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Abstract

The micro-randomized trial (MRT) is a sequential randomized experimental design to empirically 

evaluate the effectiveness of mobile health (mHealth) intervention components that may be 

delivered at hundreds or thousands of decision points. MRTs have motivated a new class of 

causal estimands, termed “causal excursion effects”, for which semiparametric inference can be 

conducted via a weighted, centered least squares criterion (Boruvka et al., 2018). Existing methods 

assume between-subject independence and non-interference. Deviations from these assumptions 

often occur. In this paper, causal excursion effects are revisited under potential cluster-level 

treatment effect heterogeneity and interference, where the treatment effect of interest may depend 

on cluster-level moderators. Utility of the proposed methods is shown by analyzing data from a 

multi-institution cohort of first year medical residents in the United States.
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1. INTRODUCTION

Modern behavioral science has placed a considerable amount of attention on push 

notifications sent via mobile device that are adapted to continuously collected information 

on an individual’s current context. These time-varying adaptive interventions are 

hypothesized to lead to meaningful short- and long-term behavior change. The assessment of 

the time-varying effect of such push notifications motivated sequential randomized designs 

such as the micro-randomized trial (MRT) [1, 2], in which individuals are randomized 

to potentially receive notifications at hundreds or thousands of decision points. The 

MRT design enables the estimation of marginal treatment effects of push notifications on 

prespecified time-lagged outcomes of interest, referred to as “causal excursion effects” [3, 
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4, 5]. Semiparametric inference of the causal excursion effects can be conducted via a 

weighted, centered least squares (WCLS) criterion [3].

The WCLS inferential method relies on two key assumptions. First, an intervention 

delivered to an individual is assumed to only impact that same individual’s outcomes, i.e., 

between-subject non-interference. Second, the method assumes no stochastic dependence 

among outcomes of different subjects. Deviations from these assumptions, however, may 

occur when individuals naturally form clusters. To address these violations, this paper 

extends the definition of causal excursion effects to account for potential interference and 

cluster-level treatment effect heterogeneity accompanied with a general inferential approach 

that provides valid inferences and subsumes WCLS as a special case.

2. PRELIMINARIES

2.1. Micro-Randomized Trials (MRT).

An MRT consists of a sequence of within-subject decision times t = 1, …, T  at which 

treatment options may be randomly assigned [6]. Individual-level data can be summarized 

as O0, O1, A1, O2, A2, …, OT, AT, OT + 1  where t indexes a sequence of decision points, O0 is the 

baseline information, Ot is the information collected between time t − 1 and t, and At is the 

treatment option provided at time t; for simplicity, we consider binary treatment options, i.e., 

At ∈ 0, 1 . In an MRT, At is randomized according to a known sequence of randomization 

probabilities that may depend on the complete observed history Ht: = O0, O1, A1, …, At − 1, Ot , 

denoted p = pu Au ∣ Hu u = 1
t . Treatment options are designed to impact a proximal response, 

denoted by Y t, Δ, which is a known function of the participant’s data within a subsequent 

window of length Δ ≥ 1, i.e., Y t, Δ = y Ot, At, Ot + 1, At + 1, …, At + Δ − 1, Ot + Δ  [5].

2.2 Estimand and Inferential Method: A Review.

We focus on the class of estimands referred to as “causal excursion effects”, which are time-

varying as a function of the decision point t. We provide formal definitions using potential 

outcomes [7, 8]. Let Y t, Δ at + Δ − 1  denote the potential outcome for the proximal response 

under treatment sequence at + Δ − 1 = a1, …, at + Δ − 1 . Let St at − 1  denote the potential outcome for 

a potential time-varying effect moderator which is a deterministic function of the potential 

history up to time t, Ht at − 1 . The causal excursion effect is then defined with respect to a 

reference distribution, i.e., the distribution of treatments At + Δ − 1: = A1, …, At + Δ − 1 . For past 

treatments, At, we follow common practice in observational mobile health studies where 

analyses such as GEEs [9] are conducted marginally over the distribution of historical 

information. A similar strategy here is to use the past treatment randomization probabilities 

as the reference distribution between time 1 and t. For future treatments, the choice of 

distribution for At + 1: (t + Δ − 1): = At + 1, …, At + Δ − 1  may differ by the type of inference desired; 

note that when Δ = 1, future treatments do not impact the proximal outcome and therefore a 

reference distribution for future treatments is not necessary. Here, we assume the reference 

distribution for treatment assignments from t + 1 to t + Δ − 1 is given by a randomization 

probability generically represented by πu au ∣ Hu , u = t + 1, …, t + Δ − 1 and let π = πu u = t + 1
t + Δ − 1. 

This generalization contains previous definitions such as lagged effects [3] where πu = pu
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and deterministic choices such as at + 1: (t + Δ − 1) = 0 [5, 4] where πu = 1 au = 0  and 1 •  is the 

indicator function. Then the causal excursion effect βp, π, Δ(t; s) is defined as

Ep, π Y t, Δ At − 1, 1, At + 1: (t + Δ − 1) − Y t, Δ At − 1, 0, At + 1: (t + Δ − 1) ∣ St At − 1 = s (1)

= Ep Ep W t, ΔY t, Δ ∣ At = 1, Ht − Ep W t, ΔY t, Δ ∣ At = 0, Ht ∣ St = s (2)

where treatment sequence up to time t − 1:At − 1 ∼ p, future treatment sequence up to 

t + Δ − 1:At + 1: (t + Δ − 1) ∼ π and W t, Δ = ∏u = t + 1
t + Δ − 1πu Au ∣ Hu /pu Au ∣ Hu  can be interpreted as 

change of measure from p to π for treatment assignments At + 1: (t + Δ − 1); we set W t, Δ = 1
when Δ = 1. Equation (2) expresses (1) in terms of observable data, which requires the 

standard causal inference assumptions of positivity, sequential ignorability, and consistency. 

Assuming βp, π, Δ(t; s) = ft(s)⊤β⋆ where ft(s) ∈ ℝq is a feature vector comprised of a q-

dimensional summary of observed state information depending only on state s and decision 

point t, a consistent estimator for β∗ can be obtained by minimizing a weighted and centered 

least squares (WCLS) criterion:

β = argmin
α, β

ℙn ∑
t = 1

T
W t × W t, Δ Y t, Δ − gt Ht

⊤α − At − pt 1 ∣ St ft St
⊤β 2

(3)

where ℙn is shorthand for the sample average, W t = pt At ∣ St /pt At ∣ Ht  is a weight where 

the numerator is an arbitrary function with range (0, 1) that only depends on potential 

moderators of interest St, and gt Ht ∈ ℝp are p control variables chosen to help reduce 

variance and to construct more powerful test statistics. See [3] for more details on 

the seminal estimand formulation and consistency, asymptotic normality, and robustness 

properties of the WCLS estimation method.

2.3. Motivating Example.

The Intern Health Study (IHS) is a 6-month MRT on 1,562 medical interns [10]. Due 

to high depression rates and levels of stress during the first year of physician residency 

training, a critical question is whether targeted notifications can improve mood, increase 

sleep time, and/or increase physical activity. Enrolled medical interns were randomized 

weekly to receive either mood, activity, or sleep notifications or receive no notifications 

for that week (probability 1/4 each). Analyses conducted in this paper focus on the 

weekly randomization; see [10] for further study details. Figure 1 presents specialty-specific 

effect estimates on weekly average mood scores using (3), with evident specialty-level 

treatment effect heterogeneity. This suggests a marginal analysis must account for effect 

heterogeneity at the specialty-level. The present work offers such a framework to address 

the inferential deficiency that we show if the standard WCLS were used under cluster-level 

effect heterogeneity. In addition, there exists potential within-cluster interference of other 

subjects’ treatments upon a subject’s outcome. Our framework defines a new and useful 

indirect excursion effect under sequential treatments in contrast to existing work that mostly 

focuses on indirect effects in non-temporal settings.
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3. CLUSTER-LEVEL PROXIMAL TREATMENT EFFECTS

3.1. Proximal Moderated Treatment Effects: A Cluster-based Conceptualization.

Consider a cluster of size G. Overbar will continue to denote treatment sequences; 

at, j = a1, j, …, at, j , for instance, denotes the sequence of realized treatment sequence up to and 

including decision time t for individual j ∈ [G]: = 1, …, G . Let at = at, 1, …, at, G  denote the 

set of realized treatments for all individuals in the cluster. Let at, − j = at ∖ at, j denote this set 

with the jth individual removed. Let Y t, Δ, j at + Δ − 1  denote the potential outcome for individual 

j ∈ [G] which may depend on realized treatments for all subjects in the cluster.

