Accepted manuscript
As a service to our authors and readers, we are putting peer-reviewed accepted manuscripts (AM) online, in the Ahead of Print section of each journal web page, shortly after acceptance.

Disclaimer
The AM is yet to be copyedited and formatted in journal house style but can still be read and referenced by quoting its unique reference number, the digital object identifier (DOI). Once the AM has been typeset, an ‘uncorrected proof’ PDF will replace the ‘accepted manuscript’ PDF. These formatted articles may still be corrected by the authors. During the Production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.

Version of record
The final edited article will be published in PDF and HTML and will contain all author corrections and is considered the version of record. Authors wishing to reference an article published Ahead of Print should quote its DOI. When an issue becomes available, queuing Ahead of Print articles will move to that issue’s Table of Contents. When the article is published in a journal issue, the full reference should be cited in addition to the DOI.
Submitted: 03 August 2022

Published online in ‘accepted manuscript’ format: 12 January 2023

Manuscript title: Numerical investigation of fibre optic sensing for sinkhole detection

Authors: Gianluigi Della Ragione*, Emilio Bilotta*, Xiaomin Xu†, Talia S. da Silva Burke‡, Tobias Mö§ and Christelle N. Abadie§

Affiliations: *Department of Civil, Architectural and Environmental Engineering, University of Naples, Naples, Italy; †Cambridge Centre for Smart Infrastructure and Construction (CSIC), Department of Engineering, University of Cambridge, Cambridge, UK; ‡Department of Civil Engineering, University of Pretoria, Pretoria, South Africa and §Department of Engineering, University of Cambridge, Cambridge, UK

Corresponding author: Christelle N. Abadie, Civil Engineering Building, National Research Facility for Infrastructure Sensing, 7a JJ Thomson Avenue, Cambridge, CB3 0FA, UK.

E-mail: cna24@cam.ac.uk
Abstract

This paper forms part of the SINEW project (SINkhole Early Warning) and continues the work from Möller et al. (2022), where 1g experiments demonstrate the feasibility of using Distributed Fibre Optic Sensing (DFOS) for sinkhole early warning. This experimental campaign highlighted an order of magnitude difference in the strain between the soil and the cable that remains unexplained and weakens the confidence in the technology and/or the experimental method. This paper uses 3D finite element analyses to further examine this discrepancy and the soil-cable interface. The results further support the experimental findings and demonstrate that the DFOS signature strain profile is induced by the horizontal movement of the ground, and enhanced when sufficient coupling at the soil-cable interface is achieved. This result holds when modelling is scaled to realistic confining pressure and its significance is twofold. First, this needs to be accounted for in the DFOS laying technique. Second, particles of cohesionless soils undergo relatively high horizontal displacement away from the centre of the sinkhole, and this means that DFOS cables are able to detect subsidence away from the centre of the sinkhole. The paper illustrate this result and the signature strain profile expected in this case.

Keywords: Ground movements; Fibre optic Monitoring; Finite Element analysis; Geohazards
Introduction

Sinkholes are a common geohazard consisting of a hole or depression formed in the ground surface due to the subsurface collapse of a cavity (Jennings et al., 1965). They are commonly caused by the dissolution of carbonate rocks such as limestone, dolomites, gypsum or chalk (Cooper et al., 2011), but can be caused by the collapse of human-made structures such as old mine shafts (Brady & Brown, 1993) or buried pits in urban areas, in many cases due to erosion from leaking utility lines. In the built environment, sinkholes have the potential to cause severe damage to infrastructure, and in some cases, lead to casualties. Sinkholes can develop over long periods, thus allowing ground deformation to be measured well before their eventual collapse (Chang and Hanssen, 2014). A range of methods have been explored, aiming to measure ground settlements to detect possible sinkhole formation sufficiently in advance. For example, electrical resistivity imaging (van Schoor, 2002; Youssef et al., 2012), 2D full seismic waveform tomography (Tran et al., 2013), multi-temporal Interferometric Synthetic Aperture Radar (InSAR) (Chang and Hanssen, 2014) or thermal far-infrared imagining (Lee et al., 2016). However, these techniques cannot accommodate both the temporal frequency needed while offering large area coverage with sufficient sampling resolution (Möller et al. 2022), and as a result, there are limitations to the wide-scale adoption in practice.

Pioneer full scale experiments on the use of fibre optics sensors for sinkhole detection in sands were carried out by Villard and Briançon (2008). A 2 meters wide and 0.5 meter depth void was simulated with inflatable balloons, and monitoring was carried out with 1 meter spaced Fibre Bragg Gratings (FBGs) incorporated in a fibre optic cable, woven in a geosynthetic sheet. In this study, the focus was on the evaluation of strain developed into the geotextile. This study clearly showed that the fibre optic sensor was able to pick up strain from the beginning of the balloons deflation, with geosynthetics placed directly above the balloons. Similar tests, involving the use of a 0.5 meter width inflatable balloon, were performed a year later by Belli et al. (2009). Fibre optic strains were retrieved based on Brillouin scattering with a spatial resolution of 1 meter. Three different fibre optic sensors were used, both independently and as part of a geogrid, in order to study the sensitivity of those sensor in detecting soil settlements. A recent development in sinkhole detection relies on the use of fibre optic cables, included in the earthwork during construction, sometimes within the use of a geogrid, to monitor ground displacements (Guan et al., 2013; Klar et al., 2014; Zhang et al., 2015; Guan et al., 2015; Inaudi, 2017). This is particularly adapted for long linear infrastructure, such as railways or roads. For this purpose, Xu et al. (2022b) extended the research to the use of fibre optic within geogrid, with similarly successful outcome. Lanticq et al. (2009) performed a full scale test, simulating the formation of two voids of 2.1 meters wide and 2 meters depth, spaced enough to avoid interference. The first embankment was softer than the second in order to study the influence of soil properties. A 2 mm in diameter cable containing 8 optical fibres was analysed with Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR), to study the efficacy of both technology in detecting soil strains. Moreover finite element numerical analysis (FEA) was carried out, and results were in agreement with monitored data, indicating that, due to higher spatial resolution, OFDR technology was to be preferred. However, this conclusion needs to be extended moving forward to new technological developments in fibre optic sensing (BOTDA, BOFDA) (Sparrevik et al., 2022).
An additional few field studies were later published in literature on the use of DFOS for sinkhole detection (Buchoud et al., 2016; Guan et al., 2013; Inaudi, 2017). Nevertheless, there is to date no rigorous understanding of the recorded signature strain profile, derived from systematic experiments in controlled and repeatable conditions in the laboratory, and fully comprehended via numerical analyses. This paper is part of the ongoing SINEW project (SINkhole Early Warning) and extends the results of the experimental tests carried out at the Schofield Centre in Cambridge (UK), and presented in a separate paper by Möller et al. (2022). In this work, the strains of DFOS cables embedded in a cohesionless soil layer at 1g were measured while lowering a trapdoor, representing the progressive formation of a sinkhole. A clear signature strain profile, capturing the early stages of the formation of a sinkhole was outlined. A procedure to assess the position of the sinkhole and the extent of its effects at the ground surface was also proposed. However, doubts remained as to the pertinence of scaling the experimental results for large-scale practice. In particular, the experiments from Möller et al. (2022) are not suited to elucidate further the effects of soil-cable interface and stress level on the cable response for large-scale applications (Xu et al., 2022a). This is the purpose of the present paper.

