Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a. Refer to the help text for what text to use if an item is not relevant to your study. For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Mass spectrometry data was collected using MassLynx v4.2 SCN1003 (Waters Inc., USA). Quartz crystal microbalance studies for determining binding affinities were carried out using Attana, operated using the vendor provided proprietary Attester v2.0.0.57 software.

Data analysis

ProteinLynx Global Server v3.0.1 (Waters Inc.) for processing MS data, and DynamX v3.0 (Waters Inc.) was used for analysis. Deuterors 2.0 (Lau A et al., 2021) was used for HDXMS statistical analysis. TraceDrawer 1.9.1 (Ridgeview Instruments), Microsoft Excel 2021, GraphPad Prism 9.0 were used for generating plots and visualization. Simulation and analyses were performed using GROMACS 2018.4.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

UniProt accession codes - PD0C2T (Spike protein), Q08YF1 (human ACE2 protein). PDB codes - 7X8R, 6DWZ, 6DF2, 7JXE, 1IGT, 1MCO, 6XR8, 7A98, 7W98, 7WPA. HDX summary table is included as supporting table, the HDX data tables are provided as source data. HDXMS data is deposited to the ProteomeXchange Consortium via PRIDE repository with the dataset identifier PXD043818. Simulations data is deposited into public repository Zenodo, accessible via the following link - https://doi.org/10.5281/zenodo.8354172.
Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), and sexual orientation and race, ethnicity and racism.

<table>
<thead>
<tr>
<th>Reporting on sex and gender</th>
<th>Sex and gender of the patients were not considered for this study design.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting on race, ethnicity, or other socially relevant groupings</td>
<td>Convalescent serum was collected from patients for discovery and identification of novel antibodies. Race, ethnicity, and other factors were not considered for recruitment.</td>
</tr>
<tr>
<td>Population characteristics</td>
<td>This study uses biological material and does not focus on demographic and population studies. Hence no population characteristics are applicable to this study.</td>
</tr>
<tr>
<td>Recruitment</td>
<td>Participants were recruited after providing written informed consent to take part in the study as per approved protocol (NHG DSRB Ref: 2020/00120) reported in the study.</td>
</tr>
<tr>
<td>Ethics oversight</td>
<td>All procedures performed involving human participants complied relevant ethical regulations overseen by National University of Singapore Institutional Review Board.</td>
</tr>
</tbody>
</table>

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	No sample size calculation has been performed, as not relevant for this study. For HDXMS, the sample size (biological n=2, technical n=3) was determined based on the community standards (Masson et. al., Nat. Methods, 2019).
Data exclusions	Within HDXMS data, peptides were excluded if they were insufficiently fragmented or if signal-to-noise ratio was not suitable, and if mass error was more than 10 ppm.
Replication	Biological replicates were performed ~6 months apart to ensure reproducibility. All data was carried out in biological duplicates, each with technical triplicates. Both attempts of biological replication were successful.
Randomization	The convalescent serum was collected as determined by recovery of the patients. HDXMS data was acquired over different periods of time and hence the samples were not randomized.
Blinding	A double-blind study was carried out. The investigators were blinded to group allocation during the analysis, and the patients were blinded to any outcome from the study. Deidentified blood/convalescent sera were obtained for this study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	
Research sample	
Sampling strategy	
Data collection	
Timing	
Data exclusions	
Non-participation	
Randomization	
Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description
Research sample
Sampling strategy
Data collection
Timing and spatial scale
Data exclusions
Reproducibility
Randomization
Blinding

Did the study involve field work?
☐ Yes ☐ No

Field work, collection and transport

Field conditions
Location
Access & import/export
Disturbance

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antibodies</td>
</tr>
<tr>
<td>☑</td>
<td>Eukaryotic cell lines</td>
</tr>
<tr>
<td>☑</td>
<td>Palaeontology and archaeology</td>
</tr>
<tr>
<td>☑</td>
<td>Animals and other organisms</td>
</tr>
<tr>
<td>☑</td>
<td>Clinical data</td>
</tr>
<tr>
<td>☑</td>
<td>Dual use research of concern</td>
</tr>
<tr>
<td>☑</td>
<td>Plants</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ChIP-seq</td>
</tr>
<tr>
<td>☑</td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>☑</td>
<td>MRI-based neuroimaging</td>
</tr>
</tbody>
</table>

Antibodies

Antibodies (LSI-CoVA-014, LSI-CoVA-015, LSI-CoVA-016, and LSI-CoVA-017) used in this study were expressed and purified in-house, and not obtained commercially. Antibodies (CoVA2-04, CoVA2-39, 4A8, 5A6, CR3022) generated and purified from previously published literature have been cited accordingly.

In-house generated and purified antibodies were not validated for commercial purposes. These antibodies were sequenced and this new data is reported in this study.
HEK293-6E was procured from National Research Council Canada (NRCC, Cat# 11565). Spodoptera frugiperda (Cat # 11496015) and Expi293 (Cat. #A14527) cell lines were obtained from Thermo Fisher (Singapore).

The cell lines used in this study were not authenticated.

The cell lines were not tested for mycoplasma contamination.

Mis-identified cell lines were not used in this study.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
No	Yes
Public health
National security
Crops and/or livestock
Ecosystems
Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No	Yes
Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities
Enable the weaponization of a biological agent or toxin
Any other potentially harmful combination of experiments and agents

Plants

Seed stocks
Novel plant genotypes
Authentication

ChIP-seq

Data deposition

- Confirm that both raw and final processed data have been deposited in a public database such as GEO.
- Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links
May remain private before publication.

Files in database submission

Genome browser session
[e.g. UCSC]

Methodology

Replicates
Sequencing depth
Antibodies
Peak calling parameters
Data quality
Software
Flow Cytometry

Plots

Confirm that:
- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

<table>
<thead>
<tr>
<th>Sample preparation</th>
<th>Instrument</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell population abundance

Gating strategy

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

<table>
<thead>
<tr>
<th>Design type</th>
<th>Design specifications</th>
<th>Behavioral performance measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imaging type(s)</th>
<th>Field strength</th>
<th>Sequence & imaging parameters</th>
<th>Area of acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diffusion MRI

- [] Used
- [] Not used

Preprocessing

<table>
<thead>
<tr>
<th>Preprocessing software</th>
<th>Normalization</th>
<th>Normalization template</th>
<th>Noise and artifact removal</th>
<th>Volume censoring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistical modeling & inference

<table>
<thead>
<tr>
<th>Model type and settings</th>
<th>Specifying type of analysis: Whole brain</th>
<th>ROI-based</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect(s) tested</th>
<th>Specify type of analysis: Whole brain</th>
<th>ROI-based</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistic type for inference</td>
<td>[\text{(See Eklund et al. 2016)}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Models & analysis

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Functional and/or effective connectivity</td>
</tr>
<tr>
<td></td>
<td>Graph analysis</td>
</tr>
<tr>
<td></td>
<td>Multivariate modeling or predictive analysis</td>
</tr>
</tbody>
</table>

- Functional and/or effective connectivity
- Graph analysis
- Multivariate modeling and predictive analysis