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Abstract
Distribution testing is an area of property testing that studies algorithms that receive few samples
from a probability distribution D and decide whether D has a certain property or is far (in
total variation distance) from all distributions with that property. Most natural properties of
distributions, however, require a large number of samples to test, which motivates the question
of whether there are natural settings wherein fewer samples suffice.

We initiate a study of proofs of proximity for properties of distributions. In their basic form,
these proof systems consist of a tester (or verifier) that not only has sample access to a distribution
but also explicit access to a proof string that depends arbitrarily on the distribution. We refer
to these as NP distribution testers, or MA distribution testers if the tester is a probabilistic
algorithm. We also study IP distribution testers, a more general notion where the tester interacts
with an all-powerful untrusted prover.

We investigate the power and limitations of proofs of proximity for distributions and chart a
landscape that, surprisingly, is significantly different from that of proofs of proximity for functions.
Our main results include showing that MA distribution testers can be quadratically stronger than
standard distribution testers, but no stronger than that; in contrast, IP distribution testers can
be exponentially stronger than standard distribution testers, but when restricted to public coins
they can be quadratically stronger at best.
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1 Introduction

Distribution testing, introduced by Goldreich and Ron [34] and Batu et al. [8], is an area
of property testing [55, 30] that studies sublinear-time algorithms for approximate decision
problems regarding probability distributions over massive domains. Such algorithms, known
as distribution testers, are given independent samples from an unknown distribution and are
required to decide whether the distribution has a certain property, or is far from having it.
More precisely, a distribution tester for a property Π of distributions over a domain Ω is
a probabilistic algorithm that, given a proximity parameter ε > 0, determines whether a
distribution D over Ω has the property Π or is ε-far (typically, in total variation distance)
from any distribution that has Π, by drawing a sublinear number of independent samples
from D.
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In the last two decades distribution testing has received much attention, not only because
it asks fundamental questions about distributions but also because it has applications ranging
from statistical hypothesis testing [43] and model selection [14] to property testing [34, 17] and
biology [62, 48]. A long line of works, including [7, 46, 6, 47, 49, 58, 3, 12, 44, 22, 11, 24, 57],
has investigated many natural properties of distributions, determining the sample complexity
of core problems such as testing uniformity, support size, identity to a specified distribution,
and many more (see recent surveys [53, 16] and a forthcoming book [29]).

Whereas testing properties of functions is often possible with few queries (independently
of the function’s domain size), testing properties of distributions typically requires many
samples. In particular, the vast majority of properties of distributions studied in the literature
require Ω(

√
n) samples to test, where n is the domain size. This state of affairs has motivated

researchers to study distribution testing using stronger types of access to the distribution
[18, 26, 2, 21], in which the tester can draw samples conditioned on a subset of the domain,
and models in which the tester is granted additional access to the cumulative distribution
function or probability mass function of the distribution [54, 15]. In this work we take a
different approach: we allow the tester to be aided by a prover, but keep the standard sample
access to the distribution (without any conditioning), as we now explain.

A fundamental question that arises in any computational model is to understand the
power of a ‘proof’. Indeed, the famous P 6= NP conjecture, which is concerned with the
power of proofs in the setting of polynomial-time computation, is widely considered as one of
the most important open problems in the theory of computation. Moreover, proof systems
are studied in many other settings, such as communication complexity [4, 1, 42], quantum
computation [61, 50, 59], data streams [19, 38, 20], and, most relevant to this work, property
testing, as we now recall.

Proofs in the functional (standard) setting of property testing are known as proofs of
proximity [25, 9]. These are probabilistic proof systems in which the verifier makes a sublinear
number of queries to a statement, and is only required to reject statements that are far from
true. In a Merlin–Arthur proof of proximity (MAP) [39], the verifier receives explicit access
to a proof of sublinear length, in addition to query access to the statement. More generally,
in an interactive proof of proximity (IPP) [52], the verifier interacts with an all-powerful
untrusted prover. MAPs and IPPs have been studied in a line of recent works, including
[27, 33, 41, 32, 28, 31, 51, 40, 10], and may be thought of as the MA (i.e., “randomized NP”)
and IP analogues of functional property testing, respectively.