Here, a series of 3D Finite Element Analyses (FEA) are presented to further the understanding from Möller et al. (2022), and scale the results up to more realistic stress levels. First, the 1g experiments are reproduced and validated by comparing PIV experimental results with numerical FEA output. The numerical results are then used to check the compatibility of experimental cable’s strain profiles from DFOS against the numerical cable model. Once validated, the model is used to focus on the cable’s interface behaviour. This study also offers the possibility to discuss the difficulties of establishing a robust constitutive model for cohesionless soils at low confining pressure, a generally acknowledged limitation in numerical modelling in geotechnics. Following this work, the finite element model is carefully scaled up to realistic stress levels, reproducing one of da Silva’s (2017) centrifuge tests. This test involved the formation of a sinkhole of the same geometry as that performed by Möller et al. (2022), with an enhanced gravity of 40g, but did not include fibre optic cables. The settlement data published by da Silva (2017) are used for validation of the 3D FE model and a prediction is made as to what the signature strain profile would have been if fibre optic sensing had been used in this test. The method outlined by Möller et al. (2022) is used to predict the sinkhole size and location and soil-cable coupling. The final analysis extends the findings from the above 2D experiments to applications in 3D, considering the case where cables are not laid directly above the centre of the sinkhole. The results further support that deploying DFOS in the construction of critical infrastructure would enable early detection of sinkhole formation.

Experimental benchmark

1g Tests with DFOS cables

The benchmark experimental study was carried out by Möller et al. (2022) using a 790 x 200 x 200 mm rectangular rig, equipped with a trapdoor of width $B = 100$ mm, that can mimic the formation of a sinkhole within a single soil layer (Figure 1). The soil samples were prepared using dry Hostun sand (Table 1), with a model height of $H = 200$ mm ($H/B = 2$). Seven models were prepared at increasing relative densities, ranging from $D_r = 20\%$ to $D_r = 88\%$ (Möller et al., 2022), to compare and understand the influence of different soil conditions. The fibre optic cables were installed in the soil body at three nominal heights of 50, 100, and 150 mm above the trapdoor (called bottom, central and top cable respectively) with the locations highlighted using dyed black sand (Figure 1). The cable was laid so as to
avoid any pre-stress, and was pinned on the vertical walls of the rig. Images for the PIV analysis were acquired using two Canon Powershot G10 cameras and the analysis was carried out using GeoPIV_RG (Stanier et al., 2015). The trapdoor displacement, \(\delta \), was recorded using two Linear Variable Differential Transformers (LVDTs) located below the trapdoor. Data from DFOS cables were collected using the Luna ODiSi 6100 analyser (Luna Innovations Incorporate, 2020), which is based on the measurement of Rayleigh back-scatter light in the fibre optic cables. The fine resolution of the analyser, ranging from one sampled point every 0.65 mm up to 2.65 mm, enables the accurate monitoring of small-scale experiments. Further details of the experimental campaign can be found in Möller et al. (2022).

Soil arching around the trapdoor allows the ground to redistribute stresses to bear the overburden load. Initially, as the trapdoor starts moving, there is a sharp decrease in load on the trapdoor to a minimum value. This is called the maximum arching phase and occurs for a trapdoor displacement equal to 1-2% of its width (Iglesia et al., 2014; da Silva Burke and Elshafie, 2021). The experimental results from Möller et al. (2022) show that the fibre optic cables are able to detect a signal in this early phase of the sinkhole formation, with a clear signature of the strain that enables the sinkhole to be monitored well before further progressive movement to the surface and/or collapse. It was shown that the fibre optic data could be used to detect the trapdoor position and provide a conservative estimation of its width; this is analogous to detecting sinkhole location and size. However, with varying interface conditions between the fibre optic cable and the soil, the strains measured by the cable differed from those measured with PIV. Further experimental investigation could not enable further understanding of this phenomenon, as the PIV data corresponds to sample strain against the window, thus far from the cable located in the body of the soil sample. Moreover, the soil stresses at 1g are significantly lower than stresses in real conditions, which may affect shear band formation and coupling between the soil and the fibre optic cable. Such issues are investigated in this paper via finite element analyses, in order to assess their relevance in possible application to real cases.

Centrifuge test with no DFOS cable

To enable robust scaling of the 1g test 3D FE model, a centrifuge test from published literature was selected for validation purposes. This test was performed with the same rig as in Figure 1, but with a trapdoor width of 50 mm instead of 100 mm (da Silva, 2017). The test was conducted at 40g on the centrifuge at the Schofield Centre, University of Cambridge, and is thus representative of a 2 m wide void, 4 m below the ground surface. Fibre optic sensing cables were not included in this test; soil deformations were monitored using PIV. The main geometrical characteristics of the test are summarised in Table 2.

Numerical model

Geometry and meshing

The experimental tests by Möller et al. (2022) were back-analysed by means of 3D Finite Element calculations using the software platform Plaxis 3D (Brinkgreve et al., 2015). The numerical model is shown in Figure 2, representing half the specimen, as per the symmetry at the trapdoor centre. The mesh consists of 305,000 tetrahedral elements with 425,000 nodes. The mesh is denser around the trapdoor and around the cables, where larger deformations are expected (Figure 2). Three-dimensional analysis permitted the investigation of the role of interface conditions between the soil and the cable by looking at soil stress and strain fields in proximity of the cable that could not be measured in testing.
Trapdoor tests comparing the response of fibre optic cables to fine and coarse grained material has been carried out by Blairon et al. (2011) showing that the sensitivity of the cable reduces in fine grained materials, since maximal induced strain is larger in granular material due to arching. In addition, the experiments carried out by Möller et al. (2022) and replicated here involve a cable diameter over mean particle size D/d_{50} ratio of 5.6, a fairly low value at which the soil should be regarded as a granular media (Taylor, 1994). Nevertheless, this limitation will not apply to cables used in the field, where D/d_{50} will typically be greater than 20 and the soil can be treated as a continuum (Taylor, 1994). Hence, this limitation was ignored in the following, and the soil was considered using continuum mechanics.

