
83

Functional Programming for Modular Bayesian Inference

ADAM ŚCIBIOR, University of Cambridge, UK and MPI for Intelligent Systems, Germany

OHAD KAMMAR, University of Oxford, UK

ZOUBIN GHAHRAMANI, University of Cambridge, UK and Uber AI Labs, USA

We present an architectural design of a library for Bayesian modelling and inference in modern functional
programming languages. The novel aspect of our approach are modular implementations of existing state-of-
the-art inference algorithms. Our design relies on three inherently functional features: higher-order functions,
inductive data-types, and support for either type-classes or an expressive module system. We provide a perfor-
mant Haskell implementation of this architecture, demonstrating that high-level and modular probabilistic
programming can be added as a library in sufficiently expressive languages.

We review the core abstractions in this architecture: inference representations, inference transformations,
and inference representation transformers. We then implement concrete instances of these abstractions,
counterparts to particle filters and Metropolis-Hastings samplers, which form the basic building blocks of our
library. By composing these building blocks we obtain state-of-the-art inference algorithms: Resample-Move
Sequential Monte Carlo, Particle Marginal Metropolis-Hastings, and Sequential Monte Carlo Squared. We
evaluate our implementation against existing probabilistic programming systems and find it is already com-
petitively performant, although we conjecture that existing functional programming optimisation techniques
could reduce the overhead associated with the abstractions we use. We show that our modular design enables
deterministic testing of inherently stochastic Monte Carlo algorithms. Finally, we demonstrate using OCaml
that an expressive module system can also implement our design.

CCSConcepts: •Mathematics of computing→Bayesiannonparametricmodels;Metropolis-Hastings

algorithm; Sequential Monte Carlo methods; Resampling methods; • Software and its engineering

→ Functional languages; Compilers; Software libraries and repositories;

Additional Key Words and Phrases: probabilistic programming, functional programming, Bayesian inference,

higher-order functions, inductive types, type-classes, module systems, monads, monad transformers, machine

learning, Anglican, WebPPL, Markov Chain Monte Carlo, Sequential Monte Carlo, Monte Carlo samplers

ACM Reference Format:

Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Functional Programming for Modular Bayesian
Inference. Proc. ACM Program. Lang. 2, ICFP, Article 83 (September 2018), 29 pages. https://doi.org/10.1145/
3236778

1 INTRODUCTION

Probabilistic programs, as used for statistical machine learning and data science, are computer
programs with two specific computational effects: one for drawing random variables from probabil-
ity distributions and one adjusting the relative weight of specific values of a random variable. We

Authors’ addresses: Adam Ścibior, ams240@cam.ac.uk, Department of Engineering, University of Cambridge, Trumpington
Street, Cambridge, CB2 1PZ, UK , Empirical Inference Deparment, MPI for Intelligent Systems, Spemannstrasse 34, Tübingen,
72076, Germany; Ohad Kammar, ohad.kammar@cs.ox.ac.uk, University of Oxford, Department of Computer Science,Wolfson
Building, Parks Road, Oxford, OX1 3QD, UK; Zoubin Ghahramani, zoubin@eng.cam.ac.uk, Department of Engineering,
University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK , Uber AI Labs, San Francisco, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART83
https://doi.org/10.1145/3236778

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236778
https://doi.org/10.1145/3236778
https://doi.org/10.1145/3236778


83:2 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

explain these two effects using Haskell types and monads, following Staton [2017]. For a traditional
explanation of Bayesian modelling and inference we refer the reader to one of the many excellent
textbooks available [Barber 2012; Bishop 2006; MacKay 2003].
A monad m supporting these two constructs should support the following two functions

random :: m Double score :: Log Double → m ()

As an aside, values of type Log Double are non-negative reals represented internally as a logarithm.
The use of logarithms replaces multiplication with addition of double-precision floating point num-
bers, somewhat reducing underflow issues. Each computation of type m a represents a distribution
over the values of type a. The function random draws a random variable uniformly from the unit
interval [0, 1]. The computation score r scales the distribution by the factor r ∈ [0,∞), and its effect
is more subtle. If we ignore the scores in a given computation c of type m a, then c represents a
probability distribution over values of type a, called the prior distribution. Given a value x of type a,
let the likelihood of x, be the łsum”w(x), over all the program traces that result in x, aggregating
the product of scores along each trace. As an example, consider the following program, often used
to explain Bayesian modelling. Using the distribution bernoulli p = fmap (< p) random, i.e., True with
probability p and False with probability 1-p, define the following computation c:

rain ← bernoulli 0.2

sprinkler ← bernoulli 0.1

let prob_lawn_wet = case (rain , sprinkler) of

(True , True )→ 0.99

(True , False)→ 0.70

(False , True )→ 0.90

(False , False)→ 0.01

score prob_lawn_wet --observe lawn wet

return rain

Such programs are called (probabilistic) models. In this program, we observe that the lawn is wet,
which can be caused by either rain or the sprinkler, and try to infer the probability that it was
raining. The prior is bernoulli 0.2 and the likelihood is:

w(True ) = 0.1 * 0.99 + 0.9 * 0.70 = 0.729

w(False) = 0.1 * 0.90 + 0.9 * 0.01 = 0.099

Given the prior distribution priorc and the likelihoodwc of a computation c :: m a, the distribution
µc that c represents is given by the rescaling of the prior by the likelihood, assigning to each event
E the weighted sum:

µc (E) := (wc ⊙ prior)(E) :=
∫
E

wc (x)priorc (dx)

i.e., Lebesgue integrating the likelihood over E according to the prior. Probabilistic programs give us
a formalism for expressing distributions by programmingwith the abstractions of Bayesian statistics:
sampling from the prior distribution and changing the likelihood, also known as conditioning.

The example above is discrete so the integral amounts to a weighted sum:

µc (True ) = 0.2 * 0.729 = 0.1458

µc (False) = 0.8 * 0.099 = 0.0792

The value of µc on the entire domain is called the model evidence. Bayesian statisticians regard
model evidence that is close to 0 as indicating a bad fit of the model to the data. In general, they
regard the model evidence as a score for the whole model. The model evidence of our example is:

µc (Bool) = µc (True) + µc (False) = 0.1458 + 0.0792 = 0.225

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:3

Beyond the model evidence, we are interested in the posterior distribution, the probability
distribution on program outputs conditioned on the observed data. It is given by normalising µc by
the model evidence µc (a). Thus in the example above we have:

posteriorc (True ) = 0.1458 / 0.225 = 0.648

posteriorc (False) = 0.0729 / 0.225 = 0.352

Therefore from the observation that the lawn is wet we estimate it rained with probability 0.648.
Approximate Bayesian inference deals with approximations to themodel evidence and the posterior

distribution. Traditionally, such inference is done by hand. The descriptions of the prior distribution
and the likelihood are constructed manually, the equations of the inference algorithm are derived
with pen and paper, and implemented as a module of the intended application. In an attempt to
partially automate this process, many libraries automatically derive selected inference algorithms
from a suitable intermediate representation of the model. This representation is usually constructed
by the user directly as a data structure in some programming language. This approach is used in
systems such as Infer.NET [Minka et al. 2014] and PyMC [Patil et al. 2010].
To relieve users from the burden of manually constructing the intermediate representation,

probabilistic programming systems such as BUGS [Gilks et al. 1994], Stan [Carpenter et al. 2017],
and LibBi [Murray 2013] provide a special-purpose modelling language, usually a mixture of
C-like syntax and mathematical notation, which is human-readable and from which a suitable
compiler automatically generates the required simulations that approximate the model evidence or
sample predictions from the posterior distribution. While users express their models as probabilistic
programs, as we did above, the expressive power of the languages they use is limited, and the
inference process cannot be directly incorporated into larger applications, which resort to external,
file-based communication.
Here, we focus on probabilistic programming systems that extend a fragment of an existing

programming language with sampling and conditioning. Doing so allows both the users and the
implementers to repurpose the existing software development infrastructure for Bayesian inference,
but Bayesian inference for such programs is usually more challenging than for programs written
in restrictive special-purpose languages. Examples of such systems include IBAL [Pfeffer 2001],
Church [Goodman et al. 2008], Anglican [Wood et al. 2014], WebPPL [Goodman and Stuhlmüller
2014], Venture [Mansinghka et al. 2014], and R2 [Nori et al. 2014].

In this paper we describe a Haskell library constituting a probabilistic programming system that
extends an existing language with probabilistic effects. Specifically, it provides a monadic typeclass
with probabilistic effects that can be used to construct probabilistic programs using arbitrary pure
Haskell code. The modelling language is thus expressive, constituting what is sometimes called a
universal probabilistic programming language [Goodman et al. 2008], like many of the languages
described in the paragraph above. The main novelty of our library is its compositional approach to
specifying Bayesian inference algorithms. The library is called MonadBayes and it is freely available
online1.