In this work, we initiate a study of proof systems for testing properties of distributions,
i.e., proofs of proximity for distribution testing. We define several natural types of proofs,
and investigate their power and limitations. The landscape that we chart turns out to be
completely different, both qualitatively and quantitatively, from that for proofs of proximity
for functions. We now discuss our results, first on non-interactive proofs and then on
interactive proofs.

2 Non-interactive proofs of proximity for distribution testing

We study a natural analogue of the notion of NP proofs for testing properties of distributions.
Letting ∆(Ωn) be the set of distributions over a domain Ω, and letting Π ⊆ ∆(Ω) be a
property, the tester is given sample access to a distribution D ∈ ∆(Ω) and explicit access to
a proof π and proximity parameter ε. We require that for every distribution D ∈ Π there
exists a proof π such that the tester accepts, and for every distribution D that is ε-far from
Π and every proof the tester rejects, both with high probability (e.g., 2/3).
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Following standard conventions, if such a tester is a deterministic algorithm (i.e., is not
allowed to toss coins), then we call it an NP distribution tester, and if it is a probabilistic
algorithm, then we call it an MA distribution tester. As we discuss later, in stark contrast
to proofs of proximity for functions, for which deterministic testers are degenerate [38], the
power of MA distribution testers and NP distribution testers is essentially equivalent. Thus
we henceforth present our results for MA distribution testers only, and remark that these
results qualitatively translate to NP distribution testers as well.

Analogously to prior work in distribution testing and proximity proofs, we consider two
main efficiency measures for MA distribution testers: (a) sample complexity, which is the
number of samples drawn by the tester from the distribution; (b) proof complexity, which is
the length of the honest proof. Both complexity measures are functions of the domain size
and the proximity parameter.

Perhaps the first question that arises in this direction is whether verification can be
cheaper than decision. In other words, are MA distribution testers stronger than standard
distribution testers? For functional proofs of proximity the answer is immediate: every
property can be tested with just O(1) queries to the input, when given a linear-size proof.
This proof simply contains a description of the input, in which case the tester can read the
entire proof, decide membership in the property, and query the input at few random locations
to check that it is close to the proof. Linear-size proofs thus trivialize testing properties of
functions.

In distribution testing, however, the situation is not as simple. For starters, given
a purported description of D, checking that this description actually matches the input
distribution typically requires more than a constant number of samples. Moreover, the
description of a distribution D may be very large (even infinite), and so the proof cannot
simply contain its description. Nonetheless, these difficulties can be dealt with, albeit at the
cost of higher complexity.

To simplify exposition, throughout the introduction we fix a domain Ωn of size n and
fix the proximity parameter ε to a small constant. Our first result shows that proofs of
(nearly) linear length allow testing any property with only O(

√
n) samples; moreover, there

are natural properties for which the sample complexity can be smoothly reduced (down to
constant) using increasingly longer proofs.

I Theorem 1 (informal; see full version for details).
1. For any property Π ⊆ ∆(Ωn), there exists an MA distribution tester with proof complexity

O(n log(n)) and sample complexity s = O(maxD∈Π ‖D‖2/3) = O(
√

n). (Here ‖ · ‖2/3 is
the `2/3 quasi-norm.)

2. There exists a (natural) property Π ⊆ ∆(Ωn) for which every distribution tester uses Ω̃(n)
samples, yet there is an MA distribution tester for Π with proof complexity O(n log(n))
and sample complexity O(1). Furthermore, one can trade proof against sample complexity
and, e.g., make both complexities Õ(

√
n).

We remark that the second item of Theorem 1 is proved with respect to a promise problem.
Theorem 1 confirms the intuition that MA distribution testers are stronger than standard

distribution testers. However, while in the settings of proximity proofs for functions it is
possible to obtain exponential savings in query complexity, even using proofs of merely
logarithmic length [39], our Theorem 1 only shows MA distribution testers in which the
product of the proof and sample complexities is at least as large as the sample complexity
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of standard distribution testers.1 This discussion raises the question of whether there
exist stronger MA distribution testers, or whether non-interactive proofs of proximity for
distributions are indeed more limited than their functional counterparts.

