfect information.

role in shaping the outcome in bilateral bargaining situations, 
Schelling in his classic paper (Schelling 

entirely
argued forcefully 
(1956)),

view on

fairly well-established that one cannot usually offer 
sensible estimate of what is likely to happen in bilateral bargaining 
situations without having a view on the roles to be ascribed to (a) 
commitment,

(1953) demand game can be viewed as a model of commitment 
irrevocable.

as is

hardly been explored in the recent literature on 
game-theoretic strategic approach to bargaining, 
time and information have received a

process
In this chapter, 

formalised in a game-theoretic 
informational asymmetries).

Chap.
The commitment aspects of bargaining have 

the non-cooperative

Dasgupta
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a

in
the It must

to as
games .

shall commitment

We assume
associated withto

information

The be(to in 2) hassecton
In a can

histo, not to not to acceptor
offer. theto a means

takes actions

but at a cost.
ita

an

the (common) discount
such that (i)Infactor. we

(ii) and

a
themakes

(b)zero.
forand two subgameany gamefor

game
offers alternately, 
himself

game 
information

process 
offer,

any
for(CA,

CA,

CA:

bargaining
that make

(cA,cB)*(0,0) , 
(cA,cB)*(l-8+E, 0)

-cB-0

the players making
player can commit

presented
the bargaining 

budge from his < 
Commitment

stage, 
firstly, that it is rarely the case that commitments are irrevocable. 
Secondly, that the notion of simultaneous demands is not particularly 
realistic in most bilateral bargaining situations. And thirdly, that 
bargaining processes ought to be modelled as infinite-time horizon

equal to one

denote the cost to player i of backing down from his 
bargaining position and 8

section 3 we prove: (a) for
cB) * (0,1-8+e)

opponent's offer. Commitment to a bargaining position 
following. The player takes actions that make it costly 
later back down from this bargaining position. Commitment is therefore 
revocable, but at a cost. Commitment to a bargaining position can lead 
the bargaining process into a "concession game", a game in which one 
of the bargainers has to concede in order for the bargaining process 
to either yield an agreement or proceed to a game of fresh offers and 
counteroffers.

Let C£(i=A,B) < 
commitment to a

formalise Schelling's view of 
non-cooperative infinite-time horizon sequential 
and complete information. We assume complete 
the usual problems associated with incomplete 

games, and besides the interest of this chapter is solely 
in examining the role of commitment in bargaining.

In this chapter we 
in bargaining, in a 

with perfect 
avoid

for him to

demand represents an unconditional take-it-or-leave-it offer. Recently 
Crawford (1982) has studied a simple two-stage game of incomplete 
information in which there is uncertainty about the extent to which 
commitments are genuinely irrevocable. In his game the bargainers, 

first stage, make demands simultaneously. It must be noted,

cB>0 
any £>0, and (iii) 

vo, w, for any £>0, and for any 8<1 the bargaining game has 
unique subgame perfect equilibrium partition in which the player who 

first offer (i.e., starts the bargaining) receives payoff 
and the other player receives payoff equal to 

8<1 the bargaining game has
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(i)

(c)
and for for ifany

offer, has two

zero,
in to

the first offer,
one

shareWe that result (a)at seems
counterintuitive.
case

while

In with thea

he to not to
demand. His from hiscost is

reach where thewe a

now

not
not
backwards we

offerfirstthe

thecan
negligible costn ii player absolutely no

player)
player) gives the

any
then 1

> accept 
commitment

ci=0 
first

opponent's < 
large. Thus

cost”

’’negligible cost”
(i.e., ’’large

’’clout ”

(1982) 
' Cj>l-8 and 
the bargaining game 
(i) in which player i receives 

j receives payoff equal to zero, and 
receives payoff equal to 1-8 

and on the other hand,

incur a

of backing down 
stage in the bargaining process 

players have made mutually incompatible commitments. Commonsense would 
suggest that the player with the ’’negligible cost" (i.e., who made 

the demand) should ’’concede", that is back down from his commitment to
since he knows that his opponent will 

large cost. Working 
in which the player who makes 

demands the whole surplus and commits not to budge 
from this demand, ought not to be sub-game perfect. Note that the fact 
that the player who makes the first offer (i.e., the 

commit himself before the responder

wish to

to budge from his demand, 
"concede" because his opponent will 

see that this equilibrium,

our view,

perfect equilibrium partitions, (i) in which the player who makes the 
first offer receives payoff equal to one and the other player receives 
payoff equal to zero, and (ii) in which the player who makes the first 
offer receives payoff equal to 1/(1+8) and the other player receives 
payoff equal to 8/(1+8) (i.e., the Rubinstein (1982) solution),
for i*jz i,j=A,B: for c^=0 and for any c^>l-8 and for any 8<1, 
player i makes the 
subgame perfect equilibrium partitions, 
payoff equal to one and player
(ii) in which player i receives payoff equal to 1-8 and player j 
receives payoff equal to 8, and on the other hand, if player j makes 

then the bargaining game has a unique subgame perfect 
equilibrium partition in which player j receives payoff equal to 
and player i receives payoff equal to zero.

first sight,
To explain why it seems counterintuitive we take the 

where the player who makes the first offer has a negligible cost 
of backing down from his commitment to a bargaining position, 
the other player has a large cost of backing down from his commitment 
to a bargaining position. In the equilibrium, the player 
"negligible cost" demands the whole surplus and commits himself to not 
to budge from this demand, and the other player accepts, 
this player (i.e., the responder) deviates, 
demand; furthermore, he commits

Now suppose 
and rejects his opponent's 

hishimself
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and the fact that iscommitmentwhatsoever.
negligible cost" playerii

work.
(1956)

down commitment indeed greater
ii than the ofcost

then is f does the commonsense

The

Thus

the down hisfromcost

stalemate
the who hasoutcome. to to

not no
his cost
offer.

L

convincingly, 
and thus,

cost”

’’concedes” r

’’negligible cost” 
player will not 

optimal for the 
because if he

once the players make 
is the

"where

"concede"

argument break 
what is a reasonable explanation for result (a)?"

player will receive no surplus if he 
of backing 

Therefore,
guaranteed 

respond to his 
(if the offer is coupled with 

matter how large is 
to not to accept the

The question 
down, and thus,

argument is in fact reflected in Schelling's 
quite convincingly, that in bargaining 

the player with the large cost 
should indeed have

Schelling (1956) argues, 
"weakness is often strength"; 
of backing down from his 
bargaining strength" than the player with 

backing down from his commitment. But we have here, 
result that appears to contradict this very commonsensical notion.

(negligible) 
commitment - hence a negative payoff, 
mutually incompatible commitments, 

Realising this, the player 
opponent's demand will accept any offer 
a commitment to not to budge from the offer) 

of backing down from his commitment

The commonsense

Sub-game perfection 
negligible cost prevents the 

to commit himself to not to budge from demanding the whole surplus.
revocable at a

the negligible
in this chapter, a

either. This is

player is correct to realise that the "large 
"concede". But, given the equilibrium, it is not 

"negligible cost" player to
"concedes", then the bargaining process proceeds into a 

subgame which begins with the "large cost" player demanding the whole 
surplus and committing himself to not to budge from this demand, 
the "negligible cost" 
but he will incur
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2 . THE MODEL

A and B,
an

not
his offer.to tonotor

to
is therefore revocable t cost. toat a a

"concession

a

t>l,The the subgame time depends theofstructure at t zany on
history.

Suppose at time t-1 player j(1)

the subgameThen,
structure. or
not to commit,

where C NCchooses
denotes

("Ac")moves:

to

1 is placed at the end of section 4.i Figure

(j=A,B) made an offer to player i 
i=A,B) but player j did not commit himself to not to budge from

i.e., player i 
and

(i*j,
his offert and player i rejects the offer.

has the following 
to commit,

game Gj.

"to

"immediate"

(denote it by G^_)
Player i makes an offer and decides whether, 

himself to not to budge from his offer, 
denotes "to commit"(x,a)e [0,1]X{C,NC},

"not to commit"; refer to Figure I.1

Two players, A and are bargaining on the partition of a pie of 
size one. The pie will be partitioned only after the players reach 
agreement. The players make offers alternately. In the bargaining 
process a player can commit himself to, not to budge from his offer, 

Commitment to a bargaining 
that make it

is modelled as

at time t+1,

bargaining position can lead the bargaining process into a 
game", a game in which one of the players has to concede in order for 
the bargaining process to either yield an agreement or proceed to 
game of fresh offers and counteroffers.

The bargaining process is modelled as a non-cooperative infinite­
time horizon sequential game with complete and perfect information. 
The time dimension of bargaining process is discrete, te{0,1,2, . . . } .

If a=NC, then player j moves: he either accepts ("Ac") or rejects 
("R") the offer. If player j accepts the offer, then the game ends. If 
player j rejects the offer, then the game proceeds,

at time t,

accept his opponent's 
position means the following. The player takes actions 
costly for him to later back down from this bargaining position. 
Commitment is therefore revocable, but at a cost. Commitment
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he either accepts the offer ("Ac")moves: or
commits himselfoffer to the offernotto accept

offer but commit himselfdoes If("RNC").notor
If player j chooses then"RC",

where the players have made mutuallyawe are
Thus, the game proceeds, time t+1,at

game"t be described below in (2)to (denoted by
iswhere the offer which player ito has Ifx

jplayer chooses then the proceeds, time t+1,at togame
another game"f to be described below in (3)
L±(x) ,

(2) Suppose at time t-1 player i (i=A,B) has
offer, (XG [0,1] ) , and player j (j*i, j=A,B)not to x

has committed himself the offer they haveto tonot x;

at time t,Then, the subgame has the following
Player istructure. does notmoves: or

concede ("Neon") . If iplayer concedes, then time theat t game
proceeds to the subgame G-, described in (1) above. If player i does
not concede,
whether concedeto ("Neon"). If player jnot toor
concedes, If player jends . does concede, thennot at
time t+2 the game proceeds to the subgame K^(x).

(3) Suppose at time t-1 player i (is=A,B) has committed himself to
offer, (xe [0,1] ) , and playernot x

the offer.

theat time t,Then,
structure. moves: or

i concedes, then time the("Neon") . at tconcede game
above.(1)

not to If playerconcede jortowhether
jIf player does not concede, then at

rejects the 
player j accepts, 

in

K±(x), 
committed himself).

"RNC",

incompatible commitments.
"concession

. then the game ends. 
situation

accept 
committed themselves to incompatible bargaining positions.

then player j 
and

"concession (denoted by 
where x is the offer to which player i has committed himself).

proceeds to the subgame Gj, described in (1) above. If player i does 
not concede, then at time t+1 the game proceeds where player j decides 

("Con") or not to concede ("Neon") .

j (j*i, j=A,B)
has rejected the offer but has not committed himself to not to accept

3
then at time t+1 the game proceeds where player j decides 

concede ("Con")

subgame (denote it by (x)) has the following 
he either concedes ("Con") or does not

to budge from an

budge from an

(denote it by (x) ) 
he either concedes ("Con")

concedes, then the game ends.
time t+2 the game proceeds to the subgame (x).

then the game

committed himself to

to a

If a=c, 
rejects the 
("RC")

Player i
If player

described in
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or
makes are

Let 8We
(8<1) thebe the Let

fromtocost a
(t>0)time offert to an x

be the times. at which player
"commitment" . Then, to

player i is:

shall that the (i=A,B) is of completeWe Gassume a game
information, i. e . , common knowledge

isFurthermore,

make at
players will have of choosetotwo set aa

The solutionstrategy. usewe

i 
k=l 
a

The game 
t=0 is Ga 

the

where XA=X and

amongst the players. 
information.