One of the goals of probabilistic programming is to separate probabilistic modelling from infer-
ence. The idea is that domain experts can specify probabilistic models according to their knowledge
of the underlying processes and then an automated inference engine makes probabilistic inferences
using such a model and a record of observations made. While this is feasible to some extent, it is not
possible to fully automate Bayesian inference. Indeed, in general the posterior is not computable
[Ackerman et al. 2011] and in practice there is a diverse set of approximate inference algorithms
targeting different classes of models. It is therefore desirable for probabilistic programming systems

1https://github.com/adscib/monad-bayes

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.

https://github.com/adscib/monad-bayes


83:4 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Fig. 1. Conceptualisation of Bayesian inference. The model is written by the user in a probabilistic program-
ming language and inference produces a sampler, which is a program implementing the selected inference
algorithm for the specified model. Inference in most existing systems consists of a single conceptual step,
while we can further decompose it into multiple passes through intermediate representations much like
traditional compilers do. Crucially, the approximation is contained to the step of executing the final samplers,
while all the intermediate transformations are exact.

to provide the users with convenient ways of specifying and extending the available inference
algorithms. This task is sometimes called inference programming and was recognised by systems
such as Venture [Mansinghka et al. 2014], Figaro [Pfeffer 2015], Edward [Tran et al. 2017], and Pyro.
In our recent work [Ścibior et al. 2018] we have developed a denotational semantics capable

of expressing and validating the implementation of popular inference algorithms. Our account
allows these implementations to be freely combined while ensuring correctness. The semantic
implementation uses monad-transformer-lke technique in the recently proposed category of quasi-
Borel spaces [Heunen et al. 2017]. In this paper we use this semantic development as a basis for
an executable modular implementation of a probabilistic programming system where inference
algorithms can be easily extended and combined. Furthermore, we implement it as a lightweight
library rather than a stand-alone language. We implement the constructions described by Ścibior
et al. [2018], providing algorithms such as Lightweight Metropolis-Hastings (LMH) [Wingate et al.
2011], Sequential Monte Carlo (SMC) [Wood et al. 2014], and Resample-Move SMC (RM-SMC) [Gilks
and Berzuini 2001]. We also extend it further providing implementations of algorithms such as
Particle Marginal Metropolis-Hastings (PMMH) [Andrieu et al. 2010] and SMC2 [Chopin et al. 2013].
Thanks to the modular construction the resulting Haskell library is compact, with the whole system
implemented in about 1200 lines of code. The implementation only relies on common functional
programming features, such as higher-order functions, inductive datatypes, and type-classes or
expressive module systems so it can be easily ported to other functional languages. Finally, the
implementation closely follows its theoretical foundations, giving users high assurance in the
correctness of inference algorithms they build using the library. Since the semantic construction
is beyond the scope of the present development, we only sketch it informally here and refer the
interested reader to Ścibior et al. [2018] for a complete account.
Figure 1 depicts a high-level view of Bayesian inference. We transform the model, containing

both sampling and conditioning operations, into a probabilistic program, the sampler, containing
only sampling operations. While the model is non-executable due to the conditioning operations,
the sampler is executable. We can therefore run the sampler and, with some post-processing,
approximate the posterior distribution of the original model. The main novelty in our approach is
to decompose the inference step, framed in the figure, into a sequence of intermediate steps. These
steps, which statisticians only communicate informally, consist of inference-specific transformations

ti between inference-specific representations IRi .
Our library provides such inference representations, and inference transformers IT, that manipu-

late these representations. Users can then define custom IRs by composing transformers to obtain
inference transformer stacks:

IR’ = IT1 ◦ IT2 ◦ · · · ◦ ITℓIR

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:5

Transformers also allow lifting an inference transformation to an inference transformation between
the transformed representations:

lift :: (IR1 → IR2) → IT IR1 → IT IR2

Thus inference transformers provide an additional dimension of modularity, allowing us to construct
inference representations by combining inference transformers.
Our aim is to enable such lean and flexible high-level probabilistic programming libraries to

form viable alternatives to manual Bayesian inference and to existing monolithic probabilistic
programming systems. To achieve it, we need a performant implementation allowing us to enjoy the
flexibility in model construction and modular inference design without sacrificing performance. We
therefore benchmark our library against existing systems and demonstrate competitive performance.
In the evaluation we distinguish between two kinds of efficiency we associate with inference

algorithm implementations. The statistical efficiency measures the number of iterations needed by
the resulting probabilistic sampler to approximate the posterior distribution well. The computational

efficiency measures the time it takes to execute one interation of the resulting sampler.
Here we are not concerned with improving statistical efficiency, i.e., we do not develop new

inference algorithms.We only replicate what already exists in the literature, and leave this important
task to expert algorithmic statisticians. Our evaluation focuses on the computational efficiency and
we demonstrate that our implementation has similar performance to existing systems of comparable
scope. However, profiling shows that the abstractions we use come with significant computational
overhead so the computational efficiency of our approach could be further improved, possibly
through the application of well-known optimisation techniques. For example, in our preliminary
experiments the bottleneck was an inefficient implementation of a free monad. Replacing the
free monad with a Church-encoded version removed this performance bottleneck. We expect that
applying similar techniques, such as finally-tagless [Carette et al. 2009], stream fusion [Coutts
et al. 2007], information-flow graphs and other static-analyses, alongside aggressive compiler
optimisations, would remove similar bottlenecks.

This expectation is unsurprising once we notice that Figure 1 depicts the typical structure of an
optimising compiler, transforming the source code, the model, through a series of intermediate rep-
resentations, and emitting an optimised object code, the sampler. Our denotational account [Ścibior
et al. 2018] also fits with this perspective, as a common way to validate compiler transformations is
by validating that the translations preserve the semantics of the transformed program. Therefore,
we view our approach and its associated libraries as a vehicle to open up a fruitful application
area for programming language experts in general, and functional programmers in particular. In
particular we hope that by breaking down implementations of approximate Bayesian inference
algorithms into smaller components with well-defined semantics, our work will make it easier for
experts in implementations of programming languages to contribute to the field of probabilistic
programming even if they do not posses an in-depth knowledge of probability and statistics. We
envision such contributions would mainly come in the form of reducing the computational overhead
of the abstractions we present in this paper, such as the ones mentioned in the paragraph above.

We prefix our development with two remarks for Bayesian inference cognoscenti. First, we focus
on the most general family of inference algorithms, namely samplers that do not use gradient

information. We ignore: gradient-based techniques such as Hamiltonian Monte Carlo, that assume
the likelihood function is differentiable; optimisation basedmethods, including variational inference;
and enumeration based methods such as belief propagation. While these classes of algorithms are
less generic than sampling, they are still important and we plan to develop them in future work.

Second, our library implements basic versions of advanced sampling algorithms. However, their
successful application in practice requires incorporating established heuristics, such as: adaptive

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:6 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

proposal distributions, controlling resampling with effective sample size, tuning rejuvenation
kernels based on population in SMC2, and so on. We believe these are largely orthogonal to the
core design, so excluding them makes for a clearer and more accessible presentation of the main
ideas.
The paper is structured as follows. In Section 2 we show the construction of basic inference

transformers and associated transformations. Section 3 demonstrates how to use those basic building
blocks to construct more advanced building blocks that express simple inference algorithms. In
Section 4 we show how to compose those building blocks to obtain advanced inference algorithms.
Then in Section 5 we present an empirical evaluation of our library comparing it with existing
probabilistic programming systems in terms of performance and implementation effort required.
In Section 6 we discuss how our modular structure enables a deterministic approach to testing
inference algorithm implementations. In Section 7 we outline an ongoing OCaml implementation of
our design, and demonstrate how an expressive module system can replace our use of type-classes.
Finally, in Section 8 we discuss related work and in Section 9 we present directions for future work
and conclude.

Our target audience are functional programmers and language implementers that are interested
in making their languages viable platforms for statistical machine learning and data science. All
sections, with the exception of Section 4, have this target audience in mind. We do not expect this
audience to easily see the reasons why the programs we describe in these sections work, such
developments can fill a standalone article [Ścibior et al. 2018]. Instead, we want to demonstrate to
this audience that our library code uses the usual programming abstractions functional programmers
are used to code and optimise.
However, our goal is to allow probabilistic programming experts to express their inference

algorithms as close to their specialist language as possible. We demonstrate this ability in Section 4,
and this section alone is intended for Bayesian inference specialists. Without this section, our
account is unlikely to convince a probabilistic programming expert that we can indeed express
state-of-the-art algorithms. Non-experts may want to only briefly skim this section to get an
impression of typical client code for our library.

2 BASIC BUILDING BLOCKS

We express the building blocks for inference algorithms in Haskell. Unless stated otherwise, the
structures presented in this section follow the mathematical formulation of Ścibior et al. [2018].
We distinguish three types of building blocks:

(1) Inference representations
Inference representations are data structures representing distributions. Concretely, they are
instances/implementations of the monad type-class/interface, but they need not satisfy the
monad laws. We use them as the intermediate representation in the inference/compilation
process.
In Haskell, we express these abstract interfaces as type-classes, as in Figure 2. There are three
separate type-classes: the sampling representation MonadSample, and the conditioning represen-
tation MonadCond. A representation that is both a sampling and conditioning representation is
called an inference representation MonadInfer. Together with the Monad interface, the interfaces
in the figure can express our probabilistic programs of interest. Our library includes default
implementations for common probability distributions in terms of random, which is a uniform
distribution on the unit interval [0, 1]. Specific representations can overwrite these default
implementations for better efficiency.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:7

type R = Double

class Monad m ⇒ MonadSample m where

random :: m R

bernoulli :: R→ m Bool

bernoulli p = fmap (< p) random

-- and other default distributions:

-- normal , gamma , beta , geometric ,

-- poisson , dirichlet

class Monad m ⇒ MonadCond m where

score :: Log R→ m ()

class (MonadSample m, MonadCond m) ⇒ MonadInfer m

Fig. 2. Inference representations using Haskell type-classes. Log R is a numeric type representing non-negative
real numbers using their logarithms.

To reason about correctness of algorithms involving a representation m, one defines a semantics
map µ :: m a → D a assigning to each representation c :: m a a distribution over its return
type µc :: D a. This łtype” of distributions and the semantics map are mathematical objects
impossible to implement. They are pure reasoning abstractions, and to ensure correctness,
we require the semantics map preserves the monadic structure. Since D is itself a monad,
both in terms of an interface and satisfying the monad laws, we require that the following
equations hold.

µ . return = return µ (c >>= f) = µ(c) >>= (µ. f)

Furthermore, we require that µ (random) is the uniform distribution over the unit interval
[0, 1], and that µ (score r) is the (unique) distribution over the singleton with total measure r.
See Ścibior et al. [2018] for the full details.

(2) Inference transformations

Inference transformations are mappings t :: m a → m' a between inference representations
m, m'. They can be thought of as passes in a compilation process. For reasoning purposes,
such an inference transformation is correct if it preserves the semantics map of the trans-
formed inference representation: µ . t = µ . It follows that a composition of correct inference
transformations is a correct inference transformation, so algorithms given by composition
of correct inference transformations are correct by construction. Unless stated otherwise,
all inference transformations are correct based on the reasoning in Ścibior et al. [2018]. As
a consequence, the weighted samplers our inference algorithms produce are unbiased by
construction. Being unbiased means that the weighted expectation of the sampler is identical
to the expectation of the model.