Furthermore, Theorem 1 shows that the sample complexity of MA distribution testers
for any property can be reduced to O(

√
n). Yet, for properties that can be tested (without

a proof) using O(
√
n) samples, is it always the case that MA distribution testers can be

stronger than standard distribution testers?
To answer the questions above, we study the limitations of non-interactive proofs of

proximity for distributions. Our next result shows that for every property and every MA
distribution tester, either its proof or its sample complexity can at best be quadratically
better than the (optimal) sample complexity of a standard distribution tester. Moreover,
there also exists a natural property (the property of being uniformly distributed) for which
MA distribution testers cannot do better than standard distribution testers.

I Theorem 2 (informal; see full version for details). Let sΠ be the optimal sample complexity
for testing a property Π without the aid of any proofs.

For every Π ⊆ ∆(Ωn) and every MA distribution tester for Π with proof complexity p and
sample complexity s, it holds that p · s = Ω(sΠ).
Every MA distribution tester for the uniformity property Un has sample complexity
Ω(sUn) = Ω(

√
n), regardless of its proof complexity.

Theorem 2 thus shows that the upper bounds in Theorem 1 are tight, up to logarithmic
factors. (The first item of Theorem 2 shows the tightness of the second item of Theorem 1,
and the second item of Theorem 2 shows the tightness of the first item of Theorem 1 with
respect to a particular property.)

On derandomizing MA distribution testers.

As mentioned above, the power of deterministic verification (NP proofs) and randomized
verification (MA proofs) is essentially equivalent in the setting of distribution testing. More
accurately, the following theorem shows that MA distribution testers can be derandomized
into NP distribution testers at the price of only a small increase in sample complexity.

I Theorem 3 (informal; see full version for details). Every MA distribution tester with proof
complexity p and sample complexity s can be emulated by an NP distribution tester with proof
complexity p and sample complexity O

(
s + log(n)

)
.

We remark that a direct proof for the special case of standard testers (without access to a
proof) is sketched in [29, Chapter 11].

3 Interactive proofs of proximity for distribution testing

While MA distribution testers are stronger than standard distribution testers, they are
limited to multiplicatively trading off sample complexity for proof complexity. Can one do
even better with other types of proof systems? To study this question, we consider a natural
analogue of interactive proofs [36] in the setting of distribution testing.

1 To see this holds with respect to the first item of Theorem 1, recall that every property can be tested
using O(n) samples (for a constant value of the proximity parameter).
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An IP distribution tester generalizes the notion of an MA distribution tester by allowing
the tester to interact with an all-powerful untrusted prover who knows everything about the
input distribution D. The prover tries to convince the tester that D has a certain property
Π. If D ∈ Π then there exists a prover strategy that makes the tester accept with high
probability; if instead D is far from Π then the tester rejects with high probability regardless
of prover strategy.

Similarly to the non-interactive setting, we seek to minimize the sample complexity, as
well as communication complexity, which is the total number of bits exchanged between the
two parties (and generalizes proof complexity). We also consider the round complexity, which
is the number of rounds of interaction, where each round consists of a message from one
party to the other and its reply.

The next theorem shows that it is possible to test properties of distributions much more
efficiently by interacting with a prover than by receiving a non-interactive proof. In fact,
even a single round of interaction suffices to obtain exponential savings in communication
and sample complexity compared to the sample complexity of standard distribution testers
(and hence MA distribution testers as well).

I Theorem 4 (informal, see full version). There exists a property Π ⊆ ∆(Ωn) such that:
1. there is a 1-round IP distribution tester for Π with communication complexity O(log(n))

and sample complexity O(1); yet
2. every (standard) distribution tester for Π must use Ω̃(

√
n) samples.

A fundamental distinction between types of interactive proofs is according to how the
tester uses its own randomness. The interaction is public-coin if the tester reveals the
outcome of its coins immediately after tossing them; it is private-coin if the tester can keep
such outcomes to itself. Public-coin interactive proofs are called AM proofs [5], and so we
call their distribution testing analogues AM distribution testers. We stress that in these
public-coin protocols, the prover does not see the samples drawn by the tester.