Direct causal excursion effects.—In standard MRTs, the individual is the unit of 

interest. Here, the cluster is the unit of interest and the effect of interest is in providing 

treatment versus not providing treatment at time t on a random individual in the group. This 

can be expressed as a difference in potential outcomes for the proximal response

1
G ∑

j = 1

G
Y t, Δ, j at + Δ − 1, − j, at − 1, j, 1, at + 1: (t + Δ − 1), j

−Y t, Δ, j at + Δ − 1, − j, at − 1, j, 0, at + 1: (t + Δ − 1), j .
(4)

Following [11] and [12], (4) is a group average direct causal effect of treatment versus no 

treatment fixing all other treatments.

The “fundamental problem of causal inference” [7, 13] is that individual differences 

cannot be observed. Thus, similar to prior work [5, 3], averages of potential outcomes 

are considered. Let St at − 1  denote a vector of potential moderator variables formed from 

Ht at − 1 , the cluster-level history up to decision point t. Then the moderated direct treatment 

effect, denoted βp, π, Δ(t; s), can be defined as

Ep, π Y t, Δ, J At + Δ − 1, − J, At − 1, J, 1, At + 1: (t + Δ − 1), J

−Y t, Δ, J At + Δ − 1, − J, At − 1, J, 0, At + 1: (t + Δ − 1), J ∣ St At − 1 = s .
(5)

where J is a uniformly distributed random index defined on [G]. The expectation is 

over the potential outcomes Y t, Δ, J( ⋅ ), the randomized treatments −At + Δ − 1, − J ∼ p, At − 1, J ∼ p, 

and At + 1: (t + Δ − 1), J ∼ π − and the random index J. Choice of St At − 1  depends on the 

scientific question of interest. A primary analysis may focus on marginal effects and 

set St At − 1 = ∅. A second analysis may focus on assessing the effect conditional 

on variables only related to the individual indexed by J and set St At − 1 = Xt, J At − 1, J , 

i.e., a potential individual-level moderator of interest where Xt, J At − 1, J  produces a 

vector of summary variables from the history of individual J, Ht, J At − 1, J . A third 

analysis may consider group-level moderators such as St At − 1 = G−1∑jXt, j At − 1, j  or 

St At − 1 = Xt, j At − 1, j , 1
G − 1 ∑j′ ≠ jXt, j′ At − 1, j′ . Equation (5) generalizes the population 

average direct causal effect from [12] to a group-level causal excursion effect that allows for 

moderation and time-varying treatments.
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Pairwise indirect causal excursion effects.—Of secondary interest is the indirect 

effect of providing treatment versus not providing treatment to the jth individual at time 

t on a different individual’s proximal response, i.e., pairwise within-cluster treatment 

interference.

Here, we define the pairwise indirect causal excursion effect as

1
G ⋅ (G − 1) ∑

j′ ≠ j
Y t, Δ, j at + Δ − 1, − j, j′ , at − 1, j, 0, at + 1: (t + Δ − 1), j , at − 1, j′, 1, at + 1: (t + Δ − 1), j′

−Y t, Δ, j at + Δ − 1, − j, j′ , at − 1, j, 0, at + 1: (t + Δ − 1), j , at − 1, j′, 0, at + 1: (t + Δ − 1), j′ .

Again, since individual differences cannot be observed, averages of potential outcomes are 

considered. The moderated pairwise indirect treatment effect, denoted βp, π, Δ
(IE) (t; s), is

Ep, π Y t, Δ, J At + Δ − 1, − J, J′ , At − 1, J, 0, At + 1: (t + Δ − 1), J , At − 1, J′, 1, At + 1: (t + Δ − 1), J′

−Y t, Δ, J At + Δ − 1, − J, J′ , At − 1, J, 0, At + 1: (t + Δ − 1), J , At − 1, J′, 0, At + 1: (t + Δ − 1), J′ ∣ St At − 1 = s .
(6)

where J′ is uniformly distributed random index on the set [G] ∖ J . The expectation is over 

both the potential outcomes Y t, Δ, J( ⋅ ), randomized treatments −At + Δ − 1, − J, J′ ∼ p, At − 1, J ∼ p, 

At − 1, J′ ∼ p, At + 1: (t + Δ − 1), J ∼ π, and At + 1: (t + Δ − 1), J′ ∼ π − and the random indices (J and J′). The 

potential moderator can be written as St At − 1 = St, J At − 1 , St, J′ At − 1 , St, − J, J′ At − 1  to clarify 

that the variables can contain both information on the two selected individuals as well as 

others in the cluster. Another pairwise indirect effect can be defined when individual J 
receives treatment, i.e., At, J = 1 instead of At, J = 0 as in (6).

Remark 3.1.—The effect defined by (6) generalizes the group average indirect causal 

effect from [12] to a group-level pairwise indirect causal excursion effect that allows for 
moderation and time-varying treatments. To see this, note that the excursion effect at 
each decision time t averages over a particular reference distribution over the past and 
future treatments up to and including time t + Δ − 1 defined by the MRT randomization 
probabilities p and the alternative probability distribution π. The contrast is over two 
treatment allocations, both where a random individual does not receive treatment, but where 
in one allocation another random individual receives treatment and in the other allocation 
that same individual does not receive treatment. [12] consider contrasts between any two 
randomized treatment allocations conditional on a random individual not receiving treatment 
in a non-temporal setting. Therefore, per decision time our definition is a special case of 
their indirect effect where, for a random non-treated individual, we focus on treating or not 
treating another random individual and marginalizing over all others in the group. More 
complex contrasts could be derived such as three- or four-way indirect effects; however, the 
number of combinations grows quickly making estimation unrealistic in our setting. Our 
choice of contrast was thus motivated by finding an estimand of scientific interest which 
could be reasonably estimated within the MRT setting, bridging the literature on causal 
excursions and indirect effects.
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3.2. Causal Excursion Effect Estimand Depends on Treatment Distribution.

Estimands considered here are most similar to average outcomes under a particular dynamic 

treatment regime Eμ Y A1, …, AT  where μ denotes the dynamic treatment regime from 

which the treatments are drawn [14]. Indeed, for any Au, j not contained in St At − 1 , the 

direct and indirect effects depend on the distribution of Au, j u ≤ t + Δ − 1, j ∈ [G]. Estimands (5) 

and (6) marginalize over treatments not contained in St At − 1 . Marginalization over different 

probabilistic assignment of treatments may yield different results. Therefore, the direct and 

indirect excursion effects depend on the study protocol and choice of alternative distribution 

π. The reason for this is that micro-randomization is meant to gather information on how 

to optimize the design of intervention components [15]. The marginal formulation of main 

and moderation effects contrasts excursions from the current treatment protocol, and mimics 

analyses used in a factorial design that marginalize over factors including time. See [4, 

Section 8] for additional considerations. Regardless, the effects considered in this paper are 

causal and depend on the treatment assignment distributions. Due to this dependence, in real 

data analysis, we recommend presenting the micro-randomization distribution together with 

the estimated treatment effects, thus the subscript (p, π) in the definition of both the direct 

and indirect effects are specified.

3.3. Identification.

Causal effects (5) and (6) can be expressed in terms of the observable data under the 

following standard set of causal inference assumptions [8]:

Assumption 3.2.—We assume consistency, positivity, and sequential ignorability:

• Consistency: For each t ≤ T  and j ∈ [G], 
Y t, Δ, j At + Δ − 1 , Ot, j At − 1 , At, j At − 1 = Y t, Δ, j, Ot, j, At, j , i.e., observed values equal the 

corresponding potential outcomes;

• Positivity: if the joint density At = at, Ht = ℎt  is greater than zero, then 

P At = at ∣ Ht = ℎt > 0;

• Sequential ignorability: for each t ≤ T , the potential 

outcomes, Y 2, Δ, jj a1 + Δ − 1 , O2, j a1 , A2, j a1 , …, Y T, Δ, j aT + Δ − 1 j ∈ [G], aT + Δ − 1 ∈ 0, 1 (T + Δ − 1) × G, 

are independent of At, j conditional on the observed history Ht.