The material model selected in this paper for the sand is the Hardening Soil model with small-strain stiffness (‘HSsmall’, Schanz et al., 1999; Benz et al., 2006). It is an elastic-plastic hardening model, which accounts for soil stiffness decay with shear strain and dependence on the stress level. This model was selected because it offers a good compromise capturing low confining pressure behaviour of sands relatively accurately, while being also able to capture full-scale behaviour, providing a judicious choice of parameter values. At low confining pressures, three conditions of loose (i.e. $D_s = 20\%$), medium dense (i.e. $D_s = 52\%$) and dense sand (i.e. $D_s = 88\%$) were analysed to replicate the 1g tests from Möller et al. (2022). At larger stress levels (40g), a relative density of $D_s = 87.5\%$ was considered for both analyses (2D and 3D) described in this paper to compare with da Silva (2017) test results.

For the 1g experiment, the trapdoor tests were performed on a rather low thickness sand layer, and the maximum average soil stress at trapdoor level (i.e. 200 mm deep) was very low and approximately equal to 2 kPa. This is a challenge for numerical modelling, as sand at such small confining stresses exhibits higher dilatancy angles and lower compressibility, which is generally ignored in constitutive models. The influence of such a low confining stress on soil dilatancy and on the shear stiffness decay is examined in the following discussion.

Dilatancy at low confining stress

The dilatant behaviour is commonly described by the dilatancy angle ψ (Bolton, 1986):

$$\phi_p - \phi_c = 0.8 \cdot \psi_{\text{max}}$$ \hspace{1cm} (1)

where ϕ_p and ϕ_c are the effective peak and critical angle of shear resistance, respectively. The dependency of the dilatancy of sand on the mean effective stress p' and the relative density D_s of the soil, is taken into account through the relative dilatancy index I_k , (Bolton, 1986):

$$I_k = D_s \cdot (Q - \ln p') - R$$ \hspace{1cm} (2)

where Q and R are two fitting parameters which are a function of the soil material (Chakraborty and Salgado, 2010). These are commonly set equal to 10 and 1 respectively, so as to offer a unique relationship for the dilatancy behaviour of the sands considered by Bolton (1986). The difficulty in using this framework however, is that it was originally validated against data from triaxial compression tests, and therefore, even low confining stresses are commonly an order of magnitude above the confining pressure of interest in this paper (typically >20 kPa). Lancelot et al. (2006) performed tests on Hostun sand at relatively low confining stresses (20 – 50 kPa) and showed that the dilatancy angle at such low stresses is indeed stress dependent. Chakraborty and Salgado (2010) also explored low confining...
stresses (10 – 50 kPa and above) with Toyoura sand and showed that Equation (2) provides a reasonable fit, even at these low confining stresses, with $R=1$ and $Q=8$ for confining stresses ranging from 10 – 26 kPa. Decreasing the value of Q has the effect of reducing the tendency of the soil to dilate. For the numerical modelling of the $1g$ tests the aim was to replicate the mechanisms of the soil-cable behaviour and observe if the trends observed experimentally are repeatable in a numerical simulation, most notably considering the order of magnitude strain reduction in the cable compared to the soil and shape of the strain profile. The aim was not to provide exact predictions at these low stresses which are not representative of full-scale behaviour. For this reason, it was decided to use Equation (2) with the original values of $Q=10$ and $R=1$ to provide a reasonable estimate of I^\prime_R.

The angle of maximum dilation can be estimated according to Equation 3 (Schanz and Vermeer, 1996):

$$\psi_{\text{max}} = \arcsin \left(\frac{I_{R,f}}{I_{R,f} + 6.7} \right)$$ \hspace{1cm} (3)

where $I_{R,f}$ is the dilatancy index evaluated at failure (i.e. when $p^\prime = p^\prime_{f}$). The angle of maximum dilation, ψ_{max}, is a key constitutive parameter in the model selected for this paper, which needs to be assessed independently for each relative density selected for modelling. To this aim, an average value of the mean effective stress p^\prime along the layer thickness was assumed for each three cases and the value of the peak friction angle ϕ^\prime_p (Eq. 1) was selected in order to keep the same value of the critical friction angle, $\phi^\prime_c = 34^\circ$ (Benz, 2006)

Stiffness decay with strain level at low confining stress

The HSsmall model accounts for the decay of shear stiffness with the shear strain through two parameters: (i) the initial shear stiffness modulus G_0, and (ii) the shear strain level at which the reduction of stiffness modulus is $G / G_0 \approx 0.7$, also called $\gamma_{0,7}$, which uniquely defines the stiffness decay curve (Benz et al., 2009). The initial shear stiffness modulus G_0 of Hostun sand was evaluated according to Equation 4 (Oztoprak and Bolton, 2011):

$$G_0 = \frac{5760 \cdot p_{\text{am}}}{(1 + e)^3 \cdot p^\prime} \cdot \left(\frac{p^\prime}{p_{\text{am}}} \right)^{0.5}$$ \hspace{1cm} (4)

where p_{am} is the atmospheric pressure (i.e. 100 kPa), e is the void ratio, assumed to be constant through the depth of the sand layer, and p^\prime is the target mean stress level.

The material model takes into account the dependency of shear stiffness modulus G_0 with the confining pressure through the following equation:

$$G_0 = G_0^{\text{ref}} \cdot \left(\frac{\sigma^\prime}{p_{\text{ref}}} \right)^m$$ \hspace{1cm} (5)

where G_0^{ref} is the shear stiffness at the reference pressure and can be computed by substituting Equation 5 into Equation 4, assuming that $p^\prime = \sigma^\prime = p_{\text{ref}} = p_{\text{am}} = 100$ kPa.
Experimental evidence has shown that the shear strain level $\gamma_{0.7}$ is also function of the stress level (Darendeli and Stokoe, 2001; Wichtmann and Triantafyllidis, 2004). Unfortunately, the material model does not take this dependence into account. In order to correct for this, Equation 6 was used to scale the shear strain level $\gamma_{0.7}$ to the appropriate stress level (Darendeli & Stokoe, 2001):

$$\gamma_{0.7} = (\gamma_{0.7})_{ref} \cdot \left(\frac{p'}{p_{ref}}\right)^{0.5}$$

(6)

Where p' is the target stress level, p_{ref} is the reference confining stress level (usually taken equal to 100 kPa, i.e. atmospheric pressure), and $(\gamma_{0.7})_{ref}$ is the shear strain level at the reference confining stress level.