Goldwasser and Sipser [37] proved that the expressive power of private-coin interactive
proofs is essentially equivalent to that of public-coin interactive proofs, despite the latter
being syntactically weaker. Rothblum, Vadhan, and Wigderson [52] observed that [37]’s
proof of this statement extends to the setting of interactive proofs of proximity for functions.
The next theorem shows that, unlike in the aforementioned models, the power of public-coin
interaction for testing distributions is rather limited, regardless of round complexity.

I Theorem 5 (informal, see full version). For every property Π ⊆ ∆(Ωn) and r ∈ N (not
necessarily a constant), it holds that every r-round AM distribution tester for Π with commu-
nication complexity c and sample complexity s satisfies c · s = Ω(sΠ). (As before, sΠ denotes
the optimal sample complexity for testing property Π without the aid of any proofs.)

We note that the combination of our Theorems 4 and 5 yields an exponential separation
between the power of IP distribution testers and AM distribution testers, which stands in
stark contrast to the equivalence of private-coin and public-coin interaction in the functional
setting.

While their power is limited when compared to IP distribution testers, AM distribution
testers are still stronger than standard distribution testers, and possibly MA distribution
testers as well. In the full version we show an AM distribution tester for a natural property
that tightly matches the lower bound in Theorem 5, and also allows for smooth communication
versus sample complexity tradeoffs. It is an open problem whether this upper bound can also
be obtained via MA distribution testers, or whether public coin interaction in the setting of
distribution testing is strictly stronger.

ITCS 2018
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Table 1 Comparison between proofs of proximity for testing distributions and testing functions.

Testing Distributions
this work

Testing Functions
[52, 39, 27, 40]

no
n-
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oo

fs

Proofs of linear length reduce sample complexity
of any property to O(

√
n)

reduce sample complexity
of any property to O(1)

MA proofs of proximity
vs. standard testers quadratically stronger exponentially stronger

Probabilistic (MA) vs.
deterministic (NP)

verification
nearly equivalent NP proofs of proximity

are extremely weak

Hardest property for
non-interactive proofs

explicit and natural;
no better than standard
testers, regardless of

proof length

non-explicit
(random property);
linear length proof is
required to outperform

standard testers

in
te
ra
ct
iv
e

pr
oo

fs

Private vs. public
coin protocols exponential separation almost equivalent

AM round hierarchy
coin protocols

AM complexity is
quadratically related to
the sample complexity
of standard testers

there is a property for
which the AM complexity

is ≈ n1/r for
r-round protocols

4 Comparison of functional and distributional proofs of proximity

In this work we consider several fundamental questions about proofs of proximity that were
previously studied for properties of functions. We study these questions for properties of
distributions instead.

One may naively expect that, since we are asking similar questions, we should obtain
similar answers. However our results demonstrate that proofs of proximity for distributions
behave dramatically different, both qualitatively and quantitatively, from proofs of proximity
for functions. We summarize these different “complexity landscapes” in Table 1.

In retrospect these dramatic differences are easily interpreted. First and foremost, even
standard (function) property testing and distribution testing are dissimilar: not only the
tested objects are structurally different, but, just as importantly, the access to these objects
is different as well (query access versus sample access). Moreover, these differences are more
pronounced with regard to proofs of proximity because proof techniques to reason about
them are very sensitive to input representation and access type. This is indeed what we find
when inspecting our proof techniques, and the reasons for why our results hold.

5 Techniques

We establish our results via an eclectic set of technical tools that varies from section to
section. These include extraction and derandomization, reductions from SMP communication
complexity, lifting lemmas, granular approximation, and tolerant testing. To facilitate
understanding of the main ideas behind each result, in the technical sections we precede the
formal proof of each result with an intuitive high-level overview.

Below, we provide a taste of our techniques, grouped according to whether they give us
upper bounds (Section 5.1), lower bounds (Section 5.2), or derandomization (Section 5.3).
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5.1 Upper bounds
We overview the techniques that we use to obtain: a generic upper bound for MA distribution
testers (first item of Theorem 1), an improved MA upper bound for a particular property
(second item of Theorem 1), and an IP distribution tester that is exponentially more efficient
than any MA distribution tester (first item of Theorem 4).