Sequential ignorability and, assuming all of the randomization probabilities are bounded 

away from 0 and 1, positivity, are guaranteed in our setting by design. Consistency is a 

necessary assumption for linking the potential outcomes as defined here to the data. Since 

an individual’s outcomes may be influenced by the treatments provided to other individuals 

in the same cluster, consistency holds due to our use of a cluster-based conceptualization of 

potential outcomes as seen in [16] and [17].

Lemma 3.3.—Under Assumption 3.2, the moderated direct treatment effect βp, π, Δ(t; s) is 

equal to

E E W t, Δ, JY t, Δ, J ∣ Ht, At, J = 1 − E W t, Δ, JY t, Δ, J ∣ Ht, At, J = 0 ∣ St = s ,
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where expectations are with respect to the distribution of the data collected under the 

actual treatment assignment probabilities p, and W t, Δ, j = ∏u = t + 1
t + Δ − 1π Au, j ∣ Hu /p Au, j ∣ Hu  with 

W t, 1, j = 1; and the moderated indirect treatment effect βp, π, Δ
(IE) (t; s) is equal to

E[E W t, Δ, J, J′Y t, Δ, J ∣ Ht, At, J = 0, At, J′ = 1
−E W t, Δ, J, J′Y t, Δ, J ∣ Ht, At, J = 0, At, J′ = 0 ∣ St = s .

where W t, Δ, j, j′ = ∏u = t + 1
t + Δ − 1πu Au, j, Au, j′ ∣ Hu /pu Au, j, Au, j′ ∣ Hu  with W t, 1, j, j′ = 1.

Proof of Lemma 3.3 can be found in the Appendix A.

4. ESTIMATION

4.1. Direct Causal Excursion Effect Estimation.

Assumption 4.1.—Assume the direct causal excursion effect βp, π, Δ(t; s) = ft(s)⊤β⋆ where 

ft(s) ∈ ℝq is a q-dimensional feature vector that is a function of moderator state s and 

decision point t.

Consider inference on the q-dimensional parameter β⋆. Define the weight W t, j at deci 
pt At, j ∣ St
pt At, j ∣ Ht

 where pt a ∣ St ∈ (0, 1) is arbitrary as long as it does not depend on terms in Ht

other than St, and p At, j ∣ Ht  is the marginal probability that individual j receives treatment 

At, j given Ht. Here we consider an estimator which is the minimizer of a cluster-based, 

weighted-centered least-squares (C-WCLS) criterion:

ℙM
1

Gm
∑
j = 1

Gm

∑
t = 1

T
W t, j × W t, Δ, j Y t, Δ, j − gt Ht

⊤α − At, j − pt At, j ∣ St ft St
⊤β 2

(7)

where ℙM is defined as the average of a function over the sample, which in this context is 

the sample of clusters rather than the sample of individuals as in traditional MRT settings. In 

Appendix B, we prove the following result.

Lemma 4.2.—Under Assumption 4.1, given invertibility and moment conditions, the 

estimator β  that minimizes (7) satisfies M β − β⋆ N 0, Q−1W Q−1  where

Q = E ∑
t = 1

T
pt 1 ∣ St 1 − pt 1 ∣ St ft St ft St

⊤

and
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W = E ∑
t = 1

T
W t, J × W t, Δ, Jϵt, J At, J − pt 1 ∣ St ft St

× ∑
t = 1

T
W t, J × W t, Δ, Jϵt, J At, J − pt 1 ∣ St ft St

⊤ ,

where ϵt, j = Y t, Δ, j − gt Ht
⊤α⋆ − At, j − pt 1 ∣ St ft St

⊤β⋆, α⋆ minimizes the least-squares 

criterion E Gm
−1∑j = 1

Gm ∑t = 1
T W t, jW t, Δ, j Y t, Δ, j − gt Ht

⊤α 2
, and both J and J are independent 

randomly sampled indices from the same cluster.

In practice, plug-in estimates Q and W  are used to estimate the covariance structure; 

Appendix F presents their estimates with small-sample adjustments.

Remark 4.3.—(L2 Projection Interpretation) Importantly, Assumption 4.1 is not required. 

That is, we can follow [18, 19, 20, 5] and others in using ft(s)⊤β as a working model for 

βp, π, Δ(t; s). Specifically, β  is a solution to the weighted least-squares projection

β⋆ = argmin
β

E 1
G ∑

j = 1

G
∑

t = 1

T
pt 1 ∣ St 1 − pt 1 ∣ St β t; St − ft St

⊤β 2 .

Here, the weight is the variance of the numerator in the weight W t, j. To interpret as a 

projection or as a correctly specified causal effect can be viewed as a bias-variance trade-off. 
The projection interpretation guarantees well-defined parameter interpretation in practice 
where Assumption 4.1 is unlikely to hold. See [Sec. 3.1, pp.9–10 20] for a discussion of the 
use of projections in causal versus predictive settings.

Appendix I presents semiparametric efficiency theory in the special case of St = Ht.

4.2. Connection to the Standard MRT Analysis.

A natural question is whether there are conditions such that the standard MRT analysis 

presented in Section 2.2 is equivalent to the proposed direct effect analysis. Lemma 4.4 

proves that, under certain conditions, an equivalence of estimates and asymptotic variances 

is guaranteed.

Lemma 4.4.—Consider the direct effect when the moderator is defined on the individual 
(i.e., St, j), and the randomization probabilities only depend on the individual’s observed 

history, i.e., p At, j ∣ Ht = p At, j ∣ Ht, j . If cluster size is constant (i.e., Gm ≡ G), then the point 

estimates from (3) and (5) are equal for any sample size. Moreover, if

E E W t, Δ, jϵt, j × W t′, Δ, j′ϵt′, j′ ∣ Ht, j, At, j = a, Ht′, j′, At′, j′ = a′ ∣ St, j, St′, j′ (8)

equals ψ St, j, St′, j′  for some function ψ, i.e., the cross-terms are constant in a and a′, where ϵt, j

is the error defined in Lemma 4.2, then the estimators share the same asymptotic variance.

SHI et al. Page 8

Biometrika. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proof of Lemma 4.4 can be found in Appendix E. Here, a class of random effect models 

is introduced to help with interpretation of the sufficient condition (8). Specifically, for 

participant j at decision time t, let Δ = 1 and suppose the generative model for the proximal 

response is

Y t, 1, j = gt Ht, j
⊤α + Zt, j

⊤ bg

(I)
+ At, j − pt 1 ∣ Ht, j (ft Ht, j

⊤β + Zt, j
⊤ bg

(II)
) + et, j

where (I) and (II) are random effects with design matrix Zt, j, E ft Ht, j
⊤β ∣ St, j = ft St, j

⊤β, 

and et, j is a participant-specific error term. The treatment effect conditional on the complete 

observed history and the random effects is ft Ht, j
⊤β + Zt, j

⊤ bg, which implies the marginal 

causal effect is ft St, j
⊤β so Assumption 4.1 holds. Random effects in (I) allow for cluster-

level variation in baseline values of the proximal response, while random effects in (II) 
allow for cluster-level variation in the fully-conditional treatment effect. Given the above 

generative model, sufficient condition (8) holds if bg ≡ 0, i.e., when the treatment effect does 

not exhibit cluster-level variation. For this reason, (8) is referred to as a treatment effect 

heterogeneity condition. The condition motivates our simulation study in Section 5, which 

empirically supports this conclusion of equivalence.

4.3. Pairwise Indirect Causal Excursion Effect Estimation.

Assumption 4.5.—Assume the pairwise indirect causal excursion effect 

βp, π, Δ
(IE) (t; s) = ft(s)⊤β ⋆ ⋆ , where ft(s) ∈ ℝq is a q-dimensional vector function of s and time 

t.