(3) Inference transformers

Inference transformers are compositional building blocks of inference representations, much
like monad transformers are building blocks of monads. By analogy with monad stacks
we call a sequence of inference transformers an inference stack and implicitly identify a
stack [mT1, mT2, ..., mTn]with the composed transformer mT1 . mT2 . ... . mTn . Our inference
transformations often apply to a specific transformer in the stack, and are polymorphic in the
remainder of the stack. Like monad transformers, inference transformers specify a function to
lift a transformation through them, which we call hoist since lift is already used in Haskell.
These abstractions allow us to apply inference transformations to particular layers in the
inference stack.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:8 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

This section uses these abstractions to define basic inference building blocks. These basic blocks
do not express advanced algorithms by themselves, but abstract away details to expose the structure
of more advanced building blocks. The subsequent Section 3 presents two such building blocks,
and the following Section 4 shows how to compose them to obtain advanced inference algorithms.

2.1 Models

The following example program implements a simple randomwalk using the abstractions introduced
above. It models a particle travelling in one dimension in discrete time. At each time step the particle
moves randomly according to a Gaussian distribution. The model takes as argument a data-set
containing noisy observations about the particle’s location. The model captures our hypothesis
about the particle’s movement, subject to some unknown parameters such as the rate in which it is
moving. The goal of inference is to fit this model to the observed data, updating these parameters
accordingly.

1 random_walk :: MonadInfer m ⇒ [R]→ m [R]

2 random_walk ys = do

3 s ← gamma 1 1

4 let expand xs [] = return xs

5 expand (x:xs) (y:ys) = do

6 x' ← normal x s

7 obs x' y

8 expand (x':x:xs) ys

9 where

10 obs x y = score (normalPdf x 1 y)

11 xs ← expand [0] ys

12 return (reverse xs)

The parameter s controls the deviation of the particle from its current position. We emphasise that
the parameter in this case is the sampling operation in the dynamic call to gamma on line 3, rather
than the static program variable s. The model starts at position 0, and iteratively constructs the
desired list of locations in reverse. At each step, we sample the next location x' from a normal
distribution around x with a standard deviation of s (line 6). This sample is then fitted to the
observed data point y, using the helper function obs from line 10. It uses the probability density
function (pdf) for the normal distribution

normalPdf µ σ z := 1√
2πσ

e
− (z−µ )

2

2σ 2

centered around x with standard deviation 1, representing our assumption that y is a noisy obser-
vation of x, where the noise distributes normally with standard deviation 1. The call obs x' y on
line 7 thus lowers the score of samples x' that are far from the observed location y. In standard
statistical modelling terminology the calls to normal x s on line 6 are called latent variables. The
output of the model is the predicted sequence of true positions of the particle based on provided
noisy observations. It is reversed only because Haskell lists are more easily extended at the front
than at the back so expand constructs this list in the reverse order.

The type of random_walk is abstract with respect to the inference representation m. Thus we express
models as computations constructed in terms of an abstract inference representation interface.
This architecture lends itself to a shallowly embedded probabilistic programming DSL, with the
usual benefits of DSLs, e.g., the ability to call standard library functions such as reverse. We could
alternatively use a stand-alone language for expressing models that a suitable front-end would
convert to a desired inference representation.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:9

2.2 Basic Samplers

To interpret the program above we need to construct a concrete inference representation. The
simplest one is a sampler that draws concrete values for random variables from the prior. Such a
sampler type can be constructed as a state monad that references a global pseudo-random number
generator. Since the generator is mutable, in Haskell we need to use the ST monad.

1 newtype Sampler a =

2 Sampler (forall s. ReaderT (GenST s) (ST s) a)

3 instance MonadSample Sampler where

4 random = Sampler $ do

5 gen ← ask

6 lift (MWC.uniform gen)

Line 5 retrieves the reference to the random seed, line 6 uses the standard library MWC for random
number generation, and lifts it to the underlying reader monad transformer.
We can directly execute computations of type Sampler to obtain concrete samples, for example:

runSampler :: Sampler a→ a

runSampler (Sampler s) = runST $ do

gen ← MWC.create

runReaderT s gen

The represenation Sampler is a sampling representation, i.e., an instance of MonadSample, but not a
conditioning representation, i.e., an instance of MonadCond: Sampler does not support conditioning.
To obtain a working inference algorithm we need to add an interpretation of score, by applying a
suitable inference transformer.

We use the weighting inference transformer W. Theoretically it is the writer monad transformer
for the multiplicative monoid structure on Log R given by multiplication, but in our implementation
we are using the state monad transformer instead since we found it to be much faster. In either case,
W m a is an m-computation returning pairs (a, Log R) of the result type together with the accumulated
log-likelihood.

newtype W m a = W (StateT (Log R) m a)

runW :: Monad m ⇒ W m a→ m (a, Log R)

runW (W x) = runStateT x 1

instance MonadSample m ⇒ MonadSample (W m) where

random = lift . random

instance Monad m ⇒ MonadCond (W m) where

score w = W (modify (* w))

hoistW :: (forall x. m x→ n x)→ W m a→ W n a

hoistW f (W m) = W (mapStateT f m)

Weighting a representation m equips it with conditioning operation making W m a conditioning
representation. If m was a sampling representation, its weighted version is also a sampling represen-
tation by lifting the sampling operation. Finally, the function hoist lifts inference transformations
applicable to m and turns them into an inference transformations applicable to T m. When m is al-
ready a conditioning representation, we may use the conditioning available through the weighting
transformer, or hoist score r to use the ambient conditioning of m.
We construct a simple inference algorithm by interpreting the model in W Sampler a and un-

wrapping type constructors to obtain a weighted sampler of type Sampler (a, Log R). When a is a
numeric type, we can approximate the expectation of the model by repeatedly running the sampler
and calculating the weighted average. Unfortunately such an algorithm usually has low statistical

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:10 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

efficiency and it needs to generate impractically many samples to obtain good predictions. There-
fore, advanced inference algorithms first apply multiple inference transformations between more
advanced inference representations before arriving at the final weighted sampler representation.

2.3 Population

The Pop inference transformer turns a single sample into a collection of weighted samples called the
population. It is the weighted list transformer, i.e., the composition of W with the ListT transformer.

newtype Pop m a = Pop (W (ListT m) a)

deriving(Monad ,MonadSample ,MonadCond ,MonadInfer)

runPopulation :: Monad m ⇒ Pop m a→ m [a, Log R]

runPopulation (Pop p) = runListT (runW p)

hoistP :: (forall x. m x→ n x)→ Pop m a→ Pop n a

hoistP f (Pop m) = Pop (hoistW (mapListT f) m)

The collection of samples in the population is usually referred to as particles. The usual problem
with treating ListT as a monad transformer, namely that ListT-transformed monads do not always
satisfy the monad laws, does not apply to inference representation: we do not require that our
representations satisfy the monad laws.
In this paper we use three inference transformations associated with Pop:

spawn :: Monad m ⇒ Int → Pop m ()

resample :: MonadSample m ⇒ Pop m a→ Pop m a

pushEvidence :: MonadInfer m ⇒ Pop m a→ Pop m a

One is (spawn n >>), which increases the population size n times adjusting the weights accordingly.
Next comes resample, which draws a new population with uniform weights from the current
population. Resampling’s purpose is to remedy situations when a single sample has a large weight
compared to the other particles in the population and dominates the result making the other
particles irrelevant. Finally, we have pushEvidence which normalizes the weights in the population,
while at the same time incorporating the sum of the weights as a score in m.

The meaning function µ is defined in terms of the weighted average over the population. We can
state it concisely by making use of pushEvidence and a categorical distribution.

µPop m(p) = µm(runPopulation (pushEvidence p) >>= categorical)

In the above categorical is a distribution that draws a sample from a weighted list with probabilities
proportional to weights.
Since all of the presented transformations preserve the weighted average µ, they are correct

inference transformations. The details of resample may vary since there are multiple good choices.
Our library uses systematic resampling [Doucet and Johansen 2011] due to its good computational
efficiency.

By itself Pop is similar to W. To appreciate its utility we need to combine it with different inference
transformers, where it abstracts away the maintenance of the particle population.

3 ADVANCED BUILDING BLOCKS

Sequential Monte Carlo (SMC) and Markov Chain Monte Carlo (MCMC) are two of the most general
inference algorithms for probabilistic programs.Whenwe express them as inference representations
and reuse the basic building blocks of the previous section, we obtain the components that underlie
many advanced inference algorithms.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:11

3.1 Sequential

Many models exhibit a sequential structure where observations are interleaved with sampling.
In those models a possible inference strategy is to consider a program up to a certain point, do
inference on the partial posterior it defines, then run the program a little more, do more inference,
and so on. To implement such algorithms we introduce the sequential transformer Seq which
introduces suspensions after each score in the program. Seq is the standard coroutine transformer
[Blažević 2011]. In our library we use the implementation of the coroutine transformer available in
the monad-coroutine library2 but the snippet below shows how to implement it from scratch.

data Seq m a = Seq (m (Either a (Seq m a)))

runSeq :: Seq m a→
m (Either a (Seq m a))

runSeq (Seq m) = m

instance Monad m ⇒ Monad (Seq m) where

return x = Seq (return (Left x))

Seq c >>= f = Seq $ do

t ← c

case t of

Left x→ runSeq (f x)

Right m→ return (Right (m >>= f))

instance MonadTrans Seq where

lift = Seq . fmap Left

suspend :: Monad m ⇒ Seq m ()

suspend = Seq (return

(Right (return ())))

instance MonadSample m ⇒
MonadSample (Seq m) where

random = lift random

instance MonadCond m ⇒ MonadCond

(Seq m) where

score w = lift (score w) >> suspend

We have two inference transformations associated with Seq:

advance :: Monad m ⇒ Seq m a→ Seq m a

advance (Seq m) = Seq (m >>= either (return . Left) runSeq)

finish :: Monad m ⇒ Seq m a→ m a

finish (Seq m) = Seq (m >>= either return finish)

The advance transformation runs the program to the next suspension point. The finish transforma-
tion runs the program to the end. When reasoning about Seq, the meaning function is:

µSeq m(c) := µm(finish c)

Finally, hoistS applies the inference transformation only to the part of the program executed so far.

hoistS :: (forall x. m x→ m x)→ Seq m a→ Seq m a

hoistS tau (Seq m) = Seq (tau m)

Combining Seq with Pop, we obtain a Sequential Monte Carlo variant known as the particle

filter [Doucet and Johansen 2011] that we refer to simply as SMC. Within the context of SMC, recall
that a sample in a population is called a particle. The algorithm starts by initialising a population
of size n, then repeatedly runs the program to the next score, resamples the population, runs to
the next score and so on. We implement it by composing the inference transformations we have
introduced so far.

smc :: MonadSample m ⇒ Int → Int → Seq (Pop m) a→ Pop m a

smc k n = finish . compose k (advance . hoistS resample) . hoistS (spawn n >>)

The argument k is the number of time steps in SMC, n is the number of particles used, and

compose :: Int → (a → a) → a → a

is k-fold function composition. To execute the sampler, we use the instance where m is Sampler.