A generic MA upper bound.

We sketch a proof of a special case of Theorem 1, showing that any property can be tested via
an MA distribution tester that uses O(

√
n/ε2) samples and a proof of linear size. The idea

is that a linear-size proof π can allegedly consist of a description of the input distribution
D ∈ Π. Since the tester has explicit access to π and our goal is to minimize sample complexity
(and not time complexity), the MA distribution tester can directly check membership of π in
the property Π, reducing the problem to testing that the input distribution D is identical to
π, a task that can be performed via O(

√
n/ε2) samples [56].

One problem that arises is that, unlike the setting of testing Boolean functions or graphs,
in the setting of distribution testing the size of the description of D may be very large (even
infinite). To overcome this, we let an honest proof consist of a granular approximation D′ of
D, where the mass of each element in the support of D′ is a multiple of m := Θ(1/n); this
approximation has at most linear size.

Note, however, that it could be the case that D ∈ Π, whereas its granular approximation
D′ is close to Π but not in Π (similarly, D may by ε-far from Π, whereas may D′ not).
Nevertheless, using a tolerant testing procedure, the tester can ensure that with high
probability it would rule regarding D′ just as it would regarding D, and so the granular
approximation suffices to this end.

MA distribution tester with sublinear proofs.

To simplify the following presentation, we restrict our attention to m-granular distributions
over the domain [n], for some m = Ω(1/n).

Consider the gap isolated elements problem, which is the problem of deciding whether a
distribution D has a large number of isolated elements, or only a small one, where an element
i ∈ [n] is said to be isolated if D is not supported on its adjacent elements i− 1 and i+ 1.

We sketch an MA distribution tester with proof and sample complexity Õ(
√

n) that
accepts distributions with at least

√
n isolated elements and rejects distributions with at

most
√

n/2. (In the full version we show proof versus sample complexity tradeoffs for a wide
range of parameterizations of this problem.)

The proof string simply specifies
√

n allegedly isolated elements of the input distribution
D, and the MA distribution tester draws O(

√
n) samples and accepts if and only if all of the

samples are not adjacent to the elements specified by the prover. Of course, if D indeed has
at least

√
n isolated elements, the proof can specify them, and the MA distribution tester

will accept with probability 1.
The key point is that if D has at most

√
n/2 isolated elements, then every purported

proof must specify at least
√

n/2 elements that have an adjacent element on which D is
supported on. Denote these supported adjacent elements by B, and note that every element
of B is in fact a local certificate that D is a no-instance; that is, if the tester draws a single
element in B, it can safely reject. By the granularity of D the total mass of B is Ω(1/

√
n),

and so it suffices to draw O(
√

n) samples to hit B with high probability.

ITCS 2018
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IP distribution tester with logarithmic complexity.

We sketch an IP distribution tester for the isolated elements problem that has logarithmic
communication complexity and constant sample complexity. (In the full version we also show
that any public-coin IP distribution tester, and in particular standard and MA distribution
testers, has exponentially larger complexity.)

Here we use different parameter settings than above, and in fact we shall not need the
gap (promise problem) variant, and simply consider the property

ΠIsolated := {D ∈ ∆([n]) | ∀i ∈ [n] i 6∈ supp(D) or (i+ 1) 6∈ supp(D)} ;

that is, all distributions (not necessarily granular) in which no two consecutive elements are
supported.

Consider the following IP distribution tester for this property. The tester draws O(1/ε)
samples from the input distribution D and masks these samples by shifting each sample to
its subsequent element with probability 1/2. The tester then sends the masked samples to
the prover and asks the prover to recover the original samples (prior to the shifts).

The point is that if the supported elements of D are indeed isolated, then the prover can
always determine the original samples (as D cannot be supported on both an element and
its shift). On the other hand, if D is ε-far from ΠIsolated, then there exist adjacent supported
elements whose weight is Ω(ε), an so the prover is forced to guess which samples were shifted
and which not, and will get caught with constant probability.