Consider inference on the q-dimensional parameter β ⋆ ⋆ . Define the weight W t, j, j′ at 

decision time t for the jth individual as equal to p At, j, At, j′ ∣ St
pt At, j, At, j′ ∣ Ht

 where pt a, a′ ∣ St ∈ (0, 1)

is arbitrary as long as it does not depend on terms in Ht other than St, and p At, j, At, j′ ∣ Ht  is 

the marginal probability that individuals j and j′ receive treatments At, j and At, j′ respectively 

given Ht. Here we consider an estimator which is the minimizer of the following cluster-

based weighted-centered least-squares (C-WCLS) criterion:

ℙM
1

Gm Gm − 1 ∑
j ≠ j′

∑
t = 1

T
W t, j, j′ × W t, Δ, j, j′ × Y t, Δ, j −

gt Ht
⊤α − 1 − At, j At, j′ − pt

⋆ 1 ∣ St ft St
⊤β 2

(9)

where pt
⋆ 1 ∣ St = pt 0, 1 ∣ St

pt 0, 0 ∣ St + pt 0, 1 ∣ St
 and 

W t, Δ, j, j′ = ∏u = t + 1
t + Δ − 1π Au, j, Au, j′ ∣ Hu /p Au, j, Au, j′ ∣ Hu . If an individual’s randomization 

probabilities only depends on their own observed history then pt
⋆ 1 ∣ St, j′ = pt 1 ∣ St, j′  and 

the weight W t, Δ, j, j′ = W t, Δ, j × W t, Δ, j′. In Appendix A, we prove the following result.
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Lemma 4.6.—Under Assumption 4.5, then, under invertibility and moment conditions, the 

estimator β (IE) that minimizes (9) satisfies M β (IE) − β ⋆ ⋆ N 0, Q−1W Q−1  where

Q = E ∑
t = 1

T
pt 0, 0 ∣ St + pt 0, 1 ∣ St pt

⋆ 1 ∣ St 1 − pt
⋆ 1 ∣ St ft St ft St

⊤

and

W = E ∑
t = 1

T
W t, J, J′W t, Δ, J, j′ϵt, J, J′ 1 − At, J At, J′ − pt

⋆ 1 ∣ St ft St

× ∑
t = 1

T
W t, J, J′ × W t, Δ, J, J′ϵt, J, J′ 1 − At, J At, J′ − pt

⋆ 1 ∣ St ft St
⊤

where ϵt, j, j′ = Y t, Δ, j − gt Ht
⊤α ⋆ ⋆ − 1 − At, j At, j′ − pt

⋆ 1 ∣ St ft St
⊤β ⋆ ⋆ , α ⋆ ⋆  minimizes the 

least-squares criterion E 1
Gm Gm − 1 ∑j ≠ j′ ∑t = 1

T W t, , j, j′W t, Δ, j, j′ Y t, Δ, j − gt Ht
⊤α 2

, and both (J, 

J′) and (J, J′) are independently, randomly sampled pairs from the cluster.

Remark 4.7.—In Appendix H, variances are re-derived in the general setting where the 
numerators pt a ∣ St  and pt a, a′ ∣ St  are estimated using the observed MRT data.

5. SIMULATIONS

To evaluate the proposed estimator, we extend the simulation setup in [3]. We first present 

a base data generation model, which is to be extended in four scenarios. In this section, we 

focus on presenting simulation settings and results for lag-1 proximal responses (Δ = 1); see 

Appendix D for scenarios under Δ > 1 with similar conclusions about the relative advantage 

of the proposed method. Consider an MRT with known randomization probability and the 

observation vector Ot being a single state variable St ∈ − 1, 1  at each decision time t. Let

Y t, 1 = θ1 St − E St ∣ At − 1, Ht − 1 + At − pt 1 ∣ Ht β10 + β11St + et + 1 . (10)

The randomization probability is pt 1 ∣ Ht = expit η1At − 1 + η2St  where 

expit(x) = 1 + exp( − x))−1; the state dynamics are given by ℙ St = 1 ∣ At − 1, Ht − 1 = expit ξAt − 1

with A0 = 0, and the independent error term satisfies et ∼ N(0, 1) with Corr eu, et = 0.5|u − t | /2. 

As in [3], we set θ1 = 0.8, ξ = 0, η1 = − 0.8, η2 = 0.8, β10 = − 0.2, and β11 = 0.2. Because ξ = 0, 

the marginal proximal effect is equal to β10 + β11E St = β10 = − 0.2. In extending the data 

generation model to clustered settings, we conducted simulation studies with 25, 50, 100 

clusters with equal sizes (15 or 25); here, we report results with 50 clusters showing the 

relative advantage of C-WCLS over WCLS. A more complete set of simulation results with 

similar findings can be found in Appendix C.
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Simulation Scenario I.

The first scenario estimates the marginal proximal effect when an individual-level moderator 

exists and proximal responses share a random cluster-level intercept term that does not 

interact with treatment. The data generative model (10) incorporates a cluster-level random-

intercept eg ∼ N(0, 0.5). Table 1 presents the results, which shows both WCLS and the 

proposed C-WCLS approach are nearly unbiased and have proper coverage rates. This is 

in line with Lemma 4.4 stating asymptotic equivalence under no cluster-level treatment 

heterogeneity.

Simulation Scenario II.

In the second scenario, we extend Scenario I to include a random cluster-level intercept 

term that interacts with treatment by considering the linear model with the additional term 

bg × At, j − pt 1 ∣ Ht, j  where bg ∼ N(0, 0.1). Table 1 presents the results which demonstrate that 

if cluster-level random effects interact with treatment, then both methods produce nearly 

unbiased estimates of the marginal proximal effect but only the proposed method achieves 

the nominal 95% coverage probability. To further demonstrate this, Figure 2 presents 

nominal coverage as a function of the ratio of the variance of bg over the variance of eg

as well as group size respectively.

Simulation Scenario III.

In the third scenario, the treatment effect for an individual is assumed to depend on 

the average state of all individuals in the cluster, i.e., define the cluster-level moderator 

St, g = 1
Gg

∑j = 1
Gg St, j and consider the linear model from Scenario II with the additional term 

St, g × At, j − pt 1 ∣ Ht, j . The proposed estimator again achieves the nominal 95% coverage 

probability while the WCLS method does not (see Scenario III, Table 1).

Simulation Scenario IV.

The fourth scenario considers the indirect effect. For individual j at decision point t, define 

the total effect to be TEt, j = ∑j′ ≠ j At, j′ − pt, j′ 1 ∣ Ht β20 + β21St, j′ , where β20 = − 0.1 and 

β21 = 0.2. The generative model is then given by:

Y t, 1, j = −0.2 + bg + 0.2 ⋅ St, g × At, j − pt 1 ∣ Ht, j + 0.8St, j + TEt, j + eg + et + 1, j .

This model implies a marginal pairwise indirect effect equal to β(IE) = β20 = − 0.1. Table 1 

presents simulation results which shows that the proposed indirect estimator exhibited nearly 

no bias and achieved the nominal coverage probability.

6. CASE STUDY: INTERN HEALTH STUDY

The Intern Health Study (IHS) was a 6-month MRT on 1,562 medical interns where four 

types of weekly notification - mood, activity, sleep, or none – were randomly assigned with 

equal probability to each subject [10]; see Section 2.3 for prior discussion. In IHS, 285 

institutions and 24 specialties were observed. Here, we assess the effect of the three types of 
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notifications (mood, activity, and sleep) compared to no notifications on the weekly average 

of self-reported mood scores, log step-count and log sleep minutes for the population of 

interns. Due to high levels of missing data, weekly proximal responses were multiply 

imputed. See [10] for further details.

Let t = 1, …, T  denote the weekly decision points at which the individual is randomized 

to the various types of notifications. The three proximal responses are the average weekly 

mood score, which is reported on a Likert scale taking values from 1 to 10 (higher scores 

mean better mood), log step count and log sleep minutes respectively. Notifications are 

collapsed to a binary variable, i.e., At, j = 1 if the individual was assigned to receive any 

notifications on week t; otherwise, At, j = 0. We start by defining clusters based on medical 

specialty as we saw effect heterogeneity by specialty in Figure 1. The average cluster 

size was 65; the first and third quartile were 7 and 113 respectively, with maximum and 

minimum sizes of 333 and 1. For every individual in each cluster at each decision point, we 

compute the average prior weekly proximal response for all others in the cluster, denoted 

Y t, − j for the jth individual in the cluster. We conducted analyses under lag Δ = 1 and Δ = 2. 