GA
gb 

first

ci'

game
all information is assumed to be

(i.e., the bargaining process) begins at t=0. The game at 
according to whether it is player A or player B who 
offer (i.e., starts the bargaining); GA and GB 

described above (see also Figure 1).

xB=l-x.

ci

Gi

-
N •
k=l

player i of backing down 
position. Suppose the players agree at 

• N •(xe[0,l]). Let {tfc} 1 be the times, up until time t, k=l
i backs down from a "commitment". Then, the discounted payoff

a game of perfect

A strategy for each agent in G^ will tell the agent the choice to 
each and every decision node that he may be at. Each of the 

strategies from which 
concept we will use is the subgame perfect 

equilibrium (SGPE) (Selten (1965, 1975)). A strategy tuple is in SGPE 
if its restriction to any subgame is in Nash equilibrium.

note that

that the players maximise expected utility.
(common) discount factor. Let c^, i=A,B, (c£>0) be 

commitment to a bargaining

shall assume
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3. PERFECT EQUILIBRIUM

such that (ii)

zero.

iSGPE in which

(ii)
receives

(i.e.,

(i)

has a unique SGPE partition in which player j receives
zero.

Let i,j=A,B,PROOF:

Let

3' 3'

i then 1
3

0 if x--C-i <03 3
(la)

if X.1-C4 >03 3

at point (1) player i chooses "Con”tthe other hand, then

and
(lb)

chooses
- j

I

<CA' 
and

"Neon”,
, 8k^(x)}. Thus,

Xj=l-x if j=B.

CA'CB“°
and (iii)

8(xj-cj)

K?(x) =

K?(x)=8max{x•-

k?(x) =

PROPOSITION: (a)
Cp) (0,1-8+e) 
for any 8<1 the

K?(x)=k?(x) =

i#j; and Xj=x if j=A,

j

(CA, 
has a

k?(x) (K?(x)) denote the infimum (supremum) of the payoffs to 

player j in any SGPE of the subgame K^(x). Then the infimum (supremum) 
of the payoffs to player j in any SGPE as of point (2) (in Figure 1) 
is max{Xj-Cj, 8k^(x)} (max{Xj-Cj, 8k?(x)J).

j=A,B) 
solution). (c) 

any Cj>l-8 and for any 8<1, 
in which player i 

receives payoff equal to zero, and (ii) in which player i 
receives payoff equal to 1-8 and player j receives payoff equal to 8, 
and the game Gj 
payoff equal to one and player i receives payoff equal to

CA: 
game G^ (i=A,B) has two SGPE partitions, 
receives payoff equal to one and player j(j^i, 
equal to zero, and (ii) in which player i receives payoff equal to 
1/(1+8) and player j (j^i, j=A,B) receives payoff equal to 8/(1+8) 

the Rubinstein (1982) solution), (c) For i^j, i,j=A,B we have: 
for Cj_=0 and for any Cj>l-8 and for any 8<1, the game Gj_ has two SGPE 
partitions, (i) in which player i receives payoff equal to 
player j receives payoff equal to zero, and (ii)

one and

For any 
for any e>0,

any d<l the game G^ (i=A,B)
which player i receives payoff equal to one and player j 
receives payoff equal to zero, (b) For cA=cB=0 and for 

G^ (i=A,B) has two SGPE partitions, (i)

If at point (1) player 
Cj,8K£(x)} and k? (x)=8max{xj-cj

If, on

(i) (cA,cB)*(0,0) , 
cB) & (1-8+e, 0 ) for any e>0, 
unique SGPE partition in 

(j*i, j=A,B) 
any 8<1 the 

player
j=A,B) receives payoff
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of the payoffs to player j in

one

D 3

(2a)

(2b)

jto player

(3a)

S^=8max{K£(x)rL?(x)} (3b)

x.

Hence,
1-min{13:xe [0,1]}},

M^=l-min{8mj, min{I^:xe [0,1] } }i . e . , (4a)
and

l2 and are definedA A

I.

SGPE as of point (5) (
l3=8max{k2(x),1?(x)}

of the payoffs to player j in any SGPE as of 
• note that both the infimum and the supremum

m^=l-min{8mj,

mf=max{1-8m^, 1-min{S^:xe [ 0,1] } }, X J X

By repeating the above argument
supremum of the payoffs to player j in any SGPE of the subgame L^(x); 
denote this infimum (supremum) by l?(x)(L?(x)).

min{S^:xG [0,1]}}, (4b)
of the payoffs to player i in

i . e ., 
where m^(M^) is the infimum (supremum) 
any SGPE of the game Gj_.

infimum (supremum) of the payoffs 
(in Figure 1) by l3(S^).

If at point (4) player i chooses
L?(x)=1?(x)=8xj

where m j (M j )

max{l-8mj,

L?(x)=Mj

M^=:

Let us now compute and S^ for all xe(0,l]; 
by equations (3a) and (3b).

The infimum (supremum) < 
point (6) is l-8mj(1-8Mj) ; 
are independent of

can establish the infimum and

"Con", then

"Neon”, then

If, on the other hand, at point (4) player i chooses 
1 j / x j 1 (x) =mj and

in anyDenote the

j is the infimum (supremum) 
any SGPE of the game Gj.
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(la) ,

(5)

n and
(2b) ,

(6a)and

(6b)

(III) Suppose (1)
(lb) ,

j (7a)

sj = 8max{M^, 8x_i} 
x J J (7b)

(IV) Suppose (1)

(2b),
(8a)

S7 = 8max{M^, 8(x--c^)}
A J J J (8b)

(i=A,B), where

and
andfor oror or

and for any

Then
xg [0,1]}=0=min{S

xg [0,1]}=0=min{S . Thus,
and1

(9)1

I

j 
j

at point
"Con”

"Con"player i chooses
. Then, using equations

min {I

"Neon" and

A.
x ’

mA=

at point
"Neon”

"Neon"

min{I®:

xj

x = [0,1] }

and Mj-

[0,1] at point (1) player i chooses 
chooses "Neon". Then, using equations

and

Suppose for an xg[0,1] at point (1) player i chooses 
"Con". Then, using equations (lb),

mi

XG [0,1] 
and at point (4) player i chooses 

(3a) and (3b), we obtain:
li = 8max{m^, 8(x_i-c-)} and 
* J J J

XG [0,1]
(4) player i chooses

for x=l equation (5) applies,
(6) or (7) or (8) applies;

(5) applies,
(8) applies.

®:xg [0,1]} and

player i chooses
. Then, using equations (la) ,

s3 = J

(II)
at point (4) player i chooses
(3a) and (3b), we obtain:

li = 8m

for an

for an

CASE A: Suppose when i=A and j=B, 
any x<l either equation (5) 

suppose when i=B and j=A, for x=0 equation 
x>0 either equation (5) or (6) or (7) or

(I) Suppose for an xg 
at point (4) player i 
(2a), (3a) and (3b), we obtain: 

s3=lj=52

Let us now proceed to compute 
are defined by equations (4a) and (4b).

"Con

and at point
(2a), (3a) and (3b), we obtain:

= 8max{m-, 8x^} and x J J
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defined bywhether the equilibrium payoffs,checkLet asus now

with the supposition made above (Caseare
(i=A,B)i choosesstatesA) . at

i=A, x=0 if i=B.points (1) and (4) , and for
equilibrium player ithen ininstead chooses "Con", the a

and incurs strictlysurplus equal to zero
choice.negative Thus r indeed, optimal

is also an optimal choice.Furthermore, then

withsupposition is thethe (Case A)Hence,
equilibrium payoffs, defined by equation (9) , for (Inany c

player i chooses for all xg [0,1]fact,

for anyHence,

A pair strategies that thisof solution is follows.as
Player i (i=A,B) always offers where

1 if i=A

0 if i=B
and commits himself to to budge from this offer. Player j (j*i,not
j=A,B) if itoffer is commitment, andaccepts any a
accepts offers smaller than is coupled withoffer not a

Player icommitment. concedesnever
xg [0,1] . j alwaysfor Playerany a

concedes if x■<c;;but furthermore, playernever

Suppose when i=A and j=B, the largest xg [0,1], for whichCASE B: x,
for such that and forsome

(7) (8) applies, anyany or or
(6) (8) applies; and suppose(7)or oror

j=A, for which equationand smallest XG [0,1] , (5)when the x,
is and forfor such that anysome

(7)or or

2

equation (5) applies is 
either equation

that player
for x=l if

payoff.
if c±=0,

for any xg [0,1] .

★ x±= -

If player i 
receives

equation (9), 
The supposition

A'cB>0.
at points (1) and (4)).

eA

eB

0<x<1-£a 
i=B

I.2

l>x>l-eA
either equation (5)

support 
★ x±,

"Neon”

"Neon”

(cpO) • 
is the

in the subgames K^(x) 
concedes in a subgame

"Neon”

"consistent"

applies is x=£B, 
either equation (6)

"consistent"

coupled with
1-8 if the

ci
"Neon"

and L^(x)
K±(x) if 
j alwaysxj>cj'

concedes in the subgame Lj_(x)

l>eA>0, 
and for

Here we can allow 8<1. But the condition 8<1 is required to prove the 
"inconsistency” of the other possible suppositions (to be discussed below) with 
the equilibrium payoffs that they generate; 8-1 leads to multiple equilibria in 
these other suppositions, which would then allow us to choose an equilibrium that 
would be consistent with a given supposition. Thus 8<1 is a necessary requirement 
for the Proposition above.

x=1"eA'
(6)

1 and MB=m

1>£b>0, and for any 0<x<£B
(8) applies, and for any 1>x>£b either

a cost

CA'CB~°'

hence a



—
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(7) or (8) applies.

Therefore,Then S I
that,

and
(10)

(10) ,using equationfor Then,Assume

(11)

(12)

with the

Thus

Hence,
(13)c

(14)

(15)
(16)for i=A,B,and >

i=A and i. e.,When
chooses

(sinceand (2a),
cf.

chooses

(18)

Therefore, equation (11) holds if
for i=A,B, epl/[8(1+8) ]

1/ (1+8) and
1/(1+8)

points
choose

B'
and

e±82 }

eA>c
(2)

does not apply.
or at point

i,j=A,B,i*j, 
provided 8<1, we obtain:

cB.

x>l-eA
II

ma=”1=

CA 
we have

B _ TB!-eA “ I]--eA ’ 

for i, j=A, B, i;*j ,
IA = 
eB

= l-min{8mj,

mA=

= l-min{8Mj,

£b82.