5.2 Lower bounds
Our lower bounds are all based on the following paradigm: we first prove a lower bound on the
complexity of BPP distribution testers, typically via a reduction from SMP communication
complexity, and then use “lifting” lemmas that allow us to transfer this lower bound to MA
and AM distribution testers (where recall that by the latter we refer to public-coin interactive
proof systems). We illustrate this methodology by sketching a proof of lower bounds on the
complexity of MA and AM distribution testers for the isolated elements property ΠIsolated,
which consists of all distributions in which no two consecutive elements are supported.

BBP lower bound via reduction from communication complexity.

We use the SMP communication complexity method [13]. Recall that, in a private-coin
SMP protocol for a predicate f , the players Alice and Bob are given strings x, y ∈ {0, 1}k

(respectively), and each of the players is allowed to send a message, which depends on the
player’s input and private randomness, to a referee who is then required to decide whether
f(x, y) = 1 by only looking at the players’ messages and flipping coins. It is well-known that
for the equality predicate (f(x, y) = 1 ↔ x = y), every such protocol must communicate
Ω(
√
k) bits [45].
Let P contain each third element of the domain, i.e., P := {3j − 1 | j ∈ [(n− 1)/3]}. Our

reduction will map (a) yes-instances of EQk to distributions that are uniform over |P | isolated
elements; and (b) no-instances of EQk to distributions wherein for an ε-fraction of p ∈ P it
holds that D(p) = Ω(1/n) and D(p + 1) = Ω(1/n), hence D is ε-far from ΠIsolated. Details
follow.

Assume there exists a tester for ΠIsolated with sample complexity s. Each of the players en-
codes its input string via a balanced asymptotically good code ECC (that is, ECC: {0, 1}k →
{0, 1}n with constant rate and relative distance ε = Ω(1), such that each codeword of
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ECC contains the same number of 0’s and 1’s). Alice and Bob each draw O(s) samples
that are uniformly distributed over P , and shift each sample according to ECC(x) and
ECC(y), respectively. That is, Alice sends to the referee independent samples uniformly
drawn from A :=

{
i+ ECC(x)(i+1)/3 | i ∈ P

}
, and Bob sends samples uniformly drawn from

B :=
{
i+ ECC(y)(i+1)/3 | i ∈ P

}
. Finally, the referee invokes the tester for ΠIsolated with

respect to the distribution 1
2Un(A) + 1

2Un(B), emulating each draw by tossing a random coin
and deciding accordingly whether to use a sample by Alice or Bob.

The point is that if x = y, then ECC(x) = ECC(y), and so both players shift their samples
(which are in P , and so separated by two non-supported elements) in the same way, and so
the resulting mixed distribution is uniform over isolated elements. On the other hand, if
x 6= y, then ECC(x) is ε-far from ECC(y), and so the resulting distribution will have roughly
ε · |P | non-isolated elements of weight Ω(1/ |P |) each. Thus, we have s = Ω̃(

√
k) = Ω̃(

√
n).

Lifting the BPP lower bound to MA and r-round AM distribution testers.

We begin with the simpler task of proving an MA lower bound on ΠIsolated. To lift the BPP
lower bound we proved above to MA, we show that any MA distribution tester T for any
property Π (in particular, ΠIsolated) with proof complexity p and sample complexity s can be
emulated by a BPP distribution tester T ′ with sample complexity O(p · s).

The key observation is that the samples that T draws are completely independent of
the proof that it receives. Since we aim to minimize sample complexity (rather than time
complexity), we can hope to emulate all possible proofs, while reusing the samples. However,
since there are exponentially many (2p) possible proofs, we need to amplify the soundness to
assure no error occurs with high probability. To this end, at the cost of increasing the sample
complexity to O(p · s), we invoke the tester O(p) times to obtain soundness error exp(−p),
which suffices to take a union bound over invocations of the amplified T with respect to all
possible proofs.

To lift the BPP lower bound to r-round AM distribution testers, for any (possibly
non-constant) r ≥ 1, we need a significantly more involved argument. Recall that an AM
distribution tester works as follows. In each round, the tester samples fresh randomness ρi

and sends it to the prover, which replies with a message mi that may arbitrarily depend on
the input distribution D ∈ ∆(Ωn), proximity parameter ε, and transcript of the interaction
so far. After receiving the last message from the prover, the tester draws samples from D
and decides according to these samples, proximity parameter, and transcript of the entire
interaction.