Here we report results under Δ = 1; see Appendix G for results under Δ = 2 for two choices 

of reference policy π. Under Δ = 1, we consider two moderation analyses that can both be 

expressed as β t; St = β0 + β1 ⋅ Y t, j + β2Y t, − j.

The first set of moderation analyses considers the standard moderation analysis where 

only individual-level moderators are included (i.e., β2 = 0). Figure 3 visualizes the estimates 

across the range of prior week’s proximal response for both our proposed approach and 

the WCLS approach from [3], and the numerical output can be found in Appendix G.1. 

In comparison, C-WCLS produces larger variance estimates for all proximal responses as 

expected. The effects do not change too much for the average weekly mood and sleep 

analysis; however, the significant effect of messages on weekly log step count under the 

traditional MRT analysis becomes insignificant when accounting for cluster effects.

The second moderation analysis lets β2 be a free parameter, enabling novel moderation 

analyses that accounts for the average weekly previous proximal responses of other 

individuals. Table 2 presents the results. Here, we see that the new term β2 is negative 

but insignificant. The results suggest the average proximal responses of others in the cluster 

have a limited moderation effect. To conclude, the impact of a notification on mood is larger 

while the individual’s score from previous week is low. Similar results hold for the log 

step-count analysis.

Finally, we consider indirect moderation effect analyses. In this analysis, clusters are defined 

based on medical specialty and institution because interference was only likely when interns 

are in close geographic proximity. Here, we consider the marginal indirect effect (e.g., 

no moderators) both when the individual did not receive the intervention and when the 

individual did receive an intervention at decision time t. Table 2 presents the results. In 

this case, the estimated indirect effects are much weaker than the direct effects. Even a 

weak effect may be unexpected as none of the content in the push notifications was aimed 

at impacting other individuals’ behavior. For all the proximal responses, we see limited 
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evidence of an indirect effect. This implies that the scientific team, when building an optimal 

intervention package, may ignore these indirect effects and focus solely on the individual 

who receives these types of push notifications.

7. DISCUSSION

We revisited causal excursion effects in the presence of a priori known clusters in sequential 

treatment settings where outcome of interest is measured at all decision points. In particular, 

we formalized both direct and indirect excursion effects in the context of MRT to account 

for potential interference. We studied their identifications and proposed consistent and 

robust inference methods. In practice, the effects described in this paper are most important 

when using MRT data to build optimized just-in-time adaptive interventions (JITAIs) 

for deployment in an mHealth package. Specifically, the estimation procedure for the 

direct excursion effect accounts for within-cluster correlation in the proximal responses 

which helps the scientific team avoid making erroneous conclusions about intervention 

effectiveness using standard MRT methods. Moreover, estimation of indirect effects allows 

the scientific team to answer questions about impact of interventions on other members of 

the same cluster. Use of these methods provides empirical evidence for the scientific team 

to include or exclude intervention components that may have had unanticipated second order 

effects, or potentially lead to novel ways to improve the intervention component by revising 

the intervention to more explicitly account for cluster-level interference. While this work 

represents a major step forward in the analysis of micro-randomized trial data, further work 

is required. Specifically, useful extensions include accounting for overlapping communities 

and/or network (rather than cluster-only) structure [21, 22], accounting for general non-

continuous proximal responses such as binary or count outcomes [4], penalization of the 

working model to allow for high-dimensional moderators, and a method to use the proposed 

approach to form warm-start policies at the individual level while accounting for group level 

information [23].

Appendix A.: TECHNICAL DETAILS

Lemma 3.3. We establish Lemma 3.3 for the direct effect (5). For as ∈ {0, 1}G, we consider

E ∏
s = 1

t − 1
ps as ∣ Hs as − 1 ∏

j′ ≠ j
∏

s = t

t + Δ − 1
ps as, j′ ∣ Hs as − 1

∏
s = t

t + Δ − 1
πs as, j ∣ Hs as − 1 Y t, Δ, j at + Δ − 1, − j, at − 1, j, a, at + 1: (t + Δ − 1), j 1St at = s

= E ∏
s = 1

t − 1
ps as ∣ Hs as − 1 1St at = s ∏

j′ ≠ j
∏

s = t

t + Δ − 1
ps as, j′ ∣ Hs as − 1

E ∏
s = t

t + Δ − 1
πs as, j ∣ Hs as − 1 Y t, Δ, j at + Δ − 1, − j, at − 1, j, a, at + 1: (t + Δ − 1), j ∣ Ht at − 1
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= E ∏
s = 1

t − 1
ps as ∣ Hs as − 1 1St at = s ∏

j′ ≠ j
∏

s = t

t + Δ − 1
ps as, j′ ∣ Hs as − 1

E W t, Δ, j at + Δ − 1 ∏
s = t

t + Δ − 1
ps as ∣ Hs as − 1 Y t, Δ, j at + Δ − 1, − j, at − 1, j, a, at + 1: (t + Δ − 1), j ∣ Ht at − 1

since the history Ht includes the moderator variable St at time t. By consistency, 

Ht At − 1 = Ht. Moreover, sequential ignorability implies that

E W t, Δ, j at + Δ − 1 ∏
s = t

t + Δ − 1
ps as ∣ Hs as − 1 Y t, Δ, j at + Δ − 1, − j, at − 1, j, a, at + 1: (t + Δ − 1), j ∣ Ht

= E W t, Δ, j at + Δ − 1 ∏
s = t

t + Δ − 1
ps as ∣ Hs as − 1 Y t, Δ, j at + Δ − 1, − j, at − 1, j, a, at + 1: (t + Δ − 1), j ∣ Ht, At, j = a

It also implies that E 1 At + k, j = a ∣ Ht + k ⋅ E Y t, Δ, j ∣ Ht + k = E Y t, Δ, j1 At + k, j = a ∣ Ht + k . 

Summing over all potential outcomes yields

E ∑
at − 1, at + 1: (t + Δ − 1)

∏
s = 1

t − 1
ps as ∣ Hs ∏

j′ ≠ j
pt at, j′ ∣ Ht 1St at = S

× E ∏
s = t

t + Δ − 1
πs as, j ∣ Ht Y t, Δ, j at + Δ − 1, − j, at − 1, j, a, at + 1: (t + Δ − 1), j ∣ Ht, At, j = a

= E ∑
at − 1, at + 1: (t + Δ − 1)

( ∏
s = 1

t − 1
ps(as Hs)) ∏

j′ ≠ j
pt at, j′ ∣ Ht 1St = s

× E ∏
s = t

t + Δ − 1
ps as ∣ Ht × W t, Δ, j at + Δ − 1

× Y t, Δ, j at + Δ − 1, − j, at − 1, j, a, at + 1: (t + Δ − 1), j ∣ Ht, At, j = a ∣ St = s

Ep, π Y t, Δ, j At + Δ − 1, − j, At − 1, j, a, At + 1: t + Δ − 1 ∣ St At − 1 = s = E E W t, Δ, jY t, Δ, j ∣ Ht, At = a ∣ St = s .

Averaging over individuals in the group j ∈ [G] group size completes the proof. The proof 

for the indirect effect follows the exact same structure. □

Appendix B.: LEMMA 4.2

We next provide a detailed proof of asymptotic normality and consistency for the weighted-

centered least squares estimator.
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Consistency for direct and indirect effects.

The solutions (α, β) that minimize equation (7) are consistent estimators for the solutions 

that minimize the following

E 1
G ∑

j = 1

G
∑

t = 1

T
W t, j × W t, Δ, j Y t, Δ, j − gt Ht

⊤α − At, j − pt 1 ∣ St ft St
⊤β 2

Differentiating the above equation with respect to α yields a set of p estimating equations.