"Neon"

Mi

and Sp eB

"Neon"

e±52}

e^8>mj, M j .

mi

CB :
ei

-A 
and Lg(l-eA)=l

now check whether this equilibrium is "consistent" 
supposition made above (Case B).

equation (5) applies, i.e., player A 
and (4). Therefore, using equations (la) 

we have that KA(l-eA) =kA(l-eA)=8[1-(l-eA)-cR]=8[eA-cB] 
Hence at

Let us

ea82 we obtain

for any
A chooses

A to

When i=A and j=B for any x>l-eA equation (5)
for any x>l-eA player A chooses "Con" either at point (1)
(4) or at both points (1) and (4). Hence, for any 8<1,

8/(1+8) - cA >0
Since 1/[8(1+8)]>8/(1+8) equations (12) and (13) =>

for i=A,B,

for x=l-eA

equation (5) or (6) or

ei
Symmetrically, when i=B and j=A, 

8/(1+8) >0

j=B
at points (1)

- - -B • -- ------ -Ak± eA)“5[l (1 eA) cB
equation (16)), and LA (l-eA) =1A (l-eA) =8eA.

(3) player B chooses "Con". Thus, for player 
at points (1) and (4) it must be the case, that for any 8<1, 

[l-eA]8>[8/(1+8)-cA] . (17)
Symmetrically, when i=B and j=A, we have 

[l-eB]8>[8/(l+8)-cB]
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8<1.that is falseshow for ThisWe now some a
contradiction. as
and above.

such that 1-x-
will ifan x

Now
if

x

forNow, x>l-e

x.

(3) ator

A to choose

[8/ (1+8) -cA]>8x=8 [l-£A+y] ,

[8/(1+8)-ca]>8[1-ea] .that This

the hold (10) ,
foras one can

with the

the supposition of Case B is false, for any

Suppose when i=A and
or or or

xg [0,1],suppose
such that 1>£r>0,x=e some

(7)or or
or

which implies 
equation (17).

described in equations 
with the supposition of Case B,

j=B,
(5)

C.AMBR/oGe i

implies
(11)

(15) , 
8<l/^2.

j

x>1-Ea,

CA

CB
such that x=l-£A+y.

(17) 
Hence the equilibrium, 

(12), is not "consistent" 
Thus the equilibrium cannot hold.

■A CB 
equation 

1/[8(1+8)] >28/(1+8) 
exists an x, x>1-ea, such that 

-8/(1+8) ] . Denote this

Hence, 
any 8<1.

,cB>0 and for

x>l-eA, 
exist such [1 cB 

ea>1/ [8/(1+8)],

[£A~cB]>8/(1+8). Hence, there
[l-x-cB]>8/(1+8), i.e., such that x<[l- 

by x. By continuity there exists a y, y>0,

"Con"

"Con”

CASE C: 
for any 0<x<l either equation 

when i=B and j=A, the smallest x, 
(5) applies is x=eb, for some eb 
either equation (6) or (7) or (8) applies, 
equation (5) or (6) or (7) or (8) applies.

of equation

prove by similar 

’’consistent”

By assuming that the other possibilities 
such as for i, j=A, B, i^j, irij, Mj> £j_8, 
arguments that the equilibrium obtained is not 
supposition of Case B.

We first observe that there 
cb>5/(1+8) , provided 8<1/'V2 . There 
8/(1+8) ] > [1-£A] <=> [EA-cB] > [8/(1+8) ] . From equation (12), tA. . . .
and from equation (15), 8/(1+8) >cB=>28/(1+8) > [cB+8/(1+8) ] .

Thus [£a-cJ >8/ (1+8) . Hence,

for x=l equation (5) applies and 
(6) or (7) or (8) applies; and 

for which equation 
B^u, and for any 0<x<eb 

and for any l>x>eB either

given our supposition, for any x>1-ea player A chooses 
either at point (1) or at point (4) or at both points (1) and (4); in 
particular for x=x. Since [l-x-cB]>8/(1+8) , which implies l-x>8/(l+8), 
player B will choose "Con” either at point (2) (if player A chooses 
"Con" at point (1)) or at point (3) (if player A chooses "Con" 
point (4)) or at both points. In order for it to be optimal for player 

"Con" we require

is in contradiction to

exists an
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and (19)

One as
is the any

CASE D: (5)
or or or

(5) is thatsome

or

(20)

is not any
cB>0 and for any 8<1.

3xe [0,1] (5)
(i.e., either or or

and and such

and
(21)

and (22)

with the

CA'

CA'

eA

■p mg=l and 
TOA=1“52eA‘

for i,j=A,B,i^j,
M£=l-8mj

m£=l-8Mj.

applies
equation (8) applies);
that equation (5) applies.

’’consistent”

such that equation
(6) or equation (7) 

j=A, 3xe [0,1]

for x=0 equation
(6) or (7)

MA=mA=1 
MB=mB=l-82EB.

CASE E:

One can show that this equilibrium, 
consistent" with the

Let us now check whether this equilibrium is 
supposition made above (Case E) .

Then, we obtain that

Thus, provided 8<1, we obtain:
MA=mA=1// <1+S> 
M|=m|=l/(1+5) .

can show that this equilibrium, as described by equation (19) , 
not "consistent” with the supposition of Case C, above, for 
cB>0 and for any 8<1.

Then, we obtain that

Then, we obtain that,

Suppose when i=A and j=B, 
Vxg[0,1] either equation 

suppose when i=B

as described by equation (20), 
supposition of Case D, above, for

applies and 
(8) applies; and 

for which equation 
l>eA>0, and for any 

(8) applies, and for any 0<x<l- 
(8) applies.

applies is x=l-eA, for some ea 
l>x>l-eA either equation (6) or (7) or 

either equation (5) or (6) or (7)

Suppose when i=B and j=A, 
for any l>x>0 either equation (5) 
suppose when i=A and j=B, the largest x, xe[0,l], 

for some En such
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(i=A,B) will choose either at
(1) and point

for i=A,B (23)

and (4) . Takeor or
it implies that

choose
(1) ) chooses at

we require
5/(1+8)-ca>8[1/(1+8)-cB]

i . e . f (24)

Symmetrically, when i=B and j=A, we require
(25)

>0 and 8<1,For any

(26)A
For any cB>0 and 8<1,

(27)B

and obtain: i . e . ,we
This is a contradiction.

(25) and (27) A'
i.e., ScA>cA,

and 8<1,If,
(27)) do ifnot And the

with the

I

CA'

Similarly, combining (24), 
for any 8<l,cB>0 and cA>0 .

CA:

Con”

cB>0 such that (cA,

8ca>cb>8cb>c
This is a contradiction.

"Con" either

5cBScA>8cA-cB'

’’consistent”

8/(1+8)-c^>0

cA>8c

8cb—CA

8ca>cb

Combining 
8gb>cb,

cb>8c

then the above arguments 
c^=cR=0 and 8<1, then

"Con"Since for any xg[0,1] player i 
point (1) or at point (4) or at both point 
have:

we obtain:

CA“CB~° 
((26), (27)) do not go through. ahu xx ^“^B
equilibrium payoffs (defined by (22)) are indeed 
supposition of Case E.

(24), (25) and (26)
for any 8<l,cA>0 and cB>0.

When i=A and j=B, for any xg[0,1] player A will choose 
at point (1) or at point (4) or at both points (1) 

Since l-x-cB=8/(1+8) and l-x>8/(1+8), 
”Con” either at point (2) (if player A chooses 

(if player A chooses ”Con”
In order for it to be optimal for A to

(1) 
x=[l/(1+8)-cb]. 
player B will choose ”Con” either at point 
"Con” at point (1) ) or at point (3) 
point (4)) or at both points, 
choose "

(4), we must

on the other hand,

Thus, the equilibrium payoffs (as defined by equation (22)) are not 
"consistent” with the supposition made above (Case E) , for any 

cB)^(0,0) and for any 8<1.
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CASE F: (5)
(7)or or

(6)or or or

and (28)
1-5.

with the

When i=A and the that for xe [0,1]
(1)

(1) and (4) .

If then this not optimal, since by choosing

If

(2)
(1) ) chooses "Con" ator

In orderor
choose

0>x5= (l-cB~5-£) 5,

which is a contradiction since x>0. then the
are

>1-5.
Then Thus, for all xg [0,1] , Thus, not
exist choose given thatBan

choosesA ifHence, and then the
(as defined indeedby are

I

any
or at point (4)

suppose
such that

suppose 
there■ - ~B- 

would

j=B, 
player A will choose 
both points

"Con"

such that player 
"Con".

CA=0'

"Con"

cA>0, then this is definitely 
player A receives zero surplus.

player 
equilibrium 
it

payoffs 
consistent" with the supposition made above (Case F).

CB<1 
1-CB-
Thus,

In conclusion, for any S<1 and for any cb>1-5 and for 
5 and MB=mB=l.

CB:
does

MA=mA=1-

CA=° 
equation

either at point 
at point (3) 

at both points.
we require

supposition states, 
either at point

"consistent"

cb>1-8, 
(28) )

Suppose when i=A and j=B, 3xe [0,1] 
applies (i.e., Vxe[0,l] either equation (6) 
equation (8) applies); and suppose when i=B and j=A, 
(5) applies, and for any x>0 either equation (5) 
applies.

such that equation
equation
for x=0 equation

(7) or (8)

cA=0,
5. Then l-cn-5>0. 
5>x>0.

"Con"

some £ small.

"Con"

"Con"

"Con" or at

w|=m|=l
MA=mA

then choosing "Con" can be optimal. Firstly, 
Thus, there exists an l>x>0, say x,
—5—£ for some £ small. Then l-x>5 and l-x-cB>S.

(if player A chooses
(if player A
for it to be optimal for A to

Let x=l-cB
chooseplayer B will 

"Con" at point 
point (4))

Let us now check whether this equilibrium is 
supposition made above (Case F).

Thus if cA=0 and cb<1-5, 
equilibrium payoffs (as defined by equation (28)) are not "consistent" 
with the supposition made above (Case F) . Secondly, 

1-cb<5. Thus, for all xe[0,l], l-x-cn<5. 
xg [0,1]

Then, we obtain that
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CASE G: but with the roles of players A and B

We
such that for

8<1(iii) for
(i=A,B) as

(i=A,B) has
theas

any 
the(cA, 

has

any
has a unique

cB-°
and

CB
a

reversed, 
conclusion: for any 8<1 and for 
MA=mA=1•

any
(see Case A above) 

8<1 the

Cj>l-8 and for

the Proposition.
two SGPE partitions
Proposition. For i^jz i,j=A,B: for c^=0 and for any
8<1 the game G^ has two SGPE partitions and the game Gj 
SGPE partition (see Cases A, F and G) as stated in the Proposition.

Q.E.D.

A' 
any e>0, 

unique SGPE partition
For cA=Cg=0 and for any 8<1 the game G^ 

(see Case A and Case E above) as stated in 
iz j=A,B:

For any cA,
E>0,

Symmetric to Case Fz 
Therefore, by similar arguments one arrives at the following 

any ca>1-8 and for cB=0z MB=mB=l-8 and

game G^
stated in

have considered all the possible suppositions.
(i) (cA,cB)*(0z0), (ii) (cA,cB)*(0z1-8+e) 
)^(l-8+ez0) for any e>0, and
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4 . SUMMARY AND CONCLUDING REMARKS

the model a
infinite-time withgame
information.