2http://hackage.haskell.org/package/monad-coroutine

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.

http://hackage.haskell.org/package/monad-coroutine


83:12 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

3.2 Traced

The final transformer we present supports a class of algorithms known as Trace Markov Chain Monte

Carlo (MCMC), which mix two ingredients. The first is the general Metropolis-Hastings update
which underlies the MCMC approximation technique. The second ingredient is a representation of
the traces of the program, the trace being a record of random choices the program has made.

The idea behind MCMC is to represent a distribution over a space a as a simulation of a random
walk through the space a according to some predefined proposal kernel k :: a → m a. If the simulation
is currently at value x, the kernel k determines a distribution k x over the proposed values. The
second fundamental part of MCMC is the rejection rate ρ. This rate is a non-negative function
ρ : a → a → Log R. At each step, given some x :: a sampled from a distribution c :: m a, we sample
a new proposal y∼k x and, with probability ρ x y, we accept the new proposal y, taking it as the new
point, or reject it and remain with x. We can summarise this process in the following code:

abstractMH :: MonadSample m ⇒ m a→ m a

abstractMH c = do

x ← c

y ← k x

b ← bernoulli ρ x y

if b then return y

else return x

If the kernel k and the rejection rate ρ are correctly chosen, then abstractMH is a bona fide inference
transformation. The mathematical justification for this fact is the Metropolis-Hastings-Green
theorem.

Choosing a proposal kernel and rejection rate that would work for all types a is a tall order. Instead,
the Trace MCMC family of algorithms replaces these types with traces through the probabilistic
model we want to infer. For a concrete example, consider the sprinkler model from the introduction.
The trace would contain the values sampled for the variables rain and sprinkler. The Trace MCMC
algorithm maintains a distribution over such traces, using a suitable proposal kernel to generate a
new trace through the model.

Here, we take traces to be lists of real numbers [R] from the unit interval [0, 1], each corresponding
to one invocation of random in the program. For example, in the sprinkler model a trace [0.15, 0.5]

would correspond to rain = True and sprinkler = False, while [0.3, 0.05] would correspond to
rain = False and sprinkler = True.

If the variable names in the program are globally unique, we could have a record where each field
corresponds to the random variable with the same name. However, in a general model, samples
may be nested in complicated control flow. Wingate et al. [2011] devised a popular method for
tagging random choices in the program based on the context in which they are executed. The
random choices stored in the trace are often augmented with additional information such as the
distribution they were drawn from or some control flow information extracted from the program
[Mansinghka et al. 2014]. These sophisticated representations of traces can improve the statistical
efficiency of MCMC algorithms. They are compatible with the design we present in this paper but
we refrain from using them for simplicity. We believe that the static analysis community has good
general representations of program traces to offer to the probabilistic programming community.

A traced inference representation consists of two components, one being the trace and the other
a representation that can run the full program with a modified trace. There are multiple possible
ways to combine these two components, which trade off computational efficiency for flexibility.
Below we present a sequence of Tr datatypes, each more expressive than the previous in a sense of
allowing additional inference transformations, but less computationally efficient in cases where

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:13

the additional flexibility is not required. The first one was originally presented by Ścibior et al.
[2018], while the subsequent ones are novel extensions of it. We expect the additional inference
transformations associated with these extensions to be correct, although we have not proven that
in the framework of Ścibior et al. [2018].

3.2.1 Full Tracing of the Whole Program. We begin with the most straightforward construction
that allows our basic modular implementation [Ścibior et al. 2018] of the Trace Metropolis-Hastings
algorithm. It consists of a weighted free monad over random and a computation generating a trace
in the transformed inference representation. For efficiency we use the Church-encoded version of
the free monad from the package free3, that is F f = forall r. (a → r) → (f r → r) → r.

-- sampling functor

newtype SamF a = Random (R→ a)

data Tr m a = Tr (W (F SamF) a)

(m ([R], a))

traceDist (Tr m d) = d

marginal :: Monad m ⇒ Tr m a→ m a

marginal (Tr m d) = fmap snd d

instance Monad m ⇒ Monad (Tr m) where

return x = Tr (return x)

(return ([],x))

(Tr mx dx) >>= f = Tr my dy where

my = mx >>= model . f

dy = do

(us, x) ← dx

(vs, y) ← traceDist (f x)

return (us <> vs, y)

instance MonadSample m ⇒
MonadSample (Tr m) where

random =

Tr random

(fmap (\u→ ([u],u)) random)

instance MonadCond m ⇒
MonadCond (Tr m) where

score w = Tr (score w)

(score w >> pure ([] ,()))

hoistT :: (forall x. m x→ m x)

→ Tr m a→ Tr m a

hoistT f (Tr m d) = Tr m (f d)

mhStep :: MonadSample m ⇒ Tr m a→ Tr m a

mh :: MonadSample m ⇒
Int → Tr m a→ m [a]

For efficiency we store the output of the program along with the trace. The implementation of
mhStep follows the structure of abstractMH above, suitably instantiated for traces. We emphasise that
Tr is not an instance of MonadTrans since it does not allow for computation in m to be lifted to Tr m.
For reasoning, the semantic function of Tr is defined in terms of marginal, which marginalises the
trace and the model, leaving only the return value:

µTr m(c) := µm(marginal c)
The inference transformation mhStep performs a single step of the Trace MH algorithm updating

the trace but leaving the program unchanged. Specifically, a new trace is proposed by taking the
old trace and randomly modifying one of the random variables in it, selected again at random.
Since the number of random variables used in the program can vary dynamically, the length of
the new trace is adjusted to match the length required by the program. If the trace is too long it is
truncated, if it is too short it is extended with freshly sampled values. This adjustment requires
a pass through the program so at the same time we compute the likelihood associated with the
adjusted trace. Finally, based on the ratio of likelihoods, as well as some correcting factors [Wingate
et al. 2011], we compute the probability of accepting the new trace. With that probability we retain
the proposed trace, otherwise we keep the old one.
Repeating this procedure multiple times defines a Markov process on the space of execution

traces, which constitutes the Trace MH algorithm. It is available in our library as the mh inference

3http://hackage.haskell.org/package/free

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.

http://hackage.haskell.org/package/free


83:14 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

transformation. However, the basic building block is mhStep, forming a component of larger inference
algorithms such as the resample-move SMC in Section 4.1.

The efficiency of MH crucially depends on the choice of the proposal kernel. Our library uses as
a default the single-site kernel sampling from the prior as proposed by Wingate et al. [2011].

3.2.2 Partial Tracing of the Whole Program. The construction presented above is suitable if all
random variables in the program are subject to the Trace MH updates. This is not the case in the
family of inference algorithms known as pseudo-marginal MH, where only a subset of variables is
updated using MH and the remaining ones are marginalized using another inference algorithm.
This marginalization is usually performed approximately using importance sampling. This is the
case for all the algorithms we present in this paper, but the marginalization could also be done with
enumeration or a different inference algorithm.

To enable pseudo-marginal MH methods we extend the construction above by replacing the free
monad with a free monad transformer applied to m. This transformer enables us to lift computations
in m into Tr m, which is not possible with the previous construction. In Haskell this change means
Tr becomes an instance of the MonadTrans class. The variables in computations lifted from m are
then marginalized by m as far as Trace MH is concerned while the ones created in Tr m are subject
to Trace MH updates. In Section 4.2 we present a concrete pseudo-marginal inference algorithm
constructed in this fashion.

data Tr m a = Tr (W (FT SamF m) a)

(m ([R], a))

instance MonadTrans Tr where

lift m = Tr (lift $ lift m)

(fmap (\x→ ([],x)) m)

Note that we define lift in such a way that the lifted random variables are resampled at every
mhStep. If we only included m in the second component of Tr and not the first, they would be fixed
throughout MH updates. While that is also potentially useful, this is not what pseudo-marginal
MH requires so we do not pursue this possibility here. We do not show code for the remaining
instances and transformations since it is exactly the same as for the version above.

3.2.3 Partial Tracing of Program Fragments. In certain situations it is desirable to freeze the
values of random variables using the contents of the current trace. This is useful when we know
we will not update them any more but still want to keep the Tr structure for the random variables
that come later. We present a concrete use case for this operation in Section 4.1.