0q′ = E 1
G ∑

j = 1

G
∑

t = 1

T
W t, j × W t, Δ, j Y t, Δ, j − gt Ht

⊤α − At, j − pt 1 ∣ St ft St
⊤β gt Ht

We note that

E W t, JW t, Δ, J At, J − pt 1 ∣ St ft St
⊤β ∣ Ht = 0.

Therefore, we have,

0p = E 1
G ∑

j = 1

G
∑

t = 1

T
gt Ht E W t, jW t, Δ, jY t, Δ, j ∣ Ht − gt Ht gt Ht

⊤α

α = E 1
G ∑

j = 1

G
∑

t = 1

T
gt Ht gt Ht

⊤
−1

E 1
G ∑

j = 1

G
∑

t = 1

T
gt Ht E W t, jW t, Δ, jY t, Δ, j ∣ Ht

We note that

E W t, JW t, Δ, J At, J − pt 1 ∣ St gt Ht
⊤α = 0, and

E W t, JW t, Δ, J At, J − pt 1 ∣ St Y t, Δ, J = pt 1 ∣ St 1 − pt 1 ∣ St βp, π, Δ t; St , and

E W t, JW t, Δ, J At, J − pt 1 ∣ St
2 ∣ St = pt 1 ∣ St 1 − pt 1 ∣ St

Now differentiating with respect to β yields

0q = E ∑
t = 1

T
W t, J Y t, Δ, J − gt Ht

⊤α − At, J − pt 1 ∣ St ft St
⊤β At, J − pt 1 ∣ St ft St
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0q = E ∑
t = 1

T
pt 1 ∣ St 1 − pt 1 ∣ St βp, π, Δ t; St − ft St

⊤β⋆ ft St

Then we have

β⋆ = E ∑
t = 1

T
pt 1 ∣ St 1 − pt 1 ∣ St ft St ft St

⊤
−1

E ∑
t = 1

T
pt 1 ∣ St 1 − pt 1 ∣ St ft St βp, π, Δ t; St

Under assumption 4.1, we have that β = β⋆ which guarantees consistency.

We next consider the indirect effect estimator. Recall that

pt
⋆ 1 ∣ St = pt 0, 1 ∣ St

pt 0, 0 ∣ St + pt 0, 1 ∣ St

is the replacement for p 1 ∣ St  in the direct effect for centering. If we make the assumption 

that pt 0, 1 ∣ St = pt 0 ∣ St pt 1 ∣ St  then pt
⋆ 1 ∣ St = pt 1 ∣ St ; however, we provide the proof in 

complete generality. The estimates that minimize equation (9) are consistent estimators for 

the solutions that minimize the following

E ∑
t = 1

T
W t, J, J′W t, Δ, J, J′ Y t, Δ, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St ft St

⊤β 2

Differentiating the above equation with respect to α yields a set of p estimating equations.

0p = E ∑
t = 1

T
W t, J, J′W t, Δ, J, J′ Y t, Δ, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St ft St

⊤β gt Ht

We note that

E W t, J, J′W t, Δ, J, J′ 1 − At, J At, J′ − pt
⋆ 1 ∣ St ft St

⊤β ∣ Ht = 0 .

Therefore, we have,

0p = E ∑
t = 1

T
gt Ht E W t, J, J′W t, Δ, J, J′Y t, Δ, J ∣ Ht − gt Ht gt Ht

⊤α

α = E 1
G ∑

j = 1

G
∑

t = 1

T
gt Ht gt Ht

⊤
−1

E ∑
t = 1

T
gt Ht E W t, J, J′, W t, Δ, J, J′Y t, Δ, J ∣ Ht

SHI et al. Page 16

Biometrika. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



First, we show that

E W t, J, J′W t, Δ, J, J′ 1 − At, J At, J′ − pt
⋆ 1 ∣ St ∣ Ht

= E W t, J, J′ 1 − At, J At, J′ − pt
⋆ 1 ∣ St ∣ Ht

= ∑
a′ ∈ 0, 1

E pt 0, a′ ∣ St a′ − pt
⋆ 1 ∣ St ∣ Ht, At = 0, At, J′ = a′

= pt 0, 1 ∣ St 1 − pt 0, 1 ∣ St
pt 0, 0 ∣ St + pt 0, 1 ∣ St

− pt 0, 0 ∣ St
pt 0, 1 ∣ St

pt 0, 0 ∣ St + pt 0, 1 ∣ St
= 0

and

E W t, J, J′W t, Δ, J, J′ 1 − At, J At, J′ − pt
⋆ 1 ∣ St

2 ∣ Ht

= E W t, J, J′ 1 − At, J At, J′ − pt
⋆ 1 ∣ St

2 ∣ Ht

= pt 0, 1 ∣ St
pt 0, 0 ∣ St

pt 0, 0 ∣ St + pt 0, 1 ∣ St

2
+ pt 0, 0 ∣ St

pt 0, 1 ∣ St
pt 0, 0 ∣ St + pt 0, 1 ∣ St

2

= pt 0, 0 ∣ St + pt 0, 1 ∣ St pt
⋆ 1 ∣ St 1 − pt

⋆ 1 ∣ St .

This implies that

E W t, J, J′W t, Δ, J, J′ 1 − At, J At, J′ − pt
⋆ 1 ∣ St gt Ht

⊤α = 0, and

E W t, J, J′W t, Δ, J, J′ 1 − At, J At, J′ − pt
⋆ 1 ∣ St Y t, Δ, J

pt 0, 0 ∣ St + pt 0, 1 ∣ St
= pt

⋆ 1 ∣ St 1 − pt
⋆ 1 ∣ St βp, π, Δ

(IE) t; St .

Now differentiating with respect to β yields

0q = E ∑
t = 1

T
pt 0, 0 ∣ St + pt 0, 1 ∣ St pt

⋆ 1 ∣ St 1 − pt
⋆ 1 ∣ St βp, π, Δ

(IE) t; St − ft St
⊤β ⋆ ⋆ ft St

Under assumption 4.5, we have that β = β ⋆ ⋆  which guarantees consistency. □
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Asymptotic Normality.

We now consider the issue of asymptotic normality. First, let

ϵt, Δ, j = Y t, Δ, j − gt Ht
⊤α⋆ − At, j − pt 1 ∣ St ft St

⊤β⋆,

θ = (α, β), and θ⋆ = α⋆, β⋆ . Since St ⊂ Ht define ℎt, j Ht
⊤ = gt Ht

⊤, At, j − pt 1 ∣ St ft St
⊤ . 

Then

M θ − θ⋆ = M ℙM
1

Gm
∑

j = 1

Gm

∑
t = 1

T
W t, jW t, Δ, jℎt, j Ht ℎt, j Ht

⊤
−1

ℙM
1

Gm
∑

j = 1

Gm

∑
t = 1

T
W t, jW t, Δ, jY t, Δ, jℎt, j Ht

−ℙM
1

Gm
∑

j = 1

Gm

∑
t = 1

T
W t, jW t, Δ, jℎt, j Ht ℎt, j Ht

⊤ θ⋆

= M E 1
G ∑

j = 1

G
∑

t = 1

T
W t, jW t, Δ, jℎt, j Ht ℎt, j Ht

⊤
−1

ℙM
1

Gm
∑

j = 1

Gm

∑
t = 1

T
W t, jW t, Δ, jϵt, Δ, jℎt, j Ht + op(1)

By definitions of α⋆ and β⋆ and the previous consistency argument

E 1
G ∑

j = 1

G
∑

t = 1

T
W t, jW t, Δ, jℎt, j Ht ℎt, j Ht

⊤ = 0

Then under moments conditions, we have asymptotic normality with variance Σθ given by

Σθ = E 1
G ∑

j = 1

G
∑

t = 1

T
W t, jW t, Δ, jℎt, j Ht ℎt, j Ht

⊤
−1

E 1
G ∑

j = 1

G
∑

t = 1

T
W t, jW t, Δ, jϵt, Δ, jℎt, j Ht × 1

G ∑
j = 1

G
∑

t = 1

T
W t, jW t, Δ, jϵt, Δ, jℎt, j Ht

⊤

E 1
G ∑

j = 1

G
∑

t = 1

T
W t, jW t, Δ, jℎt, j Ht ℎt, j Ht

⊤
−1

Due to centering, the expectation of the matrix W t, Jℎt, J Ht ℎt, J Ht
⊤ is block diagonal and the 

sub-covariance matrix ∑β can be extracted and is equal to
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Σβ = ∑
t = 1

T
E At, J − pt 1 ∣ St

2W t, JW t, Δ, Jft St ft St
⊤

−1

⋅ E ∑
t = 1

T
W t, JW t, Δ, Jϵt, Δ, J At, J − pt 1 ∣ St ft St × ∑

t = 1

T
W t, JW t, Δ, Jϵt, Δ, J At, J − pt 1 ∣ St ft St

⊤

⋅ ∑
t = 1

T
E At, J − pt 1 ∣ St

2W t, JW t, Δ, Jft St ft St
⊤

−1

The outer terms are equal to ∑t = 1
T E pt 1 ∣ St 1 − pt 1 ∣ St ft St ft St

⊤ , which gives us the 

covariance as desired.