The the
a

opponent'sto, not to not toor an
offer.

commitments (for if of theone

the offer) leads theto not to accept
ha a

agreement or game
counteroffers.

for such

(c
(b) 0

andthe

the Introduction (section argued that first sight1)In atwe
(a) counterintuitive, itresult seemed that to

contradict notion, that
n

awe now
cost to

n

accept 
but at a cost.

and argued
(commonsensical)

appears 
in bargaining 

In order to re-emphasize the apparently 
(a) we now illustrate a special case, 

commitment

=CB

The Proposition (section 3) 
that (i) (cA,cB)*(0,0) , (ii)

)*(l-8+£, 0) for any £>0,
for

’’first mover” of backing down from his commitment to not

In this chapter we have presented a model that examines the role of 
commitment in bilateral bargaining; the model is a non-cooperative 

horizon sequential game with complete and perfect

budge from one's
Thus commitment is revocable,

Schelling's
weakness is often strength”, 

paradoxical nature of result 
Suppose the responder's cost of backing down from his 
not to accept the ’’first mover's” offer is infinite relative to the 
cost to the

bargaining process, represented by the sequential game, 
incorporates commitment possibilities a la Schelling (see Schelling 
(1956)): the bargainers can take actions during the bargaining process 
that increase the future cost of backing down from one's commitment 

offer,

established, (a) for any cA,cB>0
(cA, cB) (0,1-8+e) for any £>0, and (iii) 

a,cb)^(1-O+e,U) tor any £>0, and for any 8<1 the uniqueness of the 
SGPE partition, (b) for cA=cB=0 and for any 8<1 the multiplicity of 

SGPE partition, and (c) for i^j, i,j=A,B: for C£=0 and for any 
Cj>l-8 and for any 8<1 the uniqueness of the SGPE partition for the 
game Gj and the multiplicity of the SGPE partition for the game Gj_.

Mutually incompatible commitments (for example, 
bargainers commits himself to not to budge from an offer and the other 
bargainer commits himself 
bargaining process into a ’’concession game", a game in which one of 
the bargainers has to concede in order for the bargaining process to 
either yield an agreement or proceed to a game of fresh offers and
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hasThen it if theis noas
(i.e.. has

while the responder
make commitment to not toancan

In thisdemand. scenario, toone
theobtain the whole surplus. and notishe does;But as
theavailable commitment (seeresponder, who has irrevocablean

apparentlyIntroduction, give explanation for this,where we an
paradoxical, result).

of theimplicationsshall theWe venturenow some on
andin general,result of this chapter, for theory

Rubinstein's (1982) classic paper in particular.

Observe, 0that
But,

positive, then the uniqueness property is obtained.

notion inOur bargaining incorporates the alternating-offersgame
bargaining, due to Rubinstein (1982) .

Rubinstein haveof the However, as weas a game.
seen,
for values of andsome

on their specifying a unique equilibrium.

strictly positive, thethat if both thenhaveWe costsseen are
Rubinstein solution disappears and the bargaining game has a unique

in the sense, thatequilibrium. This equilibrium can be called
who thelife, first (i.e., the playerin real the startsmover

This observation may

an so,
on which

our bargaining game is built.

study the implications ofAn alternative angle from which to our
result is the following.

and for any 8<1 the bargaining game does 
strictly

thoughts 
bargaining

would not expect the
it is as if he,

the uniqueness property of the Rubinstein game does not survive 
This is indeed disturbing, especiallyc^ and Cg • 

since the usefulness of non-cooperative bargaining models rests mainly

"bad",

"incorrect"

to budge from his offer, 
possibility of commitment 
the future cost of backing down from his demand) , 

irrevocable commitment to not to accept his opponent's

bargaining) would not obtain the whole surplus, 
imply that something fundamental is wrong with our bargaining model. 
Maybe it is an "incorrect" model of bargaining? If so, then one may in 
effect criticise the alternating-offers model of bargaining,

no actions available to increase

A CB 
not possess the uniqueness property.

In fact,

"first mover"

one may view our game

for c

"first mover"

if both costs are

"generalisation"
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commitment possibilities are not allowedTake the Rubinstein game;
and time plays the key role in determining the bargaining outcome.

is presumably theIt
should be stable in the presence of small perturbations.

outsideif of the bargainers availableexample, hasFor one an
bargainingoption it will Rubinsteinknow that affect thenotwe

this isprovided the value of the outside option is small;outcome”
(1985) .'Outside Option Principle' discovered by Binmorethe famous

is indeed stable in theRubinsteintheHence t
presence of small perturbations from outside of this type.

the bargainers, in Rubinsteineach of the hasNow suppose game,
been given an action which each in order commit himselftake tocan

histo budge from offer f the opponent'sto, not not to acceptor
the action makes it costly for a player to later back down fromoffer;

committed bargaining position. bothAnd these costs, tosupposea
players, negligible. This is small perturbation thetoare a
Rubinstein game.

The game presented in this chapter is one possible way to modelling
this perturbation Rubinsteinthe with and strictlyto game,

seen,
a unique "bargaining outcome", which ishas different from thevery

Rubinstein Thus, the Rubinstein
is not stable in the presence of small perturbations of this

type.

Finally, notion inshall the ofcommentwe on
bargaining. Since there does not exist

isnotion in bargaining need fordefined thereof a
exploring the various plausible notions that come to the mind.

this version ofgeneralisedchapter modelledhaveIn we a
bargainers takeSchelling's thatnotion commitment, which is,of

Here,
revocable, but at a cost.

i

actions during the negotiation process to increase the future cost of 
backing down from a committed bargaining position. Here, commitment is

"bargaining
outcome"

"commitment"

outcome"

"commitment"

"bargaining outcome"

CA 
positive but very small (i.e., negligible). As we have

case that the Rubinstein

"bargaining

a unique unambiguous and well

"bargaining outcome

CB
this game
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Commitment, whatmodelled in this chapter, does havenotas we
shall call a time dimension. commitmentHere,
which could, last

one
which could be

but revoking a
rolehas play in the notion of commitment thattono

this chapter.

notion of commitment isthe model a
infinite-time perfectsequential with complete andgame
information.

c h apt e r making commitmentthatIn toa a
costs of revoking a commitment.

commitfor which he willchooses, strategically, the length of time
himself to a bargaining position. the length ofThe costs depend on
time costs being strictly increasing and strictly inchosen; convex

is irrevocable time thattime. Commitment during the length of a
ischosen commit himself. commitmentbargainer has Thus,to

genuine unconditionala demand (i.e.,irrevocable la Nash game ” a
committake-it-or-leave-it only if bargaineroffer) chooses toa

himself for an infinite length of time.

commitment is costly.
is adopted in

In this chapter, making a
Time

bargaining position is
A bargainer

an alternative

There are no

a function

In chapter 2 we

costly, but there are no

in bargaining;
horizon

shall present a model that explores
non-cooperative

a bargainer can make a 
in principle, last for any length of time.

costs associated with the length of time for which 
(for example, no lawyer's fees to be paid, 
of the time for which commitment is sought). 
commitment costs nothing,

is committed;
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Chapter 2

The role of commitment in bargaining II
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1. INTRODUCTION

This chapter, together with examines role of1, the
In this chapter we shall present a

model notion of commitment in bargaining differenta
from the notion explored in chapter 1.

this chapter the basic ideaIn is, that making commitment to aa
bargaining position is costly, but revoking a commitment is costless
(for motivation of this idea ideachapter 1, pp.24-25). Thisa see
will formalisedbe in non-cooperative infinite-time horizona
sequential game with complete and perfect information.

The players make offers alternately. At the time of making an offer
a player can choose, strategically, the length of time for which he is
committed his offer. Commitment during that length of time isto
irrevocable. The cost of making a commitment depends on the length of
time which Commitmentfor commitment offer is sought. isto an
irrevocable a genuine unconditionalla demand (i.e.,ttgame a

bargainertake-it-or-leave-it if chooses commitoffer) only toa
himself for an infinite length of time.

The game may be interpreted as a generalisation of the alternating-
offers model of Rubinstein (1982), in which the proposer has available

namely the length of time for which he isan extra strategic variable,
This implies that the "times" at which offerscommitted to his offer. !

except the first offer whichdetermined endogenously,are
is made at time t=0.

unique sub-game perfectexistence ofthesection 3In aprovewe
equilibrium.

obtainedRubinstein (1982) solution isthethe equilibrium,In
commit themselves) ifplayer Bneither player A(i.e., evernor

conditions relativelymadeThesehold.conditionscertain are

tends to zero. Then,

chapter 
commitment in bilateral bargaining, 

that explores

transparent if the exogenously fixed minimum time between successive 
offers - which represents the physical constraints in making an offer 

in this limit, the conditions are:

"Nash

are made
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for i*j, i, j=A,B,

(i=A,B) andwhere

c
commits

if,
so.

I

ci ■ 

and

r^ (i=A,B) is the rate of time preference of player i(r£>0)
C£(T) is the cost to player i for making a commitment for a length of 
time T. c^ is a strictly increasing and strictly convex function with 

/CjL(0)=0 and 0^(0) >0 . The right-hand side of the inequality above is 
interpreted as the marginal benefit to player i if player i 
himself. Thus, in the equilibrium, the Rubinstein solution is obtained 

at the margin, the cost to both players of committing themselves 
exceeds their respective benefit of doing

c±(0)>rj[ri/(r±+rj)]
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2. THE MODEL

A and B,

agreement.

to

irrevocable .
time for to aan

determined endogenously,The which offers madeat areare
is madeexcept the first offer which at

(i.e.,makes an offer
which is committed his his (i.e., thehe offer, andto

either (i.e., waitsresponder) concedes accepts) toor
make a counteroffer,
length of time, namely the length of time for which the proposer has
committed himself plus fixed minimum time whichan

non-cooperative infinite-is modelled as a
information.

The as
(i.e., the

has available an extra strategic variable,

offers.

(n=0,1,2, . . .) , player A makes offer,timeAt an
time, whereand anda

concedesPlayer B either Ifor

I

game may be interpreted 
offers model of Rubinstein

length of time above the exogenously fixed minimum time 
proposer has committed himself to his offer); A, Te .

a player can choose, 
committed to his offer.

exogenously 
represents the physical constraints in making a counteroffer.

player who makes an offer)
namely the length of time for which he is committed to his offer.

"times”

x2n+l'
T2n+le]R+-

2n
t=i=l(Ti)+(2n)A' 
chooses a commitment

opponent 
rejects and

which the responder can make only after a certain

The player who 
the proposer) decides on the length of time for

x2n+le [°'U 
rejects.

T2n+1'
(i.e., accepts)

a pie ofTwo players, A and B, are bargaining on the partition of 
size one. The pie will be partitioned only after the players reach an

The players make offers alternately. At the time of making an offer 
strategically, the length of time for which he is 

Commitment during that length of time is 
The cost of making a commitment depends on the length of 

which commitment to an offer is sought. Thus, making 
commitment is costly, but revoking a commitment is costless.

for which a

The bargaining process 
time horizon sequential game with complete and perfect 

a generalisation of the alternating- 
(1982), in which the proposer

Let A denote the exogenously fixed minimum time between successive
Let T denote what we shall call the commitment time (i.e., the

time t=0.
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a move .a

time tand

point where player A has toa

t=0begins time with player choosingThe Aatgame

shall that the LetWe assume
(i=A,B) denote the Letrate

be and convexa

time offerat to an
is

Let
★

Thus t If
theA's offer which If/ otheron

itthenn even,
★

even.
(i=0,l,...,k,

k=[(n-2)/2] the payoff,Thusand if iseven)n
discounted to time t=0,

★ ★

is player 
hand, n is

bargaining
(x1,T1)e [0,1]XJR+.