-- sampling functor

newtype SamF a = Random (R→ a)

-- withTrace runs the program using

-- the trace

withTrace :: [R]→ FT SamF m a→ m a

discardWeight :: W m a→ m a

data Tr m a = Tr (m (W (FT SamF m) a,

([R], a)))

runTr (Tr c) = c

marginal :: Monad m ⇒ Tr m a→ m a

marginal = fmap (snd . snd) . runTr

instance Monad m ⇒ Monad (Tr m) where

return x = Tr (return (return x,

([],x)))

(Tr cx) >>= f = Tr $ do

(mx, (tx, x)) ← cx

let m = mx >>=

join . lift . lift .

fmap fst . runTr . f

(_, (ty, y)) ← runTr $ f x

let t = tx ++ ty

return (m, (t, y))

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:15

instance MonadTrans Tr where

lift m = Tr $ fmap

(\x→ (lift $ lift m, ([],x))) m

instance MonadSample m ⇒
MonadSample (Tr m) where

random = Tr $ fmap

(\u→ (random , ([u], u))) random

hoistT :: (forall x. m x→ m x)

→ Tr m a→ Tr m a

hoistT f (Tr c) = Tr (f c)

instance MonadCond m ⇒
MonadCond (Tr m) where

score w = Tr $ fmap

(\x→ (score w, x))

(score w >> return ([] ,()))

freeze :: Monad m ⇒ Tr m a→ Tr m a

freeze (Tr c) = Tr $ do

(_, (_, x)) ← c

return (return x, ([], x))

The only difference from the previous construction is that we pushed the weighted free monad
into m, which lets us implement the freeze inference transformation that commits to values stored
in the current trace. This is useful if we later extend the program and do not want to update values
for some variables anymore. We use it in Section 4.1 to obtain an efficient variant of resample-move
SMC.
This implementation is strictly more expressive than the previous two so in principle it could

be used instead of them. It is also significantly less computationally efficient due to the additional
abstraction layers. We therefore prefer the previous constructions of Tr whenever possible.

4 COMPOUND INFERENCE ALGORITHMS

We demonstrate how to build sophisticated inference algorithms by combining MH and SMC in
different ways. We implement these algorithms by composing specific inference transformations,
each of which is defined for a particular transformer. The implementation of resample-move SMC
below follows the construction of Ścibior et al. [2018], while the other implementations are novel.
We adhere fully to the inference representation interface, and only compose the basic inference
transformations and their hoistings, maintaining the inference representation abstraction. Our
library is the first probabilistic programming system that supports this level of compositionality.

4.1 Resample-Move SMC

A common problem with particle filters is that of particle degeneracy, where after resampling
many particles are the same, effectively reducing the sample size. One way to ameliorate this
problem is to introduce rejuvenation moves, where after each resampling we apply a number of
MCMC transitions to each particle independently, thus spreading them around the space. If we
use an MCMC kernel that preserves the target distribution at a given step, the resulting algorithm
is correct. This algorithm is known as the resample-move SMC (RM-SMC) and was originally
introduced by Gilks and Berzuini [2001].

To implement RM-SMC we use the stack Seq Tr Pop. Inlining the types, a program is interpreted
as a population of traced coroutines. It allows us to apply MH transitions to partially executed
coroutines, which is exactly what we require for the rejuvenation steps. The implementation of
resample-move SMC is similar to that of SMC, with the introduction of mhStep.

rmsmc :: MonadSample m ⇒ Int → Int → Int →
Seq (Tr (Pop m)) a→ Pop m a

rmsmc k n t = marginal . finish .

compose k (advance . hoistS (

compose t mhStep . hoistT resample )) .

(hoistS . hoistT) (spawn n >>)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:16 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

In the above t is the number of MH transitions to be applied after each resampling step.
The version of RM-SMC presented above is computationally intensive. In some models it is better

to restrict the rejuvenation transitions to the subset of random variables introduced since the last
resampling. We can accomplish that using the freeze transformation from Section 3.2.

rmsmcLocal :: MonadSample m ⇒ Int → Int → Int →
Seq (Tr (Pop m)) a→ Pop m a

rmsmcLocal k n t = marginal . finish .

compose k (advance . hoistS ( freeze .

compose t mhStep . hoistT resample )) .

(hoistS . hoistT) (spawn n >>)

4.2 Particle Marginal MH

RM-SMC uses the MH update inside SMC. An alternative composition is to use SMC inside an
MH update. A particular instance is the algorithm called Particle Marginal Metropolis-Hastings
(PMMH) [Andrieu et al. 2010], a pseudo-marginal MH algorithm that uses SMC to approximately
integrate over the latent variables in the model. It is primarily used for parameter estimation in
time series models.
PMMH is only applicable to models with a specific structure, namely the probabilistic pro-

gram needs to decompose to a prior over the global parameters m param and the rest of the model
param → m a. Combining these using >>= would yield the complete model of type m a. For example,
the random walk model from Section 2.1 would be decomposed as follows:

s :: MonadSample m ⇒ m R

s = gamma 1 1

random_walk ' :: MonadInfer m ⇒ [R]→ R→ m [R]

random_walk ' ys s = do

let obs x y = score (normalPdf x 1 y)

let expand xs [] = return xs

expand (x:xs) (y:ys) = do

x' ← normal x s

obs x' y

expand (x':x:xs) ys

xs ← expand [0] ys

return (reverse xs)

The idea is to do MH on the parameters of the model. Recall that for MH we need to compute the
likelihood for the particular values of parameters but that involves integrating over the remaining
random variables in the model which is intractable. Fortunately to obtain valid MH it is sufficient
to have an unbiased estimator for the likelihood which is produced by a single sample from W. MH
with such an estimator is referred to as pseudo-marginal MH. If instead of taking a single weight
from W we take the sum of weights from Pop we obtain an unbiased estimator with lower variance.
In particular if such a Pop is a result of smc the resulting algorithm is known as PMMH.
The full implementation of PMMH is then as follows:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:17

pmmh :: MonadInfer m

⇒ Int ------------- -- t: number of MH steps

→ Int ------------- -- k: number of time steps

→ Int ------------- -- n: number of particles

→ Tr m b -- param: model parameters prior

→ (b→ Seq (Pop m) a) -- model

→ m [[(a, Log R)]] -- result

pmmh t k n param model =

mh t (param >>= runPopulation . pushEvidence .

hoistP lift . smc k n . model)

The code above can be read as follows. First it applies SMC to the model and lifts the entire SMC
computation through Tr. Then it scores the sum of weights in Tr and keeps the population as the
output. This preprocessed computation is combined with the prior on parameters. Running mh then
produces exactly the desired algorithm, since the only score in Tr is the sum of weights from the
population.

4.3 SMC2

The final inference algorithm we discuss, proposed by Chopin et al. [2013], can be regarded as
a hybrid of resample-move SMC and PMMH approaches and is used for joint estimation of the
posterior over parameters and latent variables in state-space models. It features an outer population
of particles, much like RM-SMC, each of which holds different values for the parameters. These
particles are filtered through observations using resampling and MH-based rejuvenation where
appropriate. However, like in PMMH, these MH transitions do not use exact densities but rather
estimators obtained from an inner particle filter over the latent variables. The two particle filters
are synchronised in the sense that they step through the same observations simultaneously.

Like PMMH, SMC2 is only applicable to programs separable into the prior over parameters and
the rest of the model. Furthermore, for SMC2 we need a variant of smc that performs pushEvidence

after each step. We call it smcPush and its implementation is almost identical to smc.

smcPush :: MonadInfer m ⇒
Int → Int → Seq (Pop m) a→ Pop m a

smcPush k n =

finish . compose k (advance .

hoistS (pushEvidence . resample )) .

hoistS (spawn n >>)

We want to instantiate m to Seq (Tr (Pop Sampler)) and run rmsmc on it. Unfortunately doing that
naively has the unintended consequence that the random variables from model end up being traced
which is not what we want. To remedy this situation we introduce a type synonym that performs
the necessary lifting.

newtype SMC2 m a = SMC2 (Seq (Tr (Pop m)) a)

deriving(Monad)

setup (SMC2 m) = m

instance MonadTrans SMC2 where

lift = SMC2 . lift . lift . lift

instance MonadSample m ⇒ MonadSample (SMC2 m) where

random = lift random

instance MonadCond m ⇒ MonadCond (SMC2 m) where

score = SMC2 . score

The SMC2 synonym thus ensures that the random variables bypass the transformers that need not
be concerned with them. We can then complete the SMC2 implementation as follows.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:18 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

sm c2 :: MonadSample m

⇒ Int ------------------------ -- k: number of time steps

→ Int ------------------------ -- n: number of inner particles

→ Int ------------------------ -- p: number of outer particles

→ Int -- t: number of MH transitions

→ Seq (Tr (Pop m)) b -- param: model parameters

→ ( b→ Seq (Pop (SMC2 m)) a) -- model

→ Pop m [(a, Log R)]

sm c2 k n p t param model =

rmsmc k p t (param >>= setup . runPopulation .

smcPush k n . model)

Our framework allows more complicated compositions of similar kind, for example using RM-
SMCwithin SMC2 or introducing two types of parameters with varying scope. Their implementation
would be analogous to the examples presented above.

5 EVALUATION

To evaluate our architecture, we compare with state-of-the-art probabilistic programming systems
Anglican [Wood et al. 2014] and WebPPL [Goodman and Stuhlmüller 2014] since they implement
similar inference algorithms and their front-end languages are extensions of popular programming
languages, Clojure and Javascript respectively.

Benchmarks. To check if there is a significant overhead associated with the abstractions we
compare execution times on a set of popular benchmarks [Tolpin et al. 2015]. The models we use
are logistic regression (LR), hidden Markov model (HMM), and a latent Dirichlet allocation (LDA).
Each of these models has a parameter that controls the size of the dataset, namely the number of
labelled examples for LR, sequence length for the HMM, and document length for LDA. We run the
inference algorithms SMC, MH, and RM-SMC from Sections 2 and 4 on these models comparing
execution times. For RM-SMCwe use the rmsmcLocal and compare it with the correspondingWebPPL
implementation. We do not compare Anglican here since it currently does not implement RM-SMC.