Dependency of the stiffness on the stress at medium to large strain level HSSmall incorporates power laws to define the dependency of stiffness parameter at medium to large strains on the confining stress. The soil stiffness is defined through three moduli: (i) the secant stiffness modulus at 50% of the peak deviatoric stress in standard drained triaxial test, E_{50}, (ii) the one-dimensional compression tangent modulus, E_{oed}, and (iii) the unloading-reloading modulus, E_{ur}. They are obtained using the following equations:

$$E_{50} = E_{50}^{ref} \cdot \left(\frac{\sigma_1'}{P_{ref}}\right)^m$$

(7a)

$$E_{oed} = E_{oed}^{ref} \cdot \left(\frac{\sigma_1'}{P_{ref}}\right)^m$$

(7b)

$$E_{ur} = E_{ur}^{ref} \cdot \left(\frac{\sigma_1'}{P_{ref}}\right)^m$$

(7c)

where E_{50}^{ref}, E_{oed}^{ref}, E_{ur}^{ref} are the values at the reference confining stress level (see Table 3), σ_1' and σ_3' are the principal confining stresses, and m is a power that defines the stress-level dependency of the stiffness. The reference values for the stresses were taken from Benz (2006) for loose ($D_r = 20 – 35\%$) and dense sand ($D_r = 72 – 84\%$), based on drained triaxial and biaxial tests on Hostun sand. For the intermediate value of relative density, a linear interpolation was used. Table 3 shows the set of model parameters adopted in this paper.

Model at large confining stresses

The soil model’s parameters chosen for the analyses at large confining stresses are the same as for the same relative density at low confining stresses (Table 3), with the exception of $\Psi = 20.8^\circ$, $\phi_p = 49.8^\circ$ and $\gamma_{0.7} = 0.0002$, modified to account for the different stress level at the trapdoor depth.

Cable model

Strain transfer within the cable could potentially be affected by the composite structure of the cable and a lack of shear transfer between each composite layer (i.e. buffer, cladding and glass core), which all have different mechanical properties. Ansari and Libo (1998) have shown that the internal structure of some fibre optic cables can influence the strain reading by 30-50% of its real value if the gauge length is shorter than 60 mm. For longer gauge length,
the attenuation maybe be reduced by a factor of 10%. This research applied to Michelson interferometric sensors, which are different cables from the cable selected for this study, with high internal shear transfer loss. The cable used for this research was calibrated by uniaxial tensile tests at different strain levels, showing very minimal loss caused by internal shear transfer (Kechavarzi et al., 2016). Consequently, this phenomenon was ignored in modelling going forward, and effort were concentrated on understanding the effects of shear strain loss at the soil-cable interface, an acknowledged key limitation of the use of DFOS for this type of application (Gutiérrez et al., 2019), and even stronger limitation of the work form Möller et al. (2022) at 1g (Xu et al., 2022a). The 2 mm in diameter DFOS cable was modelled as an embedded beam element (Sadek & Shahrour, 2004), with a 3-noded line element that can cross a 10-noded tetrahedral element meshing the soil. A built-in interface element was used to model the cable surface properties to best represent the soil-cable interaction. The beam element was assumed as an indefinitely elastic element, with an equivalent elastic modulus of $E = 200\ \text{MPa}$. The embedded interface was elastic-perfectly plastic. The elastic stiffness of the element is assigned not to alter the elastic response of the cable-soil system, while the plastic behaviour is attained when a limiting shear force acts along the element skin, t_s, that is defined per unit length of the cable, according to Equation 8:

$$t_s = \sigma_{avg}^n \cdot R_{\text{inter}} \cdot \tan \phi' \cdot \pi \cdot D$$ \hspace{1cm} (8)

where σ_{avg}^n is the average soil normal stress on the cable skin surface evaluated at each step during the analysis, ϕ' is the soil’s mobilised angle of friction and D is the cable diameter. This means that the embedded beam interface reaches failure when the soil reaches its maximum shear stress (i.e. when the mobilised angle of friction is equal to the peak angle of friction $\phi' = \phi_p$). R_{inter} is a strength reduction factor that allows to model a ‘smooth’ interface ($R_{\text{inter}} = 0.01$) or a ‘rough’ interface ($R_{\text{inter}} = 1$). The latter behaviour is used to approximate the cable behaviour when coated with glued sand. The embedded beam elements were fully fixed at the lateral boundaries of the model, far from the trapdoor, although such a level of constraint may not have developed in the tests at low relative densities, and was only observed at higher relative densities (Möller et al., 2022). This modelling choice was used to verify that this boundary constraint does not affect the cable deformation in the proximity of the trapdoor.

Comparison between numerical results and experimental data

Validation

The numerical analyses were validated against the experimental measurements of soil deformation and fibre optic strain profiles for small trapdoor displacements, representative of the “early” formation of the sinkhole, and equal to a trapdoor displacement of 1-2% of its width (i.e. $\delta = 1-2\ \text{mm}$). Any deformation beyond $\delta = 2\ \text{mm}$ is numerically costly and not immediately relevant to early warning and was hence not considered here. For consistency with the procedure adopted in the experiments (Möller et al., 2022), the strain profiles for the soil and the modelled cable were obtained according to the Equations 9 (a–c), and schematised in Figure 3:

$$\varepsilon_{u,\text{tot}} = \sqrt{\left(\frac{\Delta X_i + u_{x,i+1} - u_{x,i}}{\Delta X_i}\right)^2 + \left(\frac{u_{y,i+1} - u_{y,i}}{\Delta X_i}\right)^2} - 1$$ \hspace{1cm} (9a)
\[
\varepsilon_{u,y} = \left(\frac{\sqrt{(\Delta X_i)^2 + (u_{y,j} - u_{y,i})^2} - 1}{\Delta X_i} \right)
\] (9b)
\[
\varepsilon_{u,x} = \left(\frac{u_{x,j} - u_{x,i}}{\Delta X_i} \right)
\] (9c)

Equation 9a evaluates the strains induced by both vertical and horizontal movements, while Equation 9b and 9c identify the strains induced by vertical and horizontal movements respectively.

The measured soil strain from test \(D_R = 20\%\) evaluated with Equations 9 are shown in Figure 4; the scattered points are the raw experimental results from PIV data processing. These data have been interpolated (black line) using a modified Gaussian for vertical movements (Möller et al., 2022) and a double standard Gaussian for horizontal movements for clarity, according to:

\[
S_h = a \cdot e^{-\left(\frac{x-b}{c}\right)^2} - a \cdot e^{-\left(\frac{x-b}{c}\right)^2}
\] (10)

where \(S_h\) is the horizontal soil displacement, \(x\) is the distance from the centreline, and \(a\), \(b\) and \(c\) are fitting parameters. Figure 4 shows a comparison of the experimental soil strain profiles with the corresponding numerical results. The convention chosen in the figures is such that a dotted black line represents the experimental results from (Möller et al., 2022), while a solid blue line represents the numerical data from the present paper. The shape and magnitude of the strain profile between the experimental and numerical results shows good agreement, particularly for strains induced by vertical movement. For the strains induced by horizontal movement, the general shape is similar, although the magnitudes of the numerical results are approximately half the experimental results. The y-axes show that the strains induced by the vertical soil movements are more than one order of magnitude lower compared to those induced by horizontal movements. Horizontal movements induced by the trapdoor vertical movement thus played a major role in the measured horizontal strain profile.