★ x

★ X
k

the
★ x

rA

Suppose 
x*e [0,1];

player B concedes, 
then the

x2n+2
Concession terminates

x2n+2'

t* (t*>0)

T2n+2'
Player A either concedes or rejects.
Rejection leads the game to 

2n+2E (T•)+(2n+2)A.i=l

On the other hand, 
2n+l t= E i=l

j=l to player A is:

a move.

offer which is the accepted
___k _ ★ ___ ★ v where k=n

( E1(T^) + (2i)A)], 
j=l -J

n-1 * k *
exp [-rA ((T j) + (n-1) A) ] “i^ocA (T2i+l> exP

players maximise expected utility.
rj_(i=A,B) denote the rate of time preference of player i.
c^: ]R+—>1R+(i=A, B) be a strictly increasing and strictly 

/function with 0^(0)=0 and C£<0)>0. c^CT) denotes the cost to player i 
for making a commitment for a length of time T.

come to an agreement.

where k=[(n-l)/2] if n is odd, and k=[(n-2)/2] if n is even. One can, 
similarly, define the payoff to player B.

2n+2 
the game. 
move, at time t

players agree
is the share of surplus received by player A and 1-x 

the share of surplus received by player B. Let (t£,...,T*) denote the 
commitment times chosen by the two players up until time t*, when they

* n-1 *t = E (T-) + (n-l)A. If n is odd, then it j=l -I 
is the accepted offer.

is player B's 
offer. The commitment times of player A are (T£,T^,...,T£), 
if n is odd, and k=n-l if n is even. The time at which player A chose 
the commitment time T^+i (i=0,1, . . ., k, where k=[(n-l)/2] if n is odd, 

is even) is (Tj) + (2i)A.

2n+lAt time t= E (T•)+(2n+l)A, i=l 
chooses a commitment

(n=0,1,2,...), player B makes an offer, 
where xOnxOe[0,l] and

if player Bthen the game ends.
rejects, then the game proceeds at time t= . E^ (T^) + (2n+l) A, where 
player B makes a move. Note that if player B rejects, then he has to 
wait for a time, of length T2n+1+^' before making a move. Nothing 
happens during that time. Player A has made a commitment and player B 
does not concede.
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whichdescribed above.shall thatWe assume
(i.e., all

Furthermore,

choice to
at.

chooseof toset aa
is thewe usestrategy. The solution concept we will use is the sub-game perfect 

equilibrium (SGPE) (Selten (1965, 1975)). A strategy tuple is in SGPE 
if its restriction to any subgame is in Nash equilibrium.

I

solution concept
(Selten (1965,

the bargaining game 
game of complete information 
common knowledge amongst the players). 

note that G is a game of perfect information.

shall be denoted by G, 
information is assumed to be

is a

A strategy for each agent 
make at each and every 
two players will have

The

in G will tell the agent the 
decision node that he may be at. Each of the 

strategies from which 
will
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3. PERFECT EQUILIBRIUM

extraan
istime which hethe for

SGPE G; to
(1987b) (Thm. (1987b)1 a

restatement of Rubinstein's (1982) result).

PROPOSITION.

be the unique solution for the following pair ofLet
programmes:

max
(1)

s. t.

max
(2)

s. t.

(y,s)eS and S=[O,1]XJR+.where (x,t)eS,

Then,

a
andthanwhich betterleaves

(1) and (2), above,of(i) TheREMARKS: are
in Rubinstein (1987b,theto twoanalogous

Theorem 1).

★ y r

[1-y-c
(y, s)eS

y=[x-cA(t)]exp(-rA(A+s)),

★ s

pair
fundamental

The game G that we have presented (in section 2) may be interpreted 
generalisation of the alternating-offers model 
in which the proposer has available

B (s) 1

(x*,t ★.
, S )

Yr S (X, t) 
(x\t*),

(x-cA(t)]
(x, t)eS

l-x=[1-y-Cg(s)]exp(-rB(A+t)),

★ ★, Y

proposer 
length of

, * * (y /S

as nothing more than a 
of Rubinstein (1982),

accepts any proposal 
★ ★ ★ the proposal y , s (

rejects any proposal which is strictly worse for him than the proposal 
(x*,t*)- where (x*,t*), (y*,s*) are defined above.

strategic variable, namely 
committed to his offer. The Proposition below deals with the existence 
and the uniqueness of the SGPE of the game G; it is analogous 
Theorem 1 in Rubinstein (1987b) (Thm. 1 of Rubinstein (1987b) is

the unique SGPE of the game G is the pair of strategies in 
which player A (player B) always makes the offer x*(y*) and commits 
himself for a length of time t (s ) , 

him better off

programmes, 
equations

(ii) One can verify that the pair of strategies described 
in the Proposition are in SGPE. (iii) Lemmas (1) and (2) below prove 

* ★ ★ *the existence of a unique solution (x ,t ,y ,s ) to the two programmes
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of the SGPE of
(see his Proof 1 of Theorem 1)

method of proof presented by Shaked and Suttonon
(1984a) .

Lemma 1.

Consider the two in(1) and (2) , described theprogrammes f
Proposition, above.

Then, there exist functions f and where
(i=2,4),

(3)
(4)

and (2)
(5)
(6)

are defined below.

<0
s=f 2 (x,t)= .

defined by
equation (7)

(7)

<
y=f!(x,t)

>

<o
[l-y-Cg(s)]exp(-rBA)

game 
which

equation (8)

f4<

rA[x-cA(t)]exp[~rA(A+s)] = cB(s)

f2'

if rA[x-cA(t)]exp(-rAA)

| [x-cA(t)]exp(~rAA)

' [x-c

f ±: S—> [0,1]

rB

1' f2' 
such that

cA(0)

where

t=f4(y,s)= 
defined by

if rA[x-cA(t)]exp(-rAA)
A(t)]exp(-rA(A+s)), 

where s is defined

x=f3(y,s)
t=f4(y,s)

and f4

yby equation (7)

cB(0)

cB (0)

described in the Proposition.
SGPE of our game G is not presented here, 
proof of uniqueness of 
presented in Rubinstein (1987b) 
is based on the

(1=1,3), and f^zS—>3R+ 
y=f (x, t) 
s=f2<x't)

(iv) The proof of the uniqueness of the 
That proof is similar to the 
the Rubinstein (1982)

f 3
(1)
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(8)

<

Proof.

Let examine (1) (cf. the Proposition). Substitutingus

[ 1-[x-cA(t)]exp[-rA(A+s)]-cB(s)] .max

(s) .

(t)>0 and Thus is
strictly concave,

s=0 if F (0)<0
s>0 if F (0)>0

F (0)>0, first-orderIf is condition (i.e.,then s
F (s)=0) . exists isthereHence, a
as defined in the Lemma.

constraint ofSubstituting into the (Dr we
where y=fi(x,t)

(2) and show the existence of the
3

Q.E.D.

defined by the 
function,

by equation (8)

x=f3s)=

say f2:S—>]R+,

I 1-[l-y-cB(s)]exp(-r

'1-[l-y-cB(s)]exp(-r 
where t is defined

and f4

SG ]R+

and

bA)

B

if rB[l-y-cB(s)]exp(-rBA) 
B(A+t)),

s=f2(x,t) 
obtain that there exists

where f2

One can similarly solve programme 
functions fq and as defined in the Lemma.

CA(°)
rB H-y-CB 3 exP [-rB <A+t> ] =c

F : —>3R.|.
denote it by s.

cB(s)>0, 
and hence a unique solution exists;

programme 
a function, say f^zS—>[0,1], 

is as defined in the Lemma.

programme 
for the constraint, we obtain:

Let F(s) denote the maximand. Differentiating twice, we obtain:
F (s)=rA[x-cA(t)]exp[-rA(A+s)]-cB(s) and
F (s)=-rA[x-cA(t)]exp[-rA(A+s)]-cB

we have that F (s)<0.Since x-cA
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Lemma 2.

(4) ,

Proof.

and

Then, we have:

we obtain:

Hence, have under the conditions specifiedwe a
above for Case I,
for i^j,i,j=A,B,

There considered.three other be each of them,to Inare cases
above,

to equations (3)
Q.E.D.

IThe

which will hold if:

for i*jz
(9)

(i.e.,

unique solution 
which become:

i,j=A,B,
C£ (0)>[r jexp(-r jA) [ 1-exp (-r^) ] ] / [ 1-exp (-A (r±+r_p ) ]

rA[x“cA(t)]exP<“

using Lemma 1,
y=fi(x,t)=[x-c
s=f2t< 
x=f3(y,s)=1-[1-y-c 
t=f4(y, s)=0.

y =[exp(-rAA)] [ [1-exp(-rBA)]/[ 1-exp(-A(rA+rB) ) ] ]
★ _ s =0 .

aA)<cb(0)

A(t)]exp(-rAA),

B(s)]exp(-rBA) and

(x*, t ,y*,s*) to equations (3),

Solving the above equations,
x*=[l-exp(-rBA)]/[1-exp(-A(rA+rB))] 
t*-0
* , , .......... _ . ...

c± (0) > [r jexp (-r jA) [1-exp (-r^) ] ] / [1-exp(-A(r±+rj) ) ] .

Case I:
rBA)<cA(0).

There exists a unique solution 
(5) and (6) of Lemma 1.

no explicit solution will be obtained. However, 
using the Brouwer Fixed Point Theorem and the Gale-Nakaido Univalence 
Theorem, one can prove the existence and the uniqueness of a solution 

(6) .

rB[l-y-cB(s)]exp(-

one can

★ * _ s =t =0

interesting conclusion is brought out by the result of Case 
in Lemma 2. The result is the Rubinstein (1982) bargaining solution,

unlike Case I

Note that neither player A nor player B ever make a
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commitment) . Thus,
(9) holds.

Then:

for i^j , i,j=A,B, (10)

Note that

a
(i=A,B) and the rates

(i.e.,fact, the sideIn of the
(MB) toas

i.e.,

out",

course,

Let us further illustrate this condition

to turnzero.
which

at

i.e.,

I

between the marginal costs of commitment, 
of time preference,

right-hand
the marginal benefit

(i) Suppose
0) .

special cases.
i.e.,

i/(ti+rj) 
and r

rA and rB.

c±(0)>rj[r±/(r^+rj)]

rj> 
r±/(r±+rj) .

rj~°

rj
rj
means

j's 
at the margin, 

in order to "buy him

r±/(

to zero,

c±(0)

r±/(r±+rj) 
j. To restate, 
if condition

is the share of the surplus received by player 
commitment is never made by either player A or player B 

(10) holds. Condition (10) establishes a "relationship"

In order to obtain a more transparent interpretation let A—»0 .
★ Ar Arx =y =rB/(rA+rB) and s =t =0 (i.e., the Rubinstein result) if

our game G has produced the Rubinstein result if.

rj[ri/(r±+rj)] 
inequality (10)) can be interpreted 
player i (when player i and player j have not committed themselves for 
any length of time, i.e., given s*=t*=0) . r^/ (r^+rj) is the share of 
the cake (i.e., surplus) received by player j and rj is player 
rate of time preference. When player i commits himself, 
the amount of cake he has to give to player j, 

decreases - and thus player i's share increases - and the amount 
by which it decreases depends on the rate of time preference of player 
j (i.e., rj) and, of course, what player j receives if he rejects - 
which is r.; / (r.-+r4) . Hence, MB=r j [r^/(r^+r j) ] .