5.1 Quantitative Evaluation

Figure 3 shows how execution time scales with the size of the dataset. It shows that the cost of
both MH and SMC increases linearly with model size in each implementation as expected. The
plots show that Anglican and WebPPL have a noticeable starting overhead compared to our library.
We expect this overhead to stem from just-in-time compilation in the Java and NodeJS virtual
machines.
The slopes of each line are a measure of the time needed to incorporate an additional data

point, with steeper slopes corresponding to higher cost. The slopes for different systems are
model-dependent and we attribute these differences to a variety of factors, such as differences in:
the data structures used in the model; the pseudo-random number generators; and performance
characteristics of the host language.
For RM-SMC our implementation scales linearly with dataset size while WebPPL appears to

scale quadratically. We suspect this is due to WebPPL implementation traversing the whole trace at
MH updates, even though only a fixed number of variables at the end are candidates for updates.
We avoid this issue using the freeze transformation and achieve linear scaling.

Figure 4 shows how execution times scale with the number of samples produced or the number of
MH transitions performed. In all cases the scaling is linear as expected. For MH and SMC the slopes
of all lines for the three systems are similar which indicates that the cost of an additional sample is
similar, although Anglican and WebPPL again suffer from some initial overhead. For RM-SMC the

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:19

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n 
tim

e 
[s

]

MH100

LR

0 200 400 600 800 1000
0

1

2

3
SMC100

0 200 400 600 800 1000
0.0

2.5

5.0

7.5

10.0

RMSMC10-1

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n 
tim

e 
[s

]

HMM

0 200 400 600 800 1000
0

1

2

3

0 200 400 600 800 1000
0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000 2500
Dataset size

0

1

2

3

4

Ex
ec

ut
io

n 
tim

e 
[s

]

LDA

0 500 1000 1500 2000 2500
Dataset size

0

2

4

6

8

10

0 500 1000 1500 2000 2500
Dataset size

0

20

40

60

80

MonadBayes
Anglican
WebPPL

Fig. 3. Execution times of inference algorithms with varying dataset size. The numbers in the algorithm
description indicate the parameters used. For MH we used 100 transitions, for SMC 100 particles, and for
RM-SMC 10 particles and 1 rejuvenation step per particle per resampling step. The dataset size is the number
of observations in LR and HMM and the total number of words in all documents in LDA.

Table 1. Net addition of Lines of Code (LoC), excluding comments and import statements. The entry łN/Až
means that an algorithm is not available in a given language.

MH SMC RM-SMC PMMH SMC2

MonadBayes 67 70 11 4 20
Anglican 100 87 N/A N/A N/A
WebPPL 314 334 0 N/A N/A

slope of the line associated with our library is significantly higher than for WebPPL. We speculate
the cause to be that each mhStep in our library goes through the Pop layer while WebPPL only does
it once per rejuvenation sequence. We leave reducing that overhead for future work.

5.2 Qualitative Evaluation

To estimate the implementation effort involved in writing the inference algorithms, Table 1 lists
the number of lines of code (LoC) used for this purpose in the three systems. Although LoC are
not a reliable metric, particularly comparing across languages, they do offer some estimation of
the implementation effort. WebPPL requires no additional lines to implement RM-SMC because it
implements SMC as a special case of RM-SMC with zero rejuvenation steps. The figure shows that
our modular implementation of MH and SMC is actually shorter than monolithic implementations

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:20 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

200 400 600 800 1000
0.0

0.5

1.0

1.5

Ex
ec

ut
io

n 
tim

e 
[s

]

MH

LR50

200 400 600 800 1000
0

1

2

3
SMC

20 40 60 80 100

2

4

6

8

RMSMC10

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

Ex
ec

ut
io

n 
tim

e 
[s

]

HMM20

200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

1.25

20 40 60 80 100

2

4

6

200 400 600 800 1000
Number of steps

0.25

0.50

0.75

1.00

1.25

Ex
ec

ut
io

n 
tim

e 
[s

]

LDA50

200 400 600 800 1000
Number of particles

0

1

2

3

4

20 40 60 80 100
Number of rejuvenation steps

5

10

15

MonadBayes
Anglican
WebPPL

Fig. 4. Execution times of inference algorithms with varying sample size. The numbers after model names
are the sizes of the datasets used. The number 10 in RMSMC10 indicates that we used 10 particles and only
varied the number of rejuvenation steps. The X axis for RMSMC shows the number of rejuvenation steps
applied per particle after each resampling operation.

in Anglican and WebPPL. Neither of these systems implements PMMH or SMC2 which would
involve substantial effort while they are short snippets of code in our library. We can expect
this difference to become more and more pronounced as we continue to build complex inference
algorithms from smaller and reusable building blocks.

Apart from the reduced number of LoC, our architecture makes the code more reliable, maintain-
able, and malleable for reasoning as it is close to Ścibior et al.’s semantic validation of inference 2018.
In the next section, we also argue that our architecture enables modular testing. We expect these
features to reduce the number of bugs in implementations and ease refactoring.
Finally, we profiled our implementation on these benchmarks to investigate the bottlenecks

and suggest optimisations. The insights from profiling has lead us to two optimisations. First, we
replaced WriterT with StateT in W, then we switched to a Church-encoded version of the free monad
in Tr. We report the benchmark results after applying those optimisations. Profiling the final code
reveals that a substantial amount of time, up to 90% depending on the benchmark, is spent on
the overhead associated with inference representations and not on doing essential numeric work.
The biggest offenders seem to be the Pop and W transformers. We hope that this overhead could
be further reduced by suitable techniques but we do not see a clear way to do it. We include the
profiler outputs in the supplementary material.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:21

6 TESTING

An important benefit of the modular implementation is enhanced testing capabilities. Every infer-
ence transformation can be tested independently and the correctness of their composition follows
from correctness of individual components. Furthermore, in certain circumstances it is possible to
replace statistical tests with deterministic ones.

A standard approach to test an algorithm implementation is to compare with a reference imple-
mentation, less efficient but clearly correct, on a set of small examples. In the context of Bayesian
inference we can use exact enumeration of a small discrete model like the sprinkler model from
the introduction. Unfortunately, probabilistic algorithms only give approximate answers that can
be arbitrarily bad with non-zero probability. We can therefore never be sure if the answers they
provide are correct, and any statistical test is bound to produce both false positive and false negative
results.
In our library we can perform deterministic tests of Monte Carlo methods by replacing the

bottom monad Sampler with Exact that computes exact answers for discrete models. It is defined as
follows, omitting conversions between R and Log R:

newtype Exact a = Exact {run :: [(a, Log R)]}

instance Monad Exact where

return x = Exact [(x,1)]

m >>= f = Exact

[(y, p*q) | (x,p) ← run m, (y,q) ← run (f x)]

instance MonadSample Exact where

random = error "Not␣available"

bernoulli p = Exact [(True , p), (False , 1-p)]

instance MonadCond Exact where

score w = Exact [((),w)]

normalForm :: Ord a ⇒ Exact a→ [(a, Log R)]

-- sort , aggregate , and remove zeros

The function normalForm sorts the list according to the return values, the first components, aggre-
gates weights of equal elements, and removes elements with zero weight. It allows us to compare
distributions represented by lists for equality.
Any correct inference transformation should not alter the result of Exact. For example, if ~== is

an acceptable approximate floating-point equality, then we can write a deterministic test for smc as
follows:

(normalForm . (>>= Exact) . runPopulation . smc 2 2)

sprinkler ~== normalForm sprinkler

Our implementation of traces as [R] is fundamentally continuous so it does not work with Exact.
However, a more elaborate trace type that distinguishes between continuous and discrete variables
would enable us to write similar tests for mhStep.

Deterministic tests of the kind described above are limited in that they can only be applied to
small discrete models and only verify certain aspects of correctness. In particular for SMC it only
checks that the result is unbiased but not that it is consistent. Similarly a test for MH would only
check that it preserves the posterior distribution but not that it converges to it. Nonetheless, we
found those tests to be invaluable in practice. For example, if we forgot to preserve the total weight
in resample, such a bug would quickly be caught by the test shown above.

7 OCAML IMPLEMENTATION

In the previous sections we present our design as a Haskell library, but the architecture is more
generally applicable to languages with advanced functional programming features, in particular

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:22 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

higher-order functions and inductive types. In statically typed languages we also require a suf-
ficiently expressive type system that allows the high degree of polymorphism exploited in our
design.
While the Haskell implementation is particularly elegant due to the availability of type-classes

and higher-kinded polymorphism, these features are not strictly required to enjoy the benefits of
modularity that our approach provides. To support this claim we sketch in this section an OCaml
implementation that relies on the module system instead. This is currently a proof-of-concept work
that shows how to port the key design patterns from the Haskell implementation, but we plan to
eventually turn it into a complete probabilistic programming library.
We restrict ourselves to standard OCaml features although extensions such as modular implic-

its [White et al. 2015] would potentially make the implementation cleaner. Most of the Haskell
features we used can be simulated with modules and functors, with the addition of custom record
types to encode rank 2 types.