The numerical strain profiles computed from cable movements using Equations 9 are plotted in Figure 5 and compared with the experimental data, directly measured by the Luna analyser. The advantage of the numerical analysis is the ability to separate the horizontal and vertical movements, which is not possible experimentally. The results are consistent with what has been observed for the soil strains: the comparison shows that for higher relative densities (i.e. \(D_R = 88\%\)) and small trapdoor displacements (i.e. \(\delta = 1\ mm\)), strains within the cable far above the trapdoor (i.e. \(z = 150\ mm\)) are induced by horizontal movements only. DFOS cables are therefore enabling an early detection of the vertical trapdoor displacement.

The horizontal strain profile induced in the soil and in the cable by horizontal movements (the contribution of vertical strains is negligible in comparison to the horizontal strains) are shown in Figure 6 and Figure 7 respectively, for a trapdoor displacement of \(\delta = 1\ mm\), for three different relative densities of soil and at three different distances above the trapdoor level. The comparison between experimental and numerical soil strains in Figure 6 shows a good agreement in terms of strain magnitude, with both results indicating that the magnitude reduces with increasing relative densities and distance from trapdoor level. This also provides a good validation of the soil model employed here for low confining stresses.
Figure 7 shows a reasonable agreement between the profile and magnitude of the numerical and experimental cable strain for all distances from the trapdoor and all relative densities. This confirms the significant difference in strain magnitude between the cable and the soil noted by Möller et al. (2022) where it was observed that DFOS cable strain was approximately an order of magnitude lower than the corresponding soil strain determined from PIV. In particular, the shape, location of the peaks and magnitude matches well. This provides confidence that the model can be used to further analyse and understand the experimental tests performed by Möller et al. (2022), and potentially shed some lights on the soil-cable interface to further explain this difference in strain magnitude.

Figure 8 shows shear strain along the model, on a vertical section centred at the cables positions (rough cables), for \(D_R = 88\%\) and \(\delta = 1\) mm. Clearly there is a concentration of shear strain in proximity of the bottom cables surface, and this concentration is located above the trapdoor edges, indicating that most of the shear transfer occurs in this area.

The soil-cable interface was investigated through modelling of two conditions: a smooth cable with \(R_{\text{inter}} = 0.01\), and a rough cable with \(R_{\text{inter}} = 1\). Figure 9 shows horizontal and vertical movements respectively of a smooth and a rough cable for \(D_R = 52\%\) and \(\delta = 1\) mm.

The results show that the interface only has an effect on horizontal displacements, while it does not affect vertical displacements. This indicates that for a smooth cable one should expect very small strains, since horizontal movements are the ones that induce most of the deformation (e.g. Figure 5). Analysis of the numerical model, and more specifically of the soil strain field around the cable, show that the simulated soil-rough cable interface permits a limited relative displacement between the soil and the cable (Figure 10), allowing the reproduction of the experimental cable strain profiles. Therefore, the numerical results retrieve the difference of an order of magnitude observed experimentally between DFOS cable strains and PIV soil strains by Möller et al. (2022).

Sinkhole Prediction at 1g

As well as enabling the detection of sinkholes as soon as it induces ground movements, fibre optic cable data can be used to estimate the sinkhole size at depth and the surface damage zone extent at failure. Möller et al. (2022) show that the position of the maximum gradient (absolute value) in the fibre optic strain profile provides a good estimate of the position of the trapdoor edges, i.e. the size of the sinkhole. This methodology is applied here for further validation. First, the cable’s strains interpolated following Möller et al. (2022). This enables more accurate determination of the location of the maximum gradient, from which the distance between the inflection points, \(w_i\), is derived. Figure 11 illustrates the results for a trapdoor displacement of \(\delta = 2\) mm, for the three different relative densities and at the three elevations above the trapdoor (i.e. \(z = 50,100,150\) mm). For clarity, the extent of the trapdoor width is shown in light grey. The accuracy in the assessment of the trapdoor size is shown in Figure 12, with \(\Omega_t\) defined following Möller et al. (2022):

\[
\Omega_t = \frac{w_i}{B}
\]

A value of \(\Omega_t\) close to 1 reflects a close estimation of the trapdoor size from the cable strain profile. This shows that this method reasonably estimates the trapdoor width, with similar results obtained for smaller trapdoor displacement (\(\delta = 1\) mm). The data are also in good agreement with the experimental trends from Möller et al. (2022), exhibiting a very similar trend with both cable height and relative density.
The experimental results offer a more conservative estimate of the trapdoor width, which can be explained by the pinning conditions and the limited sample length adopted in the experiment. This experimental constraint induces wider trough of the fibre optic cable strain profile compared to that expected from numerical analyses, a limitation that requires further exploring in the future. Nevertheless, the results from the numerical analyses show that the top cable is able to provide a conservative estimate of the sinkhole size for loose to medium dense sand. For the other cases, using the maximum gradient may lead to an under prediction of the sinkhole size, and the method proposed in Möller et al. (2022) might need to be adjusted.

Large scale application

Validation

Despite providing valuable insight in the DFOS behaviour, the low stress level in the experiments conducted by Möller et al. (2022) is actually one of the key limitations of the work. Although careful consideration of the scaling laws were considered, the results cannot be used to directly predict the behaviour at full scale, in particular the quantitative response. For this, tests at enhanced gravity in the centrifuge would be needed but, as mentioned by Möller et al. (2022) and Eichhorn (2021), it is not currently possible to use the fibre optic analyser needed in the geotechnical centrifuge. To verify the robustness of the methodology outlined above for early warning detection of sinkhole formation at realistic stress levels, a 3D FE model of the centrifuge test from da Silva (2017) was performed, adding embedded fibre optic cables for analyses.

The numerical model was created at prototype scale, reproducing the formation of a 2 m-wide sinkhole (i.e. trapdoor width) in plane-strain conditions, located 4 m below the ground level in a cohesionless sand at $D_r = 87.5\%$. Using the framework established by Möller et al. (2022), the “early” stage of the sinkhole formation corresponds to a trapdoor displacement of $\delta = 40 \text{ mm}$, i.e. 2\% of the trapdoor width. The material model used is the HSSmall model, and its parameters are indicated in Table 3.