(10) by reference to some 
is very small (say, approximately equal 

Then the MB to player i is approximately equal 
that player j is very patient, which in 

implies that player j does not care when he receives r^/(r^+rj) , 
in turn implies that player i cannot gain by committing himself, 
the margin (i.e., MB~0) . (ii) Suppose rj is very large (say,
approximately infinite, i.e., rj~°°) . This means that player j is very 
impatient, which in turn implies that player j cares a lot as to when 
he receives r^/fr^+rj), which in turn implies that player i can gain a 
lot by committing himself, at the margin (i.e., MB~<») .



1



PART TWO

OUTSIDE OPTIONS



i-



I

37

Chapter 3

Bargaining, search and the 'Outside Option Principle'

I
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1. INTRODUCTION

the bilateral bargaining problem the perfectusing notion of a

equilibrium in bargaining process. of the twoa

players in the bilateral quitbargaining situation is free to

bargaining outsideand instead outside option; thetake up some

option is available with certainty. The outside option and the pie

"How will the value of the

the bargaining outcome?” Binmore (1985),

using an extension of the Rubinstein bargaining model, demonstrated

that if the value of the outside option is less than what the player

receives in the Rubinstein solution then it will the

other hand, the value ofbargaining outcome, and the if theon

thethan what the player receives inoutside is largeroption

does influence thesolution then the outside optionRubinstein

his opponent buys him out by giving him thebargaining outcome

the ‘OutsideThis result is knownvalue of the outside option. as

(1984b) further(see forPrinciple’ Shaked and SuttonOption a

discussion).

of the two players in the bilateral bargainingNow suppose one

situation is free to quit bargaining and instead take up some outside

But, now the outside option is not available with certainty;option.

the player has to engage in

In other words, the player is free to quitfind this outside option.

bargaining in order to search for his outside option. If the player

the outside option, after having searched fornot finddoes some

time, then he may resume bargaining. In this situation, how will the

a process of random search in order to

outside option impinge on

under bargaining are mutually exclusive.

Now suppose one

not influence

In his classic paper, Rubinstein (1982) presented a solution to
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value of the outside option impinge on the bargaining outcome, given

that search is costly.

The chapterpresent will provide the abovetoan answer

question. fact,In in this chapter will study generalwe a more

situation; each of the two players is free to quit bargaining and

instead engage in a process of random search in order to find one of

his many outside options. The players may

time without success.

interested to know how the values of the outside options impinge on

the bargaining outcome, given that search is costly.

Thus, this chapterin study the following situation. Twowe

players are bargaining on the partition of a pie of size The pieone.

will be partitioned only after the players reach an agreement. Each

of the two players is free to quit bargaining and instead engage in a

process of random search in order to find

options, which the player may adopt instead of attempting to reach

an agreement in the bargaining (i.e., the outside options and the pie

under bargaining are mutually exclusive). The players can choose to

having searchedbargaining, for withoutafter timesomeresume

success.

And the worker is free to

quit bargaining in order to search for alternative wage offers.

in section 2, which ismodel,

infinite-time horizon sequential game with complete information. The

bargaining and both ofsearch,incorporates two processes,game

The bargaining process is the alternating-which depend time.on

by Stahl (1972) and (1982).Rubinsteinoffers procedure studied

I

An example of such a situation is when two insiders, a firm and a

resume bargaining, after

Once again, we arehaving searched for some

one of his many outside

worker, are bargaining over the wage.

We present a a non-cooperative
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Furthermore, the game incorporates a

and search processes ought to be interlaced.

3section the subgame perfect equilibrium solutionIn we use

concept (Selten (1965, 1975)) to analyse the game, and we

unique equilibrium partition. We then analyse the limiting

the time between successive There

important reasons why is interested in this limit. Firstly, thisone

eliminates the first And secondly, this overcomes

the criticism that is often made regarding the rigidity of the

timetable for making proposals; these points were first discussed by

Binmore (1987a).

Suppose the players did not play the then each playergame;

would achieve his expected reservation value, which is derived from

sequentially optimal search rule over his outside options.

discussion of optimal stopping rules).

Before we state the key result that is obtained,

’Outside Option Principle’ extendsBinmore (1985)

withoutside availablehas optionthe playerseach of two one

exist mutuallyorder for thereinthan tooptions is less one,

beneficial trade amongst the two players.

The key result is, that in the limiting case we obtain the Binmore

players’Principle’, expectedwith the(1985) ’Outside Option

reservation values treated as the outside options.

An alternative angle from which to view this result is as follows.

result (thepresented in this chapter has producedThe agame

(1985)produced by the Binmorewould belimiting case) that

extension of the Rubinstein game (which produced the ’Outside Option

(See McCall (1965) for a

’’view”

following a

we note that the

case as

mover advantage.

on how the bargaining

obtain a

to the case when

offers tends to zero. are two

certainty; of course, one assumes that the sum of the two outside
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priori define the expected

reservation values of the players to be their outside options available

with certainty.

Principle') if in the Binmore game we a



I
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2. THE MODEL

Two players, A and B, pie of

size one. The pie will be partitioned only after the players reach an

Player k (k B) is freeagreement. quit bargaining andA, to

process of random search in order to find

outside options, which the player may adopt instead of

attempting to reach agreement in the bargaining (i.e., the outsidean

options and the pie under bargaining are mutually exclusive). Denote

the outside options by

(i = 1, ..., N^) with

x< 1).

horizon sequential

with complete information. The incorporates twogame game

search, both of which dependbargaining andprocesses,

The bargaining process is the alternating-offers procedure studied

(1982).(1972) searchRubinstein The isby Stahl and process

interlaced with the bargaining process as follows. At any time in the

bargaining process when player A makes an offer to player B, B can,

reject the offer and makeeither accept the offer, aor

counteroffer (and thus remain on the negotiating table), or reject the

offer and leave the negotiating table (i.e., the bargaining process) in

At the end of one period oforder to search for an outside option.

search either an outside option is taken up, in which the gamecase

the players return to the negotiating table with B making

And symmetrically, following B’s offer to A,an offer to A. A can

choose to interrupt the bargaining process in order to search for an

1

iPlayer k will find the outside option
Nk 
E

i=l
non-cooperative infinite-time

probability p^ (1 > p^ > 0 and

one ofinstead engage in a

x1*
i

pi

that the options are ordered (i.e.

are bargaining on the partition of a

ends, or

(i = 1, N^, 1 > x¥ > 0), and assume

The model is a

> *i) •, for i = 1, Nfc-1,

his many

wait to

on time.
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outside option. Note, either the

ends, else the bargaining is resumed; in other words,game or

following interruption of the bargaining and thenan process, an

H unsuccessful” search period, the game proceeds to another round of

bargaining and not to another round of search.

We may now proceed to

offer to player B (point (1) inAt time t - 0, player A makes an

1Figure 1). either accept the offer, in which

game ends, B has to wait A units

of time to make counteroffer, reject the offer anda or

negotiating table (i.e., the bargaining process) in order to search for

an outside option.

If player B chooses, at time 0, to search fort

option, then player A has to decide whether to or not to search for

outside option (point (2) in Figure 1). One period of search takesan

T units of time.

Then, at time t = T, a chanceSuppose player A does not search.

player B findsmove occurs
and with probability (1 -

thewhichin returns tooutside option,findnot casean

negotiating table and makes an offer to A (point (4)). If B finds

the outside option x? he either chooses to take it, in which case
i

chooses not to take it, in which case B returns tothe game ends, or

the negotiating table and makes an offer to A (point (4)).

Suppose player A chooses to search.

Figure 1 is placed at the end of section 4.1.

i

the outside option x?,

Then, at time t = T, a

a description of the game.

Player B can case the

or reject the offer, in which case

an outside

that after one period of search,

leave the

(point (3)), in which, with probability p?
nb 1
E pB) player B does 
i=l
B



1
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[1 -

with probability [1 - i

outside option, in which

choose either

E p?]p4 player A finds the outside option and player B doesi

an

take it and thus the game ends or not to take it and thus B makes

playeroffer to A (point (6)), and (iv) with probability p?pan

If both players donot to take up their respective outside option.

not take up their respective outside option, then B makes an offer to

A (point (6)).

outside option, then the game ends.

If at time t = 0 player B chose to search, then atTo summarise.

round) either the game has endedtime t - T (after searching for one

the players have returned to the negotiating table with B makingor

On the other hand, if at time t = 0 player B choseoffer to A.an

not to search and simply waited to make counteroffer, then at timea

t = A B makes an offer to A.

player B begins bysubgame in whichtheWe describenow

making to player A.

independent of the history of the subgame. Let us denote the game

in which B begins with

Therefore, the game at time t = 0 is G^,begins with an offer by G^.

and thus make an offer to A (point (6)), (iii) with probability 
nb

x?
1

X?
1

case B has to

[1 -
i=l

not find

,BpA
1 J

A finds the outside option xA and player B finds the outside option
J

, in which case both players, simultaneously, decide whether to or

J - - ■ ' XJ
outside option, in which case A has to choose either to

an offer by Gg, and the game in which A

to take it and thus the game ends or not to take it

chance move occurs (point (5)), in which, (i) with probability
NB n NA a
E P-] [1 ~ E P-] both players, A and B, do not find an

i=l 1 j=l J
outside option, in which case B makes an offer to A (point (6)), (ii) 

NA
E pA]p? player B finds the outside option : 

j=l J
and player A does not find an

an offer

or both A andor B B take up their

The structure of this subgame is

If either A



?

1

9a

I
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and the subgame at time t - A and the subgames at time t ~ t (when

B makes an offer) is Gg.

We have described, above, the game G^. Repeat that description,

but with A replaced by B and B replaced by A, and one obtains the

description of the game Gg. To summarise. If at time t - T (t - A) A

chose to search, then at time t 2r(t - A + t) (after searching for

one round) either the game has ended the players have returnedor

to the negotiating table with A making On the other

hand, if at time t - T(t = A) A chose not to search and simply waited

to make a counteroffer, then at time t = T + A (t = 2A) A makes an

offer to B.

Thus, at times 2A,t 2t (whent + A and tT

player A makes offer to player B) the game has returned to thean

game G^. Hence, note the recursive structure of the game G^ that

begins at time 0; the homogeneity of the game permitst

define and independently theGB of time elapsed since the

beginning of the game.