Module signatures replace the three type-classes we used in Haskell for inference representations,
namely Monad, MonadSample, and MonadInfer. Since these type-classes extend one another we can simply
include the relevant signatures.

module type Monad = sig

type α t

val return : α -> α t

val (>>=) : α t -> (α -> β t) -> β t

type nt (* natural transformation *)

val apply : nt -> α t -> α t

end

module type MonadSample = sig

include Monad

val random : float t

end

module type MonadInfer = sig

include MonadSample

val score : float -> unit t

end

The type nt is a custom record wrapping the type α. α t -> αt. We use it to represent inference
transformations that maintain the representation type. This is necessary because only rank 2
functions that quantify over all α can be hoisted through inference transformers without breaking
the abstractions.
We implement the inference representation Sampler as a concrete module. Since OCaml allows

mutable state natively, the underlying type is just a thunk generating a value using a global random
number generator. This type is exposed using the with annotation to enable the sampler to be
executed by external code.

module Sampler : MonadSample with type α t = unit -> α =

struct

type α t = unit -> α

let return x = fun () -> x

let (>>=) s f = fun () -> f (s()) ()

type nt = {f : α. α t -> α t}

let apply tau m = tau.f m

let random = fun () -> Random.float 1.0

end

Inference transformers are implemented as functors over an abstract MonadInfer module. The
functor contains a module representing an inference representation obtained by applying the
transformer as well as any associated inference transformations. Inference transformations are
represented as natural transformations when they do not modify the inference stack and as functions

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:23

when they do. Note that this means only the former can be hoisted, although we could introduce
an additional module type for the latter to make them rank 2 as well.
The population transformer is implemented as follows.

module type MonadPop = sig

module Pop : MonadInfer

type α m (* transformed

representation *)

type h (* natural transformation

for m *)

val lift : α m -> α Pop.t

val hoist : h -> Pop.nt

val run : α

Pop.t -> (α * float) list m

val spawn : int -> Pop.nt

val resample : Pop.nt

end

module Population (M : MonadSample) : MonadPop

with type h = M.nt with type α m = α

M.t =

struct

type α p = (α * float) list M.t

type np = {f : α. α p -> α p}

module Pop : MonadInfer

with type α t = α p

with type nt = np =

struct

(* ... *)

end

type α m = α M.t

type h = M.nt

(* ... *)

end

We can similarly implement the suspension transformer.

module type MonadSeq = sig

module Seq : MonadInfer

type α m

type h

val lift : α m -> α Seq.t

val hoist : h -> Seq.nt

val advance : Seq.nt

val finish : α Seq.t -> α m

end

module Sequential (M : MonadInfer) : MonadSeq

with type h = M.nt with type α m = α

M.t =

struct

type (α, β) either = Left of α

| Right of β

type α seq = Seq of (α, unit -> α

seq) either M.t

type ns = {f : α. α seq -> α seq}

type α t = α seq

module Seq : MonadInfer

with type α t = α seq

with type nt = ns =

struct

(* ... *)

end

type α m = α M.t

type h = M.nt

(* ... *)

end

Compound inference transformations are implemented as separate modules. As a concrete exam-
ple we implement SMC as a functor parameterized by the underlying inference representation. The
SMC module contains two MonadInfer modules called In and Out, representing input and output infer-
ence representation types respectively. It also specifies a type for parameters to the algorithm and
a function to apply the inference transformation. Other inference algorithms can be implemented
as modules with the same type.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:24 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

type smcparam = {steps : int; particles : int}

module SMC (M : MonadSample) : sig

module In : MonadInfer

module Out : MonadInfer

type param

val apply : param -> α In.t -> α Out.t

end

with type param = smcparam

with module Out = Population(M).Pop =

struct

module P = Population(M)

module S = Sequential(P.Pop)

module In = S.Seq

module Out = P.Pop

type param = smcparam

let rec applyN n f x =

if n == 0 then

x

else

applyN (n-1) f (f x)

let apply {steps = k; particles = n} (model) =

S.finish (applyN k (fun x -> S.Seq.apply S.advance

(S.Seq.apply (S.hoist P.resample) x))

(S.Seq.apply (S.hoist (P.spawn n)) model))

end

Finally, we implement models as functors parameterized over inference representations. The
module signature is as follows.

module type Model = sig

type α m

type output

val model : output m

end

The sprinkler example from the introduction would then be implemented as follows. Since
OCaml does not have "do" syntax, we use >>= explicitly.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:25

module Sprinkler (M : MonadInfer) : Model

with type α m = α M.t with type output = bool =

struct

type α m = α M.t

type output = bool

open M

let bernoulli p = random >>= fun x -> return (x < p)

let model =

bernoulli 0.2 >>= fun rain ->

bernoulli 0.1 >>= fun sprinkler ->

let prob_lawn_wet =

match (rain , sprinkler) with

| (true , true ) -> 0.99

| (true , false) -> 0.70

| (false , true ) -> 0.90

| (false , false) -> 0.01

in

score prob_lawn_wet >>= fun () ->

return rain

end

To run the inference we simply need to instantiate the relevant modules.

module Alg = SMC(Sampler)

module Mod = Sprinkler(Alg.In)

module Out = Population(Sampler)

let sampler = Out.run (Alg.apply {steps = 1; particles = 3} Mod.model)

let results : (bool * float) list = sampler ()

8 RELATED WORK

The two approaches most related to ours are those of Ścibior et al. [2015] and Zinkov and Shan
[2017]. Both of these compose inference algorithms as deterministic transformations of probabilistic
programs. Ścibior et al. [2015] use an intermediate free monad representation that abstracts over
deterministic parts of the program. While this representation allows them to compose inference
transformations, using a fixed intermediate representation does not allow them the degree of
flexibility equivalent to our transformers and as a result they can not implement algorithms such as
RM-SMC, PMMH, or SMC2. By constrast, Zinkov and Shan [2017] apply transformations directly
to Hakaru source code. They target a different set of inference transformations than us, focusing
on symbolic integration and designing custom MH kernels. Their approach is complementary to
ours and we can envision applying their transformations to simplify the program before running
one of our algorithms on it.
An alternative approach to composing inference algorithms is to explicitly construct a graph

of random variables in the model and apply different algorithms to different regions of the graph.
A standard example is the EM algorithm [Dempster et al. 1977], which can be implemented in
a compositional manner as is done in systems such as Figaro [Pfeffer 2015] and Edward [Tran
et al. 2017]. Other common uses of such compositions are custom MCMC algorithms combining
different proposal kernels for different random variables, such as in PyMC [Patil et al. 2010], or
message-passing algorithms that can be regarded as compositions of local inferences, such as in
Infer.NET [Minka et al. 2014]. These types of compositions are also mostly orthogonal to the types
we discuss in this paper.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



83:26 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

Finally, we mentioned in Section 3.2 that more sophisticated representations of traces of proba-
bilistic programs can improve efficiency of inference. In the context of MH the main benefit is the
ability to better align random variables in different traces, as described by Wingate et al. [2011].
Ritchie et al. [2016] further describe how some of the computation involved is redundant and can
be avoided. Mansinghka et al. [2014] retain the whole program structure in a trace and show how it
can be used to incorporate custom extensions in the inference algorithms. All of these approaches
can be used in conjunction with our implementation technique.

9 DISCUSSION AND FUTURE WORK

In this paper we presented a Haskell library for probabilistic programming that enables modular
construction of inference algorithms through standard functional programming techniques.
The use of Haskell was convenient, as we could reuse the existing support for monads and

their transformers for inference representations. However, the same design ports to other modern
functional languages that contain higher-order functions and inductive types. In the absence of
a type-class mechanism, one can use ML-style modules: users construct models abstractly with
respect to a module signature containing random and score. Each inference representation is a module
implementing this signature, and inference transformers are functors.
We have achieved performance comparable with existing probabilistic programming libraries

available in general-purpose languages, although profiling shows there remains a significant
overhead associated with the abstractions we use. While the convenience of a high-level language
may in many cases already be worth reduced performance, additional work on minimising this
overhead would make our approach and probabilistic programming in general even more practical.

Another source of improvement to the Tr representation consists of better trace representations.
These include recording information flow dependencies, or limiting the variables that can be
resampled. We hypothesise that many of the abstractions and representations from static analysis
could lead to optimised representations. A better trace representation could also allow us to define
more efficient MCMC kernels, either generically or on a per-model basis. Although we did not
address this issue here, selecting good kernels is crucial for good performance of MCMC.
An alternative approach to embedding probabilistic programs in existing languages is to use

a stand-alone DSL for constructing models, such as used in Stan [Carpenter et al. 2017] and
LibBi [Murray 2013]. Such representations avoid the overheads discussed above and as a result can
be used to generate computationally efficient inference code. It would be interesting to investigate
if the approach we described here could be used to build modular compilers for such languages
without sacrificing their efficiency. The idea to use monad transformers to build compilers in a
modular fashion has been previously explored by Liang and Hudak [1996].

Many modern algorithms for Bayesian inference, such as Hamiltonian Monte Carlo [Neal 2010]
and black-box variational inference [Ranganath et al. 2014] rely on gradient information that
can be obtained by methods of automatic differentiation. Inclusion of these methods can make a
probabilistic programming system dramatically more practical as demonstrated by the success of
Stan. We could incorporate these algorithms into our framework, the only obstacle being availability
of a suitable automatic differentiation library. We have experimented with the ad library in Haskell
but the resulting types were so complicated that we did not find the results satisfactory, although
it did work. We hope that a more clever implementation hiding type-level complexities or an
alternative automatic differentiation package will unlock the power of gradient-based inference
algorithms for our library.

Finally, modern machine learning, especially in the context of big data, increasingly makes use
of dedicated numerical libraries for efficiently performing matrix operations, including automatic
differentiation, on GPUs. Currently the most popular choices are Tensorflow [Abadi et al. 2015]

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.



Functional Programming for Modular Bayesian Inference 83:27

and PyTorch4. Probabilistic programming systems such as Edward [Tran et al. 2017] and Pyro5

exploit these libraries to deliver massive performance boosts. For example, Tran et al. [2017] report
that Hamiltonian Monte Carlo in Edward is more than an order of magnitude faster than in Stan.
Taking advantage of such libraries could therefore greatly improve computational efficiency of
inference.

Currently, PyTorch is only available in Python and existing Tensorflow bindings for Haskell and
OCaml are not supported officially. There are several alternatives written directly in functional
programming languages that cover all the core features required although they presently do not
easily combine. For example, the Haskell library Accelerate [Chakravarty et al. 2011] supports
efficienct matrix computation on CPUs and GPUs, but there is no automatic differentiation library
built on top of it. On the other hand a recently released Owl library [Wang 2017] for OCaml
offers efficient matrix operations and automatic differentiation, but currently only emits CPU code.
Since all the components are already there, it is simply a matter of investing sufficient developer
time to create a natively functional numerical library for modern machine learning. We believe
that in the near future such libraries, whether implemented from scratch in functional languages
or as convenient bindings to imperative libraries, will make functional programming a serious
player in the area of machine learning in general and probabilistic programming in particular. We
hope that the constructions presented in this paper will help bring the modularity and reliability
often associated with functional programming into the realm of state-of-the-art machine learning
applications.