Figure 13 shows the comparison between the experimental and numerical ground surface settlement profiles. The shape of the ground settlement profile is well captured, with an overestimation of the magnitude of about 25\%. This is because the material model does not enable a variation of dilation angle within the model and a constant dilation angle had to be used, evaluated here at the trapdoor level. In the centrifuge model however, this dilation angle reduces with overburden pressure, and therefore, the numerical model has a lower dilatancy compared to the centrifuge test at the soil surface, which leads to larger settlements. However, this is sufficient here to have a good estimate of the expected sinkhole behaviour at realistic stress levels at the early stage of the sinkhole formation.

Early warning of sinkhole formation

Figure 14 shows the cable strain profiles obtained for this model, as well as the strain caused by horizontal and vertical movements. Figure 14 only displays the results for the top cable, as it is the location of practical interest for this study.

The case of a rough and smooth cables are considered, showing similar results as those observed previously for the $1g$ tests for the rough cable. Horizontal displacements are governing the strains within the cable (compare Figure 5 with Figure 14). This figure also shows that the strains generated by the horizontal movements are not equal to zero for the smooth cable, confirming that at higher confining stresses, enhanced coupling between the soil and the cable enables the cable to move horizontally with the soil better.
However, the inflection points used to estimate the size of the sinkhole (Equation 12) are considerably closer from the centre of the trapdoor for the smooth cable and lead to large under estimations. This is shown in Figure 15, where the results for the rough cable displays satisfactory estimation for the top cable only. The predicted trapdoor width would be
\[w_c = 2.04 - 1.82 \text{ m} \] (to be compared with \(B = 2 \text{ m} \)) for \(\delta = 40 \text{ mm} \) for this specific case, but is significantly smaller for cables located more at depth and/or when full coupling of the soil-cable interface is not achieved. This result shows that further experimental work at higher stress levels is needed to validate further the method outlined in Möller et al. (2022)

The results also show relatively good agreement with the 1g test obtained for \(D_c = 52\% \), (see Figure 12), which corresponds to a relative density of \(D_c = 87.5\% \) at 40g (see Möller et al., 2022 for details on the scaling laws). This provides some level of confidence in the use of the 1g tests to pursue this investigation further, providing further work on boundary conditions is performed to reduce the artificial tension in the cable caused by boundary conditions.

The results from the 3D FE analyses at both 1g and 40g, as well as the experimental data demonstrate the importance of the horizontal soil movements in the ability of the DFOS to identify the presence of an active subsidence at depth. This results concur with previous research (e.g. Carbonel et al., 2014; Gutiérrez et al., 2018, 2012; Kim et al., 2016), which has also observed large horizontal movement of the ground towards the centre of the sinkhole for sagging subsidence. However, the prominence of the horizontal strain over the vertical strain had not been made clear to date (Gutiérrez et al., 2019).

Finally, these results indicate that the better the soil-cable coupling, the more precise the results because the cable is then more able to deform horizontally with the soil. These results confirm that improving the soil-cable coupling increases the cable ability to deform horizontally with the soil. Therefore, it is important to use in practice elements that can be horizontally deployed and have higher surface area, in order to increase the amount of shear transferred at the interface. This would however constrain the cable horizontally and therefore prevent this movement. The results shown here seem therefore to indicate that this laying technique would need to be adapted. Nonetheless, the results demonstrate the viability of the use of DFOS as an early warning at realistic stress levels if the cables are sufficiently well coupled with the soil, and laid within a narrow geogrid or bare.

Extension to three-dimensional cable laying

One of the other key limitations of the work presented above is the 2D nature of the plane-strain conditions, which naturally enforces the cable to be directly above the centre of the trapdoor/subsidence. There is a large uncertainty as to what would happen in the case where the cable is located eccentrically compared with the centre of the sinkhole, or even outside of the trapdoor/sinkhole width. To this purpose, the calibrated numerical model described in the previous section was extended to a 3D circular sinkhole, as shown in Figure 16. A series of cables were placed right above the trapdoor centre (\(y/D = 0 \)) for comparison with the 2D experiments, and then at \(y/D = 0.25 \) eccentrically from the centre, at \(y/D = 0.50 \) on the edge of the trapdoor, and at \(y/D = 0.75,1.00,1.50 \) and 2.00 outside of the trapdoor.

The strain recorded within the cables for \(\delta = 40 \text{ mm} \) are shown in Figure 17. In this series of plots, the strain profile from the bottom cable (in blue) for \(y/D = 1.00,1.50 \) and 2.00 (Figure 17 (f, g, h)) are practically zero, with very low magnitude of less than 1 microstrain. Therefore a 0 horizontal line was used for clarity. The results show a clear drop of strain magnitude at \(y/D = 0.50 \), and an even larger drop for \(y/D \geq 0.75 \), which might not be measurable in practice.
The results also illustrate that cables located close to the soil surface, but away from the immediate zone above the sinkhole formation, benefit from the funnel shape of the deformation mechanism. Clearly, if the cable is located anywhere directly above the trapdoor (here, \(y / D = 0.00, 0.25, 0.50, 0.75 \)), the lower the cable is, the more clearly it senses the displacement induced by the trapdoor. However, cables located horizontally away from the trapdoor footprint (\(y / D \geq 0.75 \)) will be able to sense ground deformation when placed relatively close to the soil surface if they are within the funnel mechanism generated by the sinkhole expansion, and therefore are deformed by the horizontal soil movement within that zone.

Conclusions

The use of DFOS to detect the onset of sinkhole formation at an early stage can help prevent damage induced to infrastructures built within the surface damaged zone at full collapse. This paper uses three-dimensional finite element analyses to further the experimental evidence on the feasibility to use this technology. The numerical analyses have been validated against experimental results from \(1g\) trapdoor tests on DFOS cables embedded in a cohesionless soil layer. The displacement and strain fields measured in the tests were correctly predicted by carefully calibrating the constitutive model at small strain and stress levels. A method for numerical modelling of Hostun sand at low confining stresses is discussed and a list of calibrated parameters is provided. A frictional contact between the cable and the soil was defined in the numerical model to closely mimic the soil-cable interface during experimental testing. The 3D Finite Element model enables to inspect the soil strain field around the cable and in the far field. This permits to gain information on the reciprocal influence of the cable and the soil, which may affect the cable strain.