We shall that the two players maximise expected utility.assume

Player k (k = A, B) has Neumann-Morgenstern utility function

Uk (z, t, m) = z

by player k, if agreement on the partition is achieved,

of an outside option belonging to player k, if k takes up an outside

(w

A, B) takes up an outside option leaving player k with his

The expected reservation value is theexpected reservation value.

expected payoff derived from following a sequentially optimal search

t is the time elapsed from time t 0rule over outside options.

is the number of periods that player k

i

ga

option, or the expected reservation value of player k, if player w

z can be either the share of the pie received

a von

an offer to B.

or the value

before z is obtained, and m

A + T, t

us to

* k, w
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searched is obtained. the (common) discount factor8 is

(i.e., the cost of time), 0 < 8 < 1, and & represents

period of search, 0 < 3 < 1. We shall assume that the total cost of

search per period of search includes the cost of time (the r units of

time incurred) and the fixed cost per period of search.

shallWe that the GA is completeofassume game gamea

information, i.e., all information (including and thetree

players preferences) is assumed to be common knowledge amongst the

players. game of imperfect information. The

imperfect information arises only in the search process, when both of

the players find an outside option and have to decide simultaneously

(i.e., without knowing what decision the opponent is taking) whether

to or not to take up their respective outside option. We emphasize

nowhere else thethat in does there exist imperfectgame

We note that this imperfect information is innocuous ininformation.

that the subgame perfect equilibrium solution concept is sufficient

(and necessary) to ensure

Suppose player k (k = A, B) refused to play the game Gy^ with

= A, B); then player k would achieve his expected(w * k, w

derived from followingreservation value (ERV), R^,

Thereoptimal search rule over outside options. Let us compute Rm­

will exist r^ such that it is sequentially optimal for player k to

for i > r^, and to reject outside optionsaccept outside options x

£ for i < r^ - 1;

I

k 
i

Nk 
E 

i=l

k 
X-

kx
rk

We note that Gy^

k k p. x.
1 1

GA

player w

a fixed cost per

> x -j rk-l

is a

i.e., there exists r^ such that

a sequentially

before z

a unique outcome of the game.

the game



I
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discussion of optimal stopping rules). rk

for i = 1, N^, S, T and /3.

Given R^ is defined as follows:

/ 1 " 1 -

A strategy for each agent in will tell the agent the choice to

make at each and every decision node that he may be at. Each of

set of strategies from which to choose a

is the subgame perfectstrategy.

equilibrium (SGPE) (Selten (1965, 1975)). A strategy tuple is in SGPE

if its restriction to any subgame is in Nash equilibrium.

Nk 
E 

i=rk

Nk 
E 

i=rk

k k p. x.
i i

k
Pi

will depend on the parameters p^,

(see McCall (1965) for a

xk
i

the two players will have a

Rk

The solution concept we will use





!
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3. PERFECT EQUILIBRIUM

will analyse the using the solutionWe SGPEgamenow

firstly, in characterise theWe unique SGPEconcept. Case I,

partition of the game when player A has no outside option and player

B has one outside option. This will elucidate the

result of this chapter and allow to draw certain conclusions. Weus

will not present the analysis of the game G^ when player A has many

outside options and player hasB

because the algebra involved is extremely complicated and lengthy, to

say the least. secondly, in Case II, prove the existence

SGPE partition (and characterise it)and uniqueness the whenof

(say N)outside option and player hasBno many

outside options. the existence and

uniqueness of the SGPE partition (and characterise it) when player A

has one outside option and player B has one outside option.

Player A hasCase I:

outside option.

And player B’s ERV, Rg, is as follows:

[ST/?px]/[l - (1-p)8T/3] ,

(cf. section 2). dropped the subscripts andthat haveNote we
has onlysuperscripts, since outside option andhas BA no one

p denotes the probabilityoutside option; this reduces the notation.

period ofhis inthat will find outside optionB search.onex

Furthermore, note that Rg < 1 for all values 0<S<l,T>0, 0</3<

gA

Player A’s ERV is zero.

rb

However, we

no outside option and player B has one

crux of the main

Thirdly, in Case III, we prove

many outside options. This is

player A has
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1, 0 < p < 1 and 0 < x 1.

for all possible parameter values. ra + 1 implies that there<

mutually advantageous trade, i.e., a surplus exists.

The game has a unique SGPE partition, in which agreement is

reached at time t - 0 and player A receives share M, given by:

1/(1ifM

0] if

and player receives (The above result is obtained byB 1 M.

putting N 1 in Proposition 1, which will be stated and proved

below, in Case II.)

A relatively transparent interpretation is made possible by taking

the limit as A-*0.

Firstly, this eliminates the first

mover advantage. And secondly, this overcomes the criticism that is

often made regarding the rigidity of the timetable for making

proposals (i.e., after rejecting an offer and choosing not to search a

player will typically wish to make his counteroffer at the earliest

possible and thus the limiting be usedmoment, case can as a

paradigm which thethe in players formallyfor notcase are

exogenously determined timetable). These points

first discussed by Binmore (1987a). Thus as A ->0, we obtain:were

1/2if1/2M

Rb if RB > !/2 ,1 -

Since R^

rb

1/(1 +

- (1-p)ST£] ,

[1 - stZ3[(1-p)

exists a

1/(1+SA) < [ST/?px]/[SA

+ >z [ST/?px] / [SA

+ px]]/[1 - (l-p)ST+A

rb

why one is interested in this limit.

constrained by an

But, there are two further and important reasons

- 0, R^ + Rg < 1 is satisfied
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where Rg is the expected reservation value (ERV) of player B.

the outside option to player B available withIf one treats Rg as

(as A-»0)in the rediscovered thethen limit havecertainty, we

Principle’.'Outside Option The principle first discovered bywas

Principle’ ('OOP’)(1985). 'Outside beThe OptionBinmore can

outside option and playerobtained in our game when player A has no

outside option available with certainty, and thus B does

not have to search for his outside option (or equivalently, t = 0, /3 =

The 'OOP’ (limiting case,1 and p = 1).

1/2 ifM

if1-x

where x is the outside option of player B available with certainty.

The 'OOP’ refers to the situation when player B has

option x, available with certainty. Now suppose B has to search for

his outside option

presented game which incorporates the bargaining and the searcha

processes; in particular, the game represents as to how thea

bargaining process ought to be interlaced with the search process.

led the conclusion that it is the value thatto not

it does in the case when

available with certainty, but it is of thatrb matters.

Furthermore, Rg influences the bargaining outcome as if Rg were the

outside option of player B available with certainty.

In Case II and Case III, below, we rediscover the above result in

more general environments.

L

as A-»0):

x > 1/2

x is

x « 1/2

"view”

influences the bargaining outcome, as

an outside

B has one

x and that search is costly.

of x

In section 2, we

We are

the value
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Case II:

(say N) outside options.

And, player B’s ERV, Rg, is as follows:

1 -

(cf. section 2). subscripts andNote

superscripts, since A does not have any outside option; this reduces

the notation. Pi (i = 1, ..., N) denotes the probability that B will find

May we recall (fromhis outside option x^ in period of search.one

section 2) that there exists r such that

Furthermore, < 1 for all parameter values. Thus, R^ +

0.

The SGPE of the game Ga is analysed using the elegant method

proposed by Shaked and Sutton (1984a).

We begin by establishing the following:

Let Pa(ga) den°te the set of SGPE payoffs to player ALemma 1:

Let M denote the supremum (infimum) of Pa(ga)‘the game Ga*in

Then:

{sA(l (1)1 - maxM

where 1 -F

b 

N
E 

i=r

N
E 

i=l

N
E 

i=l

N
E 

i=l

- S^M), f] ,

X r

< 1 since Rarb

p. X .
1 1

piPiXi / 1 "

note that Rg

Player A’s ERV is zero.

rb

pi pi
(1 - S^M) +

Player A has no outside option and player B has many

max (x^., 1 -

that we have dropped some

> xr_x *

N
E 

i=r
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Let Pa/G/J denote the set of SGPE payoffs to player A inProof:

the game and let M denote the supremum of Pa(Ga>«

In Figure 1, consider the subgame beginning from point (7), at

which player A choose either to search (i.e.,can

counteroffer (i.e., move to pointnot to search and wait to makeor a

(9)). Player does have outside option, thus theA andnot an

of the payoff in perfect equilibrium of theto Asupremum any

subgame beginning at point (7) is S^M.

consider the subgame beginning at point (10),Now where B

makes Any offer by B which gives A

will be accepted by A; and perfect equilibrium inso

which B offers It follows that B will get at least 1 -

fact, this is the infimum of the payoff received by B in the

subgame beginning from point (10).

By repeating the above the infimum of the payoffargument,

received by in the subgame beginning from point (4)B and the

subgame beginning from point (6) is 1 -

Now consider the subgame beginning from point (3), at which B

probability 1 B does not find SupposePi

If he takes it up, then B

receives at least and if he does not take it up, then B moves to

point (4) and receives at least 1 - Thus, the infimum of the

payoff to B in any perfect equilibrium of the subgame beginning from

point (3) if he finds is Thus the infimum of the

payoff to B in any perfect equilibrium of the subgame beginning from

in

max(xp 1 - S^M).xi

an outside option.

an offer to A.

more than S^M.

finds the outside option X| (i = 1, ..., N) with probability pj and with 
N 
E 

i=l
B finds the outside option x^ (i = 1, N).

more than

move to point (8))

there is no
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point (3) is

11

In Figure 1, consider the subgame beginning from point (11), at

which search ThehasB to to notor

infimum of the payoff to B in any perfect equilibrium of the subgame

beginning from point (11) is H, where

(2)H F

where 1 1F

beginning from point (1), at whichthe Agame

makes an offer to B. Any offer by A which gives B less than H will

be rejected by B; and so there is no perfect equilibrium in which A

It follows that A will get at most 1 - H; this isoffers less than H.

the supremum of the payoff to A in the game beginning from point

H, where H is defined by equation (2) above.(1). 1Hence, M

Hence the equation shown in Lemma 2 (i.e., equation (1)) defines the

supremum of P/x/G^).

The above argument

may be repeated exactly, but with M defined instead as the infimum

more/less, most/least,pa(ga); with the wordsandof

supremum/infimum and accept/reject interchanged throughout. Hence

equation (1) also defines the infimum of Pa(Ga)«

Q.E.D.

N
E 

i=l

N
E 

i=l

N
E 

i=l

N
E 

i=l
max(x..

i

max (x., 
i

pi

pi

pi
(1 - S^M) +

(1 - S2^) +

We defined M as the supremum of Pa^a)*

max ^$^(1 - t

Pi

Now consider

choose either to search.
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Before we characterise the solution of the game

the following assumption: t > A (i.e., the time of one period of search

is greater than or equal to the time of one period of bargaining).

SGPE partition, inProposition The unique1: game

which agreement is reached at t = 0, and player A receives share M,

given by:

A4 1/(1 + (ii) thereif either (i)M or

.., N} such that

and

A p,)ST/3P-x- / Si i i

Aor (iii) >z 1/(1 + and

A - (1 “/P4*1 i

-1 1 / 1 " 1 - S+

e {1, 2, 3, .N} such thatif

.A(1 - S ) + S / 1 ->/ S

and

N
E 

i=l

x m

N
E 

i=m

N
E 

i=m

’ N

E 
_i=m

N
E 

i=m
x m

gA

N
- (1 - E 

i=m

p. x.
1 1

1/(1 + SA) <

1/(1 + sA)

sA) <

p. X .
1 1

SA) >z

1/(1 + sA)

pi

p.)ST£

;T+A/s

we shall make

XN

T+^

1/(1 +

X 1 m-1

x 1 m-1

T+A3

X1

1/(1 +

pi

pi

exists an m € {2, 3, .

has a

N
ST£ E

i=m

T N
s £ E

i=l

there exists an m

N
1 - E 

i=m
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1

= 0),

and player B receives 1 - M.

We begin by showing that the equation stated in Lemma 1Proof:

(i.e., equation (1)) has unique solution. Leta

considering threesolved byequation for The equation isM.