We next consider asymptotic normality in the indirect setting. First, let

ϵt, Δ, j, j′ = Y t, Δ, j − gt Ht
⊤α ⋆ ⋆ − 1 − At, j At, j′ − pt

⋆ 1 ∣ St ft St
⊤β ⋆ ⋆ ,

θ = (α, β), and θ⋆ = α ⋆ ⋆ , β ⋆ ⋆ . Since St ⊂ Ht define 

ℎt, j, j′ Ht
⊤ = gt Ht

⊤, 1 − At, j At, j′ − pt
⋆ 1 ∣ St ft St

⊤ . Then M θ − θ ⋆ ⋆  equals

M ℙM
1

Gm ⋅ Gm − 1 ∑
j = 1

Gm

∑
j′ ≠ j

∑
t = 1

T
W t, j, j′W t, Δ, j, j′ℎt, j, j′ Ht ℎt, j, j′ Ht

⊤
−1

ℙM
1

Gm ⋅ Gm − 1 ∑
i = 1

Gm

∑
j′ ≠ j

∑
t = 1

T
W t, j, j′W t, Δ, j, j′Y t, Δ, jℎt, j, j′ Ht

−ℙM
1

Gm ⋅ Gm − 1 ∑
j = 1

Gm

∑
j′ ≠ j

∑
t = 1

T
W t, j, j′W t, Δ, j, j′ℎt, j, j′ Ht ℎt, j, j′ Ht

⊤ θ⋆

= M E 1
G(G − 1) ∑

j = 1

G
∑

j′ ≠ j
∑

t = 1

T
W t, j, j′W t, Δ, j, j′ℎt, j, j′ Ht ℎt, j, j′ Ht

⊤
−1

ℙM
1

Gm ⋅ Gm − 1 ∑
j = 1

Gm

∑
j′ ≠ j

∑
t = 1

T
W t, j, j′W t, Δ, j, j′ϵt, Δ, j, j′ℎt, j, j′ Ht + op(1)

By definitions of α ⋆ ⋆  and β ⋆ ⋆  and the previous consistency argument

E 1
G ⋅ (G − 1) ∑

j = 1

G
∑

j′ ≠ j
∑

t = 1

T
W t, j, j′W t, Δ, j, j′ℎt, j, j′ Ht ℎt, j, j′ Ht

⊤ = 0

Then under moments conditions, we have asymptotic normality with variance Σθ given by
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Σθ = E 1
G ⋅ (G − 1) ∑

j = 1

G
∑

j′ ≠ j
∑

t = 1

T
W t, j, j′W t, Δ, j, j′ℎt, j, j′ Ht ℎt, j, j′ Ht

⊤
−1

E 1
G(G − 1) ∑

j = 1

G
∑

j′ ≠ j
∑

t = 1

T
W t, j, j′W t, Δ, j, j′ϵt, Δ, j, j′ℎt, j, j′ Ht

× 1
G(G − 1) ∑

j = 1

G
∑

j′ ≠ j
∑

t = 1

T
W t, jW t, Δ, j, j′ϵt, Δ, j, j′ℎt, j, j′ Ht

⊤

E 1
G ⋅ (G − 1) ∑

j = 1

G
∑

j′ ≠ j
∑

t = 1

T
W t, j, j′W t, Δ, j, j′ℎt, j, j′ Ht ℎt, j, j′ Ht

⊤
−1

Due to centering, the expectation of the matrix W t, J, J′ℎt, J, J′ Ht ℎt, J, J′ Ht ′ is block diagonal and 

the sub-covariance matrix Σβ can be extracted and is equal to

Σβ = ∑
t = 1

T
E 1 − At, J At, J′ − pt

⋆ 1 ∣ St
2W t, J, J′W t, Δ, J, J′ft St ft St

⊤
−1

⋅ E ∑
t = 1

T
W t, J, J′W t, Δ, J, J′ϵt, Δ, J, J′ 1 − At, J At, J′ − pt 1 ∣ St ft St

× ∑
t = 1

T
W t, J, JW t, Δ, J, J′ϵt, Δ, J, J′ 1 − At, J At, J′ − pt

⋆ 1 ∣ St ft St
⊤

⋅ ∑
t = 1

T
E 1 − At, J At, J′ − pt 1 ∣ St

2W t, J, J′W t, Δ, J, J′ft St ft St
⊤

−1

as desired.

Appendix C.: ADDITIONAL SIMULATION DETAILS

Appendix D.: SIMULATION FOR LAG EFFECT ESTIMATION

D.1. Simulation setup.

To evaluate the proposed estimator with Δ > 1, we extend the simulation setup in the main 

paper. Consider an MRT with the same setting, in addition to βΔ0 = − 0.1 and βΔ1 = 0.2, thus, 

Δ = 2 and the proximal response is:

Y t, 2 = θ1 St + 1−E St + 1 ∣ At, Ht + At − pt 1 ∣ Ht βΔ0 + βΔ1St

+ At + 1 − pt + 1 1 ∣ Ht + 1 β10 + β11St + 1 + et + 2 . (11)

Here we identify two prespecified future (after time t) ”reference” treatment regimes that 

define the distribution for At + 1, …, At + Δ − 1. The first one assigns treatment with probabilities 

between zero and one and corresponds to the treatment assignment distribution, and the 

second one chooses the reference regime Au = 1 for u > t, with probability one. In this case, 

the lag Δ treatment effect represents the impact of a sequential treatments on the proximal 

response Δ time units later.
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Simulation Scenario I.

The first scenario estimates βΔ
∗ when an individual-level moderator exists and proximal 

responses share a random cluster-level intercept term that does not interact with treatment. 

The data generative model (11) incorporates a cluster-level random-intercept eg ∼ N(0, 0.5). 
Table 5 presents the results, which shows under both future treatment policies, the proposed 

C-WCLS approach achieve nearly unbiasedness and proper coverage.

Simulation Scenario II.

In the second scenario, we extend scenario I to include a random cluster-level intercept term 

that interacts with the treatment by considering the linear model with the additional term 

bg
′ × At, j − pt 1 ∣ Ht, j  where bg

′ ∼ N(0, 0.1). Table 5 presents the results which demonstrate 

that if cluster-level random effects interact with the previous treatment, then both policies 

produce nearly unbiased estimates and the proposed method achieves the nominal 95% 

coverage probability.

Simulation Scenario III.

In the third scenario, the lag treatment effect for an individual is assumed to depend on 

the average state of all individuals in the cluster, i.e., define the cluster-level moderator 

St, g = 1
Gg

∑j = 1
Gg St, j and consider the linear model from Scenario II with the additional term 

St, g × At, j − pt 1 ∣ Ht, j . The proposed estimator again achieves the nominal 95% coverage 

probability (see Scenario III, Table 5).

D.2. Lag Treatment Effect Calculation. Sequential Treatment Regime.