Experimental evidence has shown that measured fibre optic cable strains were much lower than PIV-measured soil strains. The three-dimensional numerical analyses corroborate this experimental observation, showing that the soil-cable interface permits a limited relative displacement between the soil and the cable. The difference between PIV measured soil strains and DFOS cable strain is hence mostly due to a loss of shear transfer between the soil and the cable interface.

The numerical results also show that the strains within the cable are mostly induced by horizontal movements. Hence, DFOS cables horizontally deployed are potentially enabling the detection of the sinkhole-induced early vertical displacement. The FE analyses confirmed common knowledge that enhanced measurement of the soil strain is obtained when improving the coupling between the soil and the cable. However, the research also highlights that the signature strain profile for cables located close to the soil surface is generated almost purely by horizontal strain within the ground, transferred to the cable providing that its horizontal movement is not constrained. This provides valuable information for cable laying techniques, which is an important research area at the moment (e.g. Xu et al., 2022(b), Sparrevik et al., 2022). The results of this paper implies that the horizontal stiffness of the system used to enhance soil-cable coupling in practice must be reduced as much as possible. The results of the numerical analyses also enabled to validate the methodology outlined by Möller et al. (2022) to locate the sinkhole and assess its size for realistic stress levels in the field. It also highlights the limitations of the methodology used by Möller et al. (2022), and in particular the cable installation at the boundary and the limited size of the box, a problem that would still persist in the centrifuge. Nevertheless, this paper provides confidence in the \(1g\) testing method as a proof of concept for the use of DFOS cables above subsidence formation.
Finally, the analyses presented in this paper enable to extend the findings numerically to the formation of sinkholes in 3D. The results show that DFOS would display a large signature strain profile if located anywhere within 0.5\(D\) of the sinkhole centreline, but display a much attenuated signal when located afar 0.75\(D\), where \(D\) is the sinkhole diameter. The results also demonstrate better accuracy for cables laid closer to the soil surface, where the horizontal ground movement are higher. This provides ground for further research on how to lay fibre optic cables to obtain efficient early warning, as well as on the interpretation of the strain to predict both the sinkhole size and surface damage zone. In particular, future research will explore the possibility of using combination of cable instead of a single cable, laid into a series of lines or grids to enable more accurate sensing of the sinkhole location in the horizontal plane. The possibility of using combined Differential Interferometric Synthetic Aperture Radar (DInSAR) technology will also be investigated for this purpose (Abadie et al., 2023).

The reference tests used in this paper were evidently performed in controlled conditions, where the measurements were not affected by changes in strain from external factors. In situ applications will however be subjected to temperature and moisture content changes, as well as vibrations from human activities (train, road, construction, etc.), which will pollute the otherwise sensitive DFOS signal (Guan et al., 2015). Temperature changes can typically be corrected by adding a fibre that senses seasonal and daily changes in temperature on a specific channel of the interrogator (Kechavarzi et al., 2016), but this technique might not be sufficient at small strain levels, as needed for this particular application. Further work is required to identify how to filter the signal properly and reveal the signature strain profile indicating sinkhole formation for application of this type of technology in the field, however, this paper demonstrates that the use of distributed fibre optic sensing for the detection of early stages of sinkhole formation at full scale is a promising technology.

Acknowledgements

We are grateful to CSIC (EPSRC (EP/N021614/1) and Innovate UK (920035)) for funding and supporting this work and Dr Jennifer Schooling and Prof. Giulia Viggiani for facilitating the collaboration between the University of Naples Federico II and the University of Cambridge, which enabled Mr Gianluigi Della Ragione’s internship at CSIC within the Erasmus+ Programme. We are also thankful to the Schofield Centre and its Director, Prof. Gopal Madabhushi, for their support with the laboratory experiments. Fruitful advice and discussion with Prof Malcolm Bolton, Prof Sadik Oztoprak, Dr Sam Stanier and Prof Giulia Viggiani were also very valuable for the development of this project.

List of notation

- \(a\): fitting parameter for Equation 10 or fitting parameter for Equation 13
- \(b\): fitting parameter for Equation 10
- \(B\): trapdoor width
- \(c\): cohesion or fitting parameter for Equation 10
- \(D\): cable diameter
- \(D_R\): relative density
- \(e\): void ratio or Euler number
- \(E\): cable’s Young modulus
- \(E_{\text{50}}\): secant stiffness modulus at 50% of the peak deviatoric stress in standard drained triaxial test
- \(E_{\text{oned}}\): one-dimensional tangent stiffness modulus in oedometric compression test
- \(E_{\text{uar}}\): unloading-reloading stiffness modulus
Accepted manuscript doi: 10.1680/jgeot.22.00241

g gravity acceleration
G shear stiffness
G₀ initial shear stiffness
H soil specimen height
I₀ dilatancy index
j fitting parameter for Equation 11
K_D fitting parameter for Equation 13
m power coefficient for stress-level dependency of stiffness
p_{atm} atmospheric pressure (assumed equal to 100 kPa)
p_{ref} reference confining pressure
p' effective confinement stress
Q fitting parameter for Equation 2
r fitting parameter for Equation 11
R fitting parameter for Equation 2
S_h horizontal soil displacement
t_s shear force at the cable skin per unit length
u_x horizontal movement
u_y vertical movement
w_D damage zone width
w_e trapdoor width estimated trough numerical cable strain profile
x distance from the trapdoor centreline
z distance from the trapdoor level
β fitting parameter for Equation 11
γ₀,7 shear strain level at which G/G₀≈0.7
δ trapdoor displacement
ε_{a,tot} cable axial strain induced by both vertical and horizontal movements
ε_{u,x} cable axial strain induced by horizontal movements only
ε_{u,y} cable axial strain induced by vertical movements only
η fitting parameter for Equation 11
σ'₁ maximum principal effective stress
σ'₃ minimum principal effective stress
σ_{n,avg} average soil normal stress on the cable skin surface
φ' mobilised angle of friction
φ'_{c} critical angle of friction
φ'ₚ peak angle of friction
Ψ dilatancy angle
Ω_D surface damage zone width overestimation ratio
Ω_t trapdoor width overestimation ratio
References

Table 1. Hostun sand properties (da Silva Burke and Elshafie, 2021)

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average particle size</td>
<td>d_{50}</td>
<td>mm</td>
<td>0.356</td>
</tr>
<tr>
<td>Minimum void ratio</td>
<td>e_{min}</td>
<td>-</td>
<td>0.555</td>
</tr>
<tr>
<td>Maximum void ratio</td>
<td>e_{max}</td>
<td>-</td>
<td>1.010</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>G_s</td>
<td>-</td>
<td>2.65</td>
</tr>
<tr>
<td>Critical angle of friction</td>
<td>ϕ_c</td>
<td>°</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 2. Centrifuge test properties at prototype scale (da Silva, 2017)