(ii) 1 - < xj, andxN 4 1 -(i)mutually exclusive cases,

e {2, 3, N} such that xm_q 4 1- 4(iii) there exists an m

Thus, for i = 1, 2, . . . , N, max(x., 1 -< 1 -(i)

Therefore, equation (1) becomes, M - 1

Thus, > ST.ST/?(1 - SaM)}. We have assumed that T > A. Hence,

1 - S^(l - S^M); and therefore,M

1/(1 + SA) . (3)if 4M

> 1 - sAm.(ii)

SA(1 - S^M),
= xi-

(1 - S^M)ST/3

Thus,

A
>z 1/(1 + * ) andifM

1 -i i

I

N
E 

i=m

N
E 

i=l

N
E 

i=m

xm*

max{S^(l - S^M),

(where we define x^

XN

X1

p. X .
1 1

p .X .
1 1

1/(1 + SA) >,

l/d +

1/(1 + sA)

ST/3 ST /3/

/SA

X1

1 - sam.

us firstly solve this

pi

pi

pi

Thus, for i = 1, 2, N, max (x^, 1 - S^M)

Therefore equation (1) becomes, M = 1 - max
N

+ E
i=l

N
1 - E 

i=l

T N
S (i L p.x 

i=l 1
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/ 1 " 11 -

A 1/ 1 "(1 - £ ) + £if

(4)1and

there exists an m c {2, 3, ..., N} such that 4
Equation (1) becomes, M = 1 max

(11
Thus,

A£ ) if there existsM

.A< 1/(1 + £ ) < and

AA1/(1 + S ) >/ / *

,T / 1 "11 - £ /3 +

there exists an m e {2, 3, .N} such thatif

A
/ 1 - 1 - £(!-£)+£ P-;P;x m-1i i i

ST/3A (5)1 -and 1/(1 + £ ) <

N
E 

i=l

N
E 

i=m

N
E 

i=m

N
E 

i=m

N
E 

i=m

N
E 

i=l

N
E 

i=l

N
E 

i=m

N
E 

i=m

N
E 

i=m

N
E 

i=l

N
E 

i=l

N
E 

i=l

‘ N

E 
_i=m

x m

x m

< x . m

N
E 

i=m

N
+ E

i=l

X1

1/(1 + SA) < p. X .
1 1

p. X .
1 1

p. X .
1 1

pixi

p. X .
1 1

pi

ST/3

sTft

ftft /

/

1 - ft

x im-1

p.x.
i i

(iii)

1 -

Xm-1
SA(1 - S^),

1/(1 +

T+^

■T+*p

Pi

p.x.
1 1

pi

pi

pi

pi

pi

pi

N
1 - E 

i=m

an m e {2, 3, .N} such that

pi

+

ST+A/3

N
1 - E 

i=m

£T+A^

sT+^
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Combining equations (3), (4) and (5) gives

(1) for M, which is as stated in the Proposition.

Thus, the equation stated in Lemma 1 does indeed have a unique

whence it follows that the supremum and infimum of thesolution

set Pa(G/\) coincide.

is in factthis solutionshow thatstraightforwardisIt to

supported by a pair of strategies which involve immediate agreement

This follows from the fact that M R^ - 0 and 1 M0.at time t

Player A receives M as defined in the Proposition and player>z RB.

B receives 1 M.

Hence, the game has a unique SGPE partition.

Q.E.D.

We discussed theLet us now examine the limiting case, as A -» 0.

0,underfor doing Case I.soreasons

Proposition 1:

either (i) < 1/2 or (ii) there exists anif= 1/2M

ande {2, 3, N} such thatm

1/2 Em
(6)> 1/2 andor

there exists an m € {1, 2, 3, .N} such thatif

and 1/2 < E> xm-1 m

(7)= 0) »

I

1 - E m

x m

4 1/2 < x mx i m-1

(iii) x1

us the solution of equation

>/ Emm

XN

1/2 > Et

(where we define x^

As A we obtain, from
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/ 1 " 1 -where

interpret the above limiting

through a few points.

withFirstly, that if player B refused to play thenote game

player A, would achieve his expectedthen he reservation value,

denoted by Rg, which is derived from following a sequentially optimal

Thus, there would existsearch rule

that

(8)>/

i.e., player B would accept outside options Xj > and reject outside

would dependoptions Xj xr-l* the values of the parametersr on

for i 1, ..., N, S, t and /3. Rg is defined as follows:Pi,

T/ 1 - 1 -

which has emerged in the limiting case,

is the expected payoff to player B if B followed search rule sucha

that he accepted outside options > and rejected outside options

xi xm-l*

Thirdly, we have that

ST£ Vm (9)

L

N
E 

i=l

N
E 

i=r

N
E 

i=m

N
E 

i=r

x m

N
E 

i=l
x 

DI
E m

E m

x r

rb.

xr

p. X .
1 1

p. s

p. X .
1 1

p. X . , 
1 1

ST/3

ST/3

ST/3

xm

p.x.
i i

Thus Er

rb

X 1 r-1

pi

Before we can

Secondly, note that Em,

over outside options.

case we need to go

r such

N 
e 

i=m



" 111

' i



59

(10)and Vm

Thus, from equations (8) and (9), we have,

1Vm r

(ID1i. e. , Vm 4r

And from equations (8) and (10), we have,

Vm r + 1

(12)i. e. , Vm r + 1 >/

(13)and Vm r

Fourthly, we have that

(14)

The

second equation of the limiting case, i.e., equation (7), is:

there exists an me {1, 2, 3, N) such thatifM

= 0)(where we defineand> xm-1

1.Using equation (11) we

And, using equations (13) and (14), we haverule out m > r + 1.

Thus, equation (7), the second= rB*>/ xr_p

ft

N
E 

i=l

x m

x m

x m

1 - E m

E m

E m

E m

E m

E m

E rx r

xr

x0

>/ Er

sT/*

x im-1

1/2 > E m

x i m-1

X 1m-1

E m

p. x. , 
i 1

E , mx i m-1

rule out m 4 r Using equation (12) we

well equipped to interpret the limiting case.Now we are

x im-1

Note that Er
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equation of the limiting case boils down to:

if 1/2 < Rg .M

condition for M(Note that we have not included Rg > xr-l

cf.since it is always true given the properties of1 rb> r,

equations (13) and (14) above.)

The first equation of the limiting case, i.e., equation (6), is:

either (i) (ii) there exists an1/2 ifM

and€ {1, 2, 3, N} such that < 1/2 <ID

1/2 > EID

(where we define = 0).

Using equation (11) we rule out m < r-1. We now demonstrate that

< 1/2 < 1/2 > E Rg < 1/2Vm > r + 1, and m

(4>). A'/B', A'where andi 1

[A' + C]/[B' + D],B ' 1 - 1 -

8T^3where C and DP-xi^i

m~l,A' x< [1/2]B Since for i = r,x< 1/2

Thus, A' + Cwe have, C [1/2]D .x< 1/2 ,

x ID

ID-1 
E 
i=r

N
E 
i-m

E m

E m

x m

Pi ’

xr

X0

x i m-1

XN

x i ni-1

1/2 or

as a

1 -

m-1
ST/3 E 

i=r

pi

x.i

N
ST/3 E 

i-m
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X< [1/2] (B'

Vm r + 1. FromWe have that, Em_j,«=).

Thus, Vmequation (12) given, Vm > r+1 xm_| > Em.

Thus, Rg < 1/2 => Vmi. e. ,r + 1

< 1/2 <1/2, => Vm > r + 1, E> r + 1 E mm

r

ST/3T [1/2][1/2]. Now,P£X^ < s /3

Thus, Rb < 1/2 .[1/2]

= RB <^> Rb <and< 1/2 <Finally, note that,

1/2.

Hence the second equation of the limiting case, equation (6), boils

down to:

1/2 .if1/2M

as A -> 0, we obtain,IN SUMMARY:

1/21/2 ifM

> 1/2 .if Kb

Player A has one outside option and player B has oneCase III:

outside option.

Player k (k = A, B) has a ERV R^ defined as follows:

ST/3]/[l - (1 - P)ST^] ,
k

' N
E 

i=r

xm*

Em

N
E 

i=r

[p x

xr

Er

xm

1/2, ST/3

+ D) Rg < 1/2 .

we are

rb

1 - ST/3 + ST/3

Rk

xr-l

and xm_j

1 "

= RB = max {Em}. 
m>r 

x< 1/2

pi

XN < 1/2 => Vm >

N 
E 

i=r
pi

We now show that xjq < 1/2 => Rg 1/2.

N 
E 

i=r
pi

^m-l ^m»

1/2 > Er

xm-l Emr
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(cf. section 2). have dropped

p denotes the probabilitysuperscripts; this reduces the notation.

that player k will find his outside option in

This simplifies the analysis.we have assumed that p^ - pg Wep.

Rg < 1, so that mutually beneficial trade exists.

is again analysed using the method

proposed by Shaked and Sutton (1984a). We have defined the game

offer to Athe subgame of G^ that begins with B making an

(cf. section 2 and Figure 1). set of SGPE

payoffs to player k (k = A, B) in the game Gj (j = A, B).

We begin by establishing the following:

Let Mk( mH) denote the supremum (infimum) of the setLemma 2:
(a)

(b)andy Z1 z2 x Z1 z2
Equation (15):

X)]]y

if either (i) and and< x < x,

(iii) > x,4- or

and

and> x

A

I

ga

< z^.

4 z1

(1 - p)Zj]

such that +

1 - max|8 x,

2+ P(1 ~ P)Rg + (1 “ p) z1]> £[pxr D

21

+ pRb

XB

XA

+ p max(x ,A

> 2^> £[PXB

XA

1 - maxfs^x, [ (1 - p)x

one period of search;

XB

XB

(1 ” P)z1

or (iv) x
A

or (ii)XA XB

8T/3[p2x

Gg as

shall assume that the parameters p, x^, xg, S, r and ft take values

------------------ J J' ‘

Pk(Gj), then equations (15)-(18) below are satisfied by, 
m§, zi = m? and (b) x = m^ y = , zi =B 1 A B -- A B 1 A

+ p(l - p) max(x , x) + p(l - p)R +A A

y = mJ*D

x = A
mA.

The SGPE of the game

some subscripts andNote that we

Let Pk(Gj) denote the
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(1 - p)2x]j

if either (i)

and> x + +

+ (1 - P)

Equation (16): 1 y.

Equation (17):

y) ]}.A ,TX

andeither (i) 4 y and xif 4 y,A

and> £[px > y,

or (iv) and> y

+ p(l - p) max(x , y) + p(l - p)R1 BB

(1 - p)2y]}

y andif either (i)

andor (ii) >/ y

+ p(l - p)RA

2 z

> z2,

> z^

> z,,

> z2,

< z2 ,

1 - max{sAy, ST/3[(1 - p)y

x< Z2

(1 - p)z1J

(1 - p)z2

'B +

4 £Cpxa + U ~ P)z2^

4 £[pxa A

A +

Z2

pRg « £[PXB

> £[pxa

XA XB

Z2

•

Z2

9+ (1 - p) z2].

XB

4 £[PxnD

XB

XA

+ PRA

XB

^Tnr 2- max(S y, S /3[p x

(1 - p)z1

x zx

+ p(l - p)RaA

XB

+ pra

XA

XA

XB

p(l - p)R D

XA

XA

21

XB

XA

XB

or (ii)

or (iii)

or (ii)

>z Z2

2+ (1 - p) z

(1 - p)z2^l > z2

+ p max(x ,D

(1 - p)z2
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