As stated by the sequential treatment reference regime, we have the weight 

W t, Δ = π At + 1 ∣ Ht + 1
p At + 1 ∣ Ht + 1

= 1 At + 1 = 1
p At + 1 ∣ Ht + 1

. Thus, the true lag Δ = 2 treatment effect can simply be 

calculated as:

βt, 2 = E Y t, 2
1 At + 1 = 1

p At + 1 ∣ Ht + 1
∣ Ht, At = 1 − E Y t, 2

1 At + 1 = 1
p At + 1 ∣ Ht + 1

∣ Ht, At = 0 (12)

Under our simulation setting, the term E Y t, 2
1 At + 1 = 1

p At + 1 ∣ Ht + 1
∣ Ht, At = a  is equal to:

E 0.8St + 1 + At − pt 1 ∣ Ht −0.1 + 0.2St + At + 1 − pt + 1 1 ∣ Ht + 1 −0.2 + 0.2St + 1

× 1 At + 1 = 1
p At + 1 ∣ Ht + 1

∣ Ht, At = a

Splitting the expectation above to three terms, we have the following calculation:

E 0.8St + 1
1 At + 1 = 1

p At + 1 ∣ Ht + 1
∣ Ht, At = a = 0 (13)
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E At − pt 1 ∣ Ht −0.1 + 0.2St
1 At + 1 = 1

p At + 1 ∣ Ht + 1
∣ Ht, At = a

= a − pt 1 ∣ Ht −0.1 + 0.2St E 1 At + 1 = 1
p At + 1 ∣ Ht + 1

∣ Ht, At = a
= a − pt 1 ∣ Ht −0.1 + 0.2St

(14)

E At + 1 − pt + 1 1 ∣ Ht + 1 −0.2 + 0.2St + 1
1 At + 1 = 1

p At + 1 ∣ Ht + 1
∣ Ht, At = a

= E −0.2 + 0.2St + 1 E At + 1 − pt + 1 1 ∣ Ht + 1
1 At + 1 = 1

p At + 1 ∣ Ht + 1
∣ Ht + 1 ∣ Ht, At = a

= E −0.2 + 0.2St + 1 1 − pt + 1 1 ∣ Ht + 1 ∣ Ht, At = a
= − 0.2 + 0.2 ⋅ E 1 − St + 1 ⋅ expit −0.8At + 0.8St + 1 ∣ Ht, At = a
= − 0.2 + 0.2 ⋅ expit( − 0.8a − 0.8)

(15)

Therefore,

E Y t, 2
1 At + 1 = 1

p At + 1 ∣ Ht + 1
∣ Ht, At = a = (13) + (14) + (15)

= a − pt 1 ∣ Ht −0.1 + 0.2St − 0.2 + 0.2 ⋅ expit( − 0.8a − 0.8)

and the true lag Δ = 2 treatment effect under sequential treatment regime is equal to:

βt, 2 = E Y t, 2
1 At + 1 = 1

p At + 1 ∣ Ht + 1
∣ Ht, At = 1 − E Y t, 2

1 At + 1 = 1
p At + 1 ∣ Ht + 1

∣ Ht, At = 0
= − 0.1 + 0.2St + 0.2 ⋅ expit( − 0.8 − 0.8) − 0.2 ⋅ expit( − 0.8)
= − 0.128 + 0.2St

(16)

Observed Distribution Treatment Regime.

As specified by this reference treatment regime, we have future treatment reference 

distribution the same with the distribution of treatments in the data we have at hand, i.e., 

π At + 1 ∣ Ht + 1 = p At + 1 ∣ Ht + 1  and W t, Δ = 1. Thus, the true lag Δ = 2 treatment effect can be 

calculated as:

βt, 2
′ = E Y t, 2 ∣ Ht, At = 1 − E Y t, 2 ∣ Ht, At = 0 (17)

Similar as above, under our simulation setting, the term E Y t, 2 ∣ Ht, At = a  is equal to:

E 0.8St + 1 + At − pt 1 ∣ Ht −0.1 + 0.2St + At + 1 − pt + 1 1 ∣ Ht + 1 −0.2 + 0.2St + 1 ∣ Ht, At = a
= (18) + (19) + (20)

The three terms are calculated below:

E 0.8St + 1 ∣ Ht, At = a = 0 (18)

E At − pt 1 ∣ Ht −0.1 + 0.2St ∣ Ht, At = a = a − pt 1 ∣ Ht −0.1 + 0.2St (19)
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E At + 1 − pt + 1 1 ∣ Ht + 1 −0.2 + 0.2St + 1 ∣ Ht, At = a
= E −0.2 + 0.2St + 1 E At + 1 − pt + 1 1 ∣ Ht + 1 ∣ Ht + 1 ∣ Ht, At = a
= 0

(20)

Therefore,

E Y t, 2 ∣ Ht, At = a = a − pt 1 ∣ Ht −0.1 + 0.2St

and the true lag Δ = 2 treatment effect under observed treatment distribution regime is equal 

to:

βt, 2
′ = E Y t, 2 ∣ Ht, At = 1 − E Y t, 2 ∣ Ht, At = 0

= − 0.1 + 0.2St
(21)

D.3. Marginal Lag Treatment Effect Simulation Results.

The choice for prespecified future reference treatment regimes is of vital importance and 

often time yields to different treatment effect estimations. Following the derivations above, 

the fully marginal lag Δ = 2 treatment effect is −0.128 for sequential treatment reference 

regime, and −0.1 for observed treatment distribution regime. Table 5 presents the simulation 

results.

Appendix E.: PROOF OF LEMMA 4.4

Proof.

Consider the W-matrix for the direct effect asymptotic variance,

1
G2 ∑

t, t′
∑
j, j′

E W t, jW t, Δ, jϵt, Δ, j At, j − pt 1 ∣ St W t′, j′W t′, Δ, j′ϵt′, Δ, j′ At′, j′ − pt 1 ∣ St′ ft St ft′ St′
⊤

Consider the cross-terms with j ≠ j′ and without loss of generality assume t ≥ t′, then

E ∑
a, a′

pt a ∣ St a − pt 1 ∣ St pt′ a′ ∣ St′ a′ − pt′ 1 ∣ St′

E E W t, Δ, jϵt, Δ, jW t′, Δ, j′ϵt′, Δ, j′ ∣ Ht, j, At, j = a, Ht′, j′, At′, j′ = a′ ∣ St, St′ ft St ft′ St′
⊤ .

Under the assumption of the error cross-term being constant in a and a′ we can re-write the 

above as:
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= E ∑
a, a′

pt a ∣ St a − pt 1 ∣ St pt′ a′ ∣ St′ a′ − pt′ 1 ∣ St′ ψ St, St′ ft St ft′ St′
⊤

= E ψ St, St′ ft St ft′ St′
⊤ ∑

a, a′
pt a ∣ St a − pt 1 ∣ St pt′ a′ ∣ St′ a′ − pt′ 1 ∣ St′

= 0
= E ψ St, St′ ft St ft′ St′

⊤ ⋅ 0 = 0.

Therefore, we have that the W-matrix simplifies to

E ∑
t = 1

T
W t, Jϵt, J At, J − pt 1 ∣ St ft St × ∑

t = 1

T
W t, Jϵt, J At, J − pt 1 ∣ St ft St

⊤

= E 1
G ∑

j = 1

G
∑

t = 1

T
W t, Jϵt, J At, J − pt 1 ∣ St ft St × ∑

t = 1

T
W t, Jϵt, J At, J − pt 1 ∣ St ft St

⊤

= E ∑
t = 1

T
W tϵt At − pt 1 ∣ St ft St × ∑

t = 1

T
W tϵt At − pt 1 ∣ St ft St

⊤

which is the W matrix as in the standard MRT analysis. □

Appendix F.: SMALL SAMPLE SIZE ADJUSTMENT FOR COVARIANCE ESTIMATION

The robust sandwich covariance estimator [24] for the entire variance matrix is given by 

Q−1ΛQ−1. The first term, Q, is given by

∑
m = 1

M 1
Gm

∑
j = 1

Gm
Dj, m

⊤ W j, mDj, m

where Dj, m is the model matrix for individual j in group g associated with equation (7), and 

W j, m is a diagonal matrix of individual weights. The middle term Λ is given by

∑
m = 1

M 1
Gm

2 ∑
i, j = 1

Gm
Di, m

⊤ W i, m Ii, m − Hi, m
−1ei, mej, m

⊤ Ij, m − Hj, m
−1W j, mDj, m

where Ii is an identity matrix of correct dimension, ei is