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapdoor width</td>
<td>B</td>
<td>m</td>
<td>2</td>
</tr>
<tr>
<td>Sample height</td>
<td>H</td>
<td>m</td>
<td>4</td>
</tr>
<tr>
<td>Relative density</td>
<td>D_R</td>
<td>%</td>
<td>87.5</td>
</tr>
<tr>
<td>g-level</td>
<td>-</td>
<td>g</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 3. Constitutive parameters values used in in the HSsmall model for the soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>1g</th>
<th>40g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohesion</td>
<td>c</td>
<td>kPa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Angle of internal friction (peak)</td>
<td>ϕ_p</td>
<td>°</td>
<td>34</td>
<td>49.6</td>
</tr>
<tr>
<td>Angle of dilatancy</td>
<td>Ψ_{max}</td>
<td>°</td>
<td>0</td>
<td>20.6</td>
</tr>
<tr>
<td>Secant stiffness in standard drained triaxial test</td>
<td>E'_{50}^{ref}</td>
<td>kPa</td>
<td>12,000</td>
<td>21,470</td>
</tr>
<tr>
<td>Tangent stiffness for primary oedometer loading</td>
<td>$E'_{\text{sed}}^{\text{ref}}$</td>
<td>kPa</td>
<td>16,000</td>
<td>23,360</td>
</tr>
<tr>
<td>Unloading/reloading stiffness</td>
<td>E_u^{ref}</td>
<td>kPa</td>
<td>60,000</td>
<td>75,780</td>
</tr>
<tr>
<td>Shear stiffness modulus</td>
<td>G_0^{ref}</td>
<td>kPa</td>
<td>81,500</td>
<td>88,650</td>
</tr>
<tr>
<td>Power for stress-level dependency of stiffness</td>
<td>m</td>
<td>-</td>
<td>0.75</td>
<td>0.55</td>
</tr>
<tr>
<td>Poisson’s ratio for unloading-reloading</td>
<td>V_{ur}</td>
<td>-</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Reference stress for stiffness</td>
<td>p_{ref}</td>
<td>kPa</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>k_0 value for normal consolidation</td>
<td>k_{nc}</td>
<td>-</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Shear strain level at which $G_s/G_0=0.7$</td>
<td>$\gamma_{0.7}$</td>
<td>-</td>
<td>0.000022</td>
<td>0.000034</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1. Photograph of the experimental setup for the 1g tests
Figure 2. Plaxis 3D numerical model representing half of the plane-strain problem with soil modelled as tetrahedral element and fibre optic cable modelled as an embedded beam element (395 x 200 x 200 mm)
Figure 3. Geometry for strain calculation
Figure 4. Comparison between soils strains induced by horizontal, vertical and total displacement in the 1g experimental results and numerical analysis of the laboratory test, far from the cables ($D_R = 20\%$, $\delta = 1\ mm$, $z = 150\ mm$)
Figure 5. Comparison between cable strains induced by horizontal, vertical and total displacements in the 1g experimental results and numerical analysis of the laboratory test ($D_R = 20\%$, $\delta = 1\ mm$, $z = 150\ mm$, rough cable)
Figure 6. Comparison between soil strains from horizontal movements at different densities and at three heights in the soil body in the 1g experimental results and numerical analysis of the laboratory test, far from the cables ($\delta = 1\ mm$)
Figure 7. Comparison between horizontal cable strains at different densities and at three heights in the soil body in the 1g experimental results and numerical analysis of the laboratory test, rough cables ($\delta = 1\ mm$)
Figure 8. Vertical section of numerical model ($D_R = 88\%$ and $\delta = 2\ mm$) representing shear strain. (a) Far field shear strain (b) Shear strain near the bottom cable; (c) Shear stain near the central cable; (d) Shear strain near the top cable.
Figure 9. Horizontal and vertical displacement of numerical cables for $D_R = 52\%$ and $\delta = 1\ mm$, comparison between rough and smooth cables. (a, d) Top cable; (b, e) Central cable; (c, f) Bottom cable.
Figure 10. Strain induced by horizontal movements for $D_R = 52\%$ and $\delta = 1\ mm$, comparison between soil’s strain (far and close to the cable) and the rough cable for (a) top layer and top cable; (b) central layer and central cable; (c) bottom layer and bottom cable.
Figure 11. Maximum gradient position from cable strain in the numerical analysis of the laboratory test ($\delta = 2\ mm$)
Figure 12. Trapdoor size prediction from cable’s strain data
Figure 13. Comparison between centrifuge experimental and numerical surface soil settlement profiles
Figure 14. Comparison between rough and smooth cable, top cable $\delta = 40\ mm$. (a) Strains induced by horizontal displacements; (b) Strains induced by vertical settlements
Figure 15. Trapdoor size prediction from numerical cable’s strain, for $\delta = 40\ mm$. (a) Rough cable; (b) Smooth cable. (40g test)
Figure 16. Plaxis 3D numerical model representing a quarter of the axisymmetric problem with soil modelled as tetrahedral element and fibre optic cable modelled as an embedded beam element (15.8 x 15.8 x 4 m)
Figure 17. Horizontal strain profiles within the cable in axial symmetric conditions for $\delta = 40\ mm$
\[u_{x,i+1} \]

\[\Delta X_i \]

\[u_{x,i} \]

\[u_{y,i} \]

\[u_{y,i+1} \]

\[\bigcirc \text{ Initial location} \]

\[\bullet \text{ Final location} \]

Fig. 3
Figure 4

(a) 5000
(b) 200
(c) 5000

Strain $[\varepsilon]$ ±

- Experimental strain
- Strain from interpolated experimental displacements
- Strain from interpolated numerical displacements

Dimensionless distance from trapdoor centre, x/B [-]
Fig. 5
Fig. 7
Fig-8
Fig-9
Fig-10
Accepted manuscript doi: 10.1680/jgeot.22.00241

Figure 11

Top Cable (z = 150 mm)

Central Cable (z = 100 mm)

Bottom Cable (z = 50 mm)

Strain [\nu_e]

Dimensionless distance from trapdoor centre, x/B [-]

- $D_R = 20\%$
- $D_R = 54\%$
- $D_R = 88\%$

Downloaded by [UNIVERSITY OF CAMBRIDGE] on [15/02/23]. Copyright © ICE Publishing, all rights reserved.
Fig-12
Fig-14
Fig-15
Soil modelled as tetrahedral element

DFOS cable modelled as beam element

Circular trapdoor

Medium Element Size

- 1.13 m
- 0.63 m
- 0.14 m
Fig-17

Dimensionsless distance from trapdoor centre, x/B [-]

- Bottom Cable
- Central Cable
- Top Cable