ACKNOWLEDGMENTS

Supported by the Engineering and Physical Sciences Research Council grant EP/N007387/1 ‘Quan-
tum computation as a programming language’, and a Balliol College Oxford Career Development
Fellowship. We thank David Tolpin for providing Anglican and WebPPL scripts we used for bench-
marking and Jeremy Yallop for his help with using the OCaml type system. We also thank Rob
Zinkov and the anonymous reviewers for providing us valuable feedback.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015).
https://www.tensorflow.org/ Software available from tensorflow.org.

Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy. 2011. Noncomputable Conditional Distributions. In LiCS.
http://ieeexplore.ieee.org/document/5970208/

Chrisophe Andrieu, Arnaud Doucet, and Roman Holenstein. 2010. Particle Markov chain Monte Carlo methods. Journal of
the Royal Statistical Society 72 (2010), 269ś342. www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf

David Barber. 2012. Bayesian Reasoning and Machine Learning. Cambridge University Press. https://doi.org/10.1017/
CBO9780511804779

Christopher Bishop. 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York. http://www.springer.com/
gb/book/9780387310732

Mario Blažević. 2011. Coroutine Pipelines. The Monad Reader (2011), 29ś50. Issue 19.
Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2009. Finally tagless, partially evaluated: Tagless staged inter-

preters for simpler typed languages. Journal of Functional Programming 19, 5 (2009), 509ś543. https://doi.org/10.1017/
S0956796809007205

4https://github.com/pytorch
5http://pyro.ai/

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.

https://www.tensorflow.org/
http://ieeexplore.ieee.org/document/5970208/
www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf
https://doi.org/10.1017/CBO9780511804779
https://doi.org/10.1017/CBO9780511804779
http://www.springer.com/gb/book/9780387310732
http://www.springer.com/gb/book/9780387310732
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://github.com/pytorch
http://pyro.ai/


83:28 Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. Journal of Statistical Software
76 (2017).

Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011. Accelerating Haskell
Array Codes with Multicore GPUs. In DAMP.

Nicolas Chopin, Pierre E. Jacob, and Omiros Papaspiliopoulos. 2013. SMC2: an efficient algorithm for sequential analysis of
state space models. Journal of the Royal Statistical Society Series B: Statistical Methodology 75 (2013), 397ś426. Issue 3.
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2012.01046.x/abstract

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream fusion: from lists to streams to nothing at all. In
Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP 2007, Freiburg, Germany,

October 1-3, 2007, Ralf Hinze and Norman Ramsey (Eds.). ACM, 315ś326. https://doi.org/10.1145/1291151.1291199
Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. 1977. Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society Series B: Statistical Methodology 39 (1977), 1ś38. Issue 1. https:
//mathscinet.ams.org/mathscinet-getitem?mr=0501537

Arnaud Doucet and Adam M. Johansen. 2011. A Tutorial on Particle Filtering and Smoothing: Fifteen years later. In The

Oxford Handbook of Nonlinear Filtering, Dan Crisan and Boris Rozovskii (Eds.). Oxford University Press, Chapter 8.
Walter Gilks and Carlo Berzuini. 2001. Following a moving target - Monte Carlo inference for dynamic Bayesian models. Jour-

nal of the Royal Statistical Society 63 (2001), 127ś146. www.mathcs.emory.edu/~whalen/Papers/BNs/MonteCarlo-DBNs.
pdf

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. 1994. A Language and Program for Complex Bayesian Modelling. Journal of
the Royal Statistical Society. Series D 43 (1994).

Noah Goodman, Vikash Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua Tenenbaum. 2008. Church: a language for
generative models. In UAI. http://cocolab.stanford.edu/papers/GoodmanEtAl2008-UncertaintyInArtificialIntelligence.pdf

Noah Goodman and Andreas Stuhlmüller. 2014. Design and Implementation of Probabilistic Programming Languages.
http://dippl.org. (2014).

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order probability
theory. In LiCS. http://ieeexplore.ieee.org/document/8005137/

Sheng Liang and Paul Hudak. 1996. Modular Denotational Semantics for Compiler Construction. In ESOP.
David J. C. MacKay. 2003. Information Theory, Inference and Learning Algorithms. Cambridge University Press. www.

inference.org.uk/itila/book.html
Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-order probabilistic programming platform with

programmable inference. arXiv:1404.0099. (2014).
Tom Minka, John Winn, J. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. 2014. Infer.NET 2.6.

Microsoft Research Cambridge. http://research.microsoft.com/infernet. (2014).
Lawrence M. Murray. 2013. Bayesian State-Space Modelling on High-Performance Hardware Using LibBi. arXiv:1306.3277.

(2013).
Radford M. Neal. 2010. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo. Chapman and

Hall.
Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. 2014. R2: An Efficient MCMC Sampler for Probabilistic

Programs. In AAAI.
Anand Patil, David Huard, and Christopher J. Fonnesbeck. 2010. PyMC: Bayesian Stochastic Modelling in Python. Journal

of Statistical Software 35 (2010).
Avi Pfeffer. 2001. IBAL: A Probabilistic Rational Programming Language. In IJCAI.
Avi Pfeffer. 2015. Practical Probabilistic Programming. Manning. https://www.manning.com/books/

practical-probabilistic-programming
Rajesh Ranganath, Sean Gerrish, and David Blei. 2014. Black-Box Variational Inference. In AISTATS. http://www.jmlr.org/

proceedings/papers/v33/ranganath14.html
Daniel Ritchie, Andreas Stuhlmüller, and Noah D. Goodman. 2016. C3: Lightweight Incrementalized MCMC for Probabilistic

Programs using Continuations and Callsite Caching. In AISTATS. http://proceedings.mlr.press/v51/ritchie16.html
Adam Ścibior, Zoubin Ghahramani, and Andrew Gordon. 2015. Practical Probabilistic Programming with Monads. In Haskell.

http://dl.acm.org/citation.cfm?id=2804317
Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris

Heunen, and Zoubin Ghahramani. 2018. Denotational Validation of Higher-Order Bayesian Inference. Proceedings of the
ACM on Programming Languages 2 (2018).

Sam Staton. 2017. Commutative semantics for probabilistic programming. In Proc. ESOP 2017.
David Tolpin, Jan-Willem van de Meent, and FrankWood. 2015. Probabilistic Programming in Anglican. InMachine Learning

and Knowledge Discovery in Databases, Albert Bifet, Michael May, Bianca Zadrozny, Ricard Gavalda, Dino Pedreschi,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2012.01046.x/abstract
https://doi.org/10.1145/1291151.1291199
https://mathscinet.ams.org/mathscinet-getitem?mr=0501537
https://mathscinet.ams.org/mathscinet-getitem?mr=0501537
www.mathcs.emory.edu/~whalen/Papers/BNs/MonteCarlo-DBNs.pdf
www.mathcs.emory.edu/~whalen/Papers/BNs/MonteCarlo-DBNs.pdf
http://cocolab.stanford.edu/papers/GoodmanEtAl2008-UncertaintyInArtificialIntelligence.pdf
http://dippl.org
http://ieeexplore.ieee.org/document/8005137/
www.inference.org.uk/itila/book.html
www.inference.org.uk/itila/book.html
https://www.manning.com/books/practical-probabilistic-programming
https://www.manning.com/books/practical-probabilistic-programming
http://www.jmlr.org/proceedings/papers/v33/ranganath14.html
http://www.jmlr.org/proceedings/papers/v33/ranganath14.html
http://proceedings.mlr.press/v51/ritchie16.html
http://dl.acm.org/citation.cfm?id=2804317


Functional Programming for Modular Bayesian Inference 83:29

Francesco Bonchi, Jaime Cardoso, and Myra Spiliopoulou (Eds.). Lecture Notes in Computer Science, Vol. 9286. Springer
International Publishing, 308ś311. https://doi.org/10.1007/978-3-319-23461-8_36

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017. Deep Probabilistic
Programming. In ICLR.

Liang Wang. 2017. Owl: A General-Purpose Numerical Library in OCaml. arXiv:1707.09616. (2017).
Leo White, Frédéric Bour, and Jeremy Yallop. 2015. Modular Implicits. ACM Workshop on ML 2014 post-proceedings.

(September 2015).
David Wingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Lightweight Implementations of Probabilistic Pro-

gramming Languages Via Transformational Compilation. In AISTATS. https://web.stanford.edu/~ngoodman/papers/
lightweight-mcmc-aistats2011.pdf The published version contains a serious bug in the algorithm description, which was
fixed in Revision 3 available from the authors page.

Frank Wood, Jan-Willem van de Meent, and Vikash Mansinghka. 2014. A New Approach to Probabilistic Programming
Inference. In AISTATS. http://www.robots.ox.ac.uk/~fwood/assets/pdf/Wood-AISTATS-2014.pdf

Robert Zinkov and Chung-chieh Shan. 2017. Composing inference algorithms as program transformations. In UAI.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 83. Publication date: September 2018.

https://doi.org/10.1007/978-3-319-23461-8_36
https://web.stanford.edu/~ngoodman/papers/lightweight-mcmc-aistats2011.pdf
https://web.stanford.edu/~ngoodman/papers/lightweight-mcmc-aistats2011.pdf
http://www.robots.ox.ac.uk/~fwood/assets/pdf/Wood-AISTATS-2014.pdf

	Abstract
	1 Introduction
	2 Basic building blocks
	2.1 Models
	2.2 Basic Samplers
	2.3 Population

	3 Advanced building blocks
	3.1 Sequential
	3.2 Traced

	4 Compound inference algorithms
	4.1 Resample-Move SMC
	4.2 Particle Marginal MH
	4.3 SMC2

	5 Evaluation
	5.1 Quantitative Evaluation
	5.2 Qualitative Evaluation

	6 Testing
	7 OCaml implementation
	8 Related work
	9 Discussion and future work
	Acknowledgments
	References