Analogously to the proof of the MA lifting lemma, the high-level idea is that since the
samples drawn from D are independent of the transcript of interaction, a BPP distribution
tester can emulate all possible interactions, while using the same samples for all invocations.
However, several difficulties arise when trying to naively implement the foregoing idea.

First, note that the tester cannot simply emulate the optimal prover, because it is
determined by a distribution from which it only has few samples. Second, we cannot afford
to enumerate over all prover strategies, as there is a doubly exponential number of them
(each strategy is a function from the space of previous transcripts to the next message).
Instead, we can only afford enumerating over all possible transcripts, which are not uniformly
generated. Third, as before, since we invoke the tester with respect to exponentially many
transcripts, we need to reduce its soundness error accordingly. Unfortunately, amplifying
the soundness would result in an increase in communication complexity, which we cannot
afford. Finally, even given exponentially small soundness error, whereas for MA it suffices
to find a single proof that is accepted with high probability, here there may exist specific

ITCS 2018
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transcripts in which the prover fools the tester with probability 1 (this is because we consider
transcripts, rather than prover strategies).

A key step towards overcoming these difficulties is to rely on a simple yet important
observation: each AM distribution tester induces a family of BPP distribution testers that
are determined by the interaction. That is, since the transcript of the interaction is a
random variable that is independent of the samples drawn by the AM distribution tester, the
interaction phase can be viewed as a procedure that defines a BPP distribution tester that is
invoked after this phase. In particular, this allows us to perform soundness amplification
solely on the induced BPP distribution testers.

The procedure above implies that, with high probability over the random messages of the
tester, each of the corresponding induced BPP distribution testers decides correctly, with only
an exponentially small probability of error, without incurring any blowup in communication
complexity. (Note, however, that the total soundness of the AM distribution tester does not
necessarily increase significantly.)

Thus, we can invoke all the BPP distribution testers that are induced by all possible
transcripts, while reusing the same samples for all invocations, such that with high probability
no error will occur in any of the relevant invocations. Finally, we show that the the interaction
tree induced by these invocations is significantly different for yes-instance and no-instances,
and so the tester can consider it and decide whether there exists a prover strategy that would
have been accepted with high probability by the AM distribution tester.

5.3 Derandomization
The key observation behind the derandomization of MA distribution testers (Theorem 3)
is that while an NP distribution tester is a deterministic algorithm, it receives random
samples from the input distribution D. Thus we can hope to simulate the coin tosses of the
MA distribution tester by deterministically extracting the necessary randomness from the
samples.

To deterministically extract uniform bits from independent samples drawn from a distri-
bution D ∈ ∆([n]), we arbitrarily group the samples into pairs, discard pairs in which both
samples are the same, then write 1 (respectively, 0) for every pair in which the first element
is larger (respectively, smaller) than the second. Since the samples are independent, the
first sample of each pair is equally likely to be larger as it is to be smaller than the second
sample, and so we obtain a uniformly distributed string. This procedure can be thought of
as generalizing the seedless extractor of Von Neumann [60].

The foregoing approach raises two concerns: (a) if D has small entropy, each bit we
extract will require many samples (as many pairs would be discarded); and (b) even if D has
large entropy, the MA distribution tester may toss a large number of coins, and so we shall
need to draw many samples accordingly.

The first concern can be easily handled by observing that distributions with small entropy
can be efficiently learned, and so we can test them with few samples, even without the aid of
a prover. Dealing with the second concern is significantly more involved, and requires proving
a randomness reduction lemma for MA distribution testers, which shows that it suffices to
extract a small number of uniformly random bits, roughly logarithmic in the domain size.

The proof of the aforementioned randomness reduction lemma follows the randomness
reduction approach of Goldreich and Sheffet [35], but our different setting requires several
new ideas. In particular, our model involves testers that access a proof and two sources of
randomness and, most significantly, the argument in [35] crucially relies on a bound on the
number of inputs that the tester can receive, but no such bound exists in our setting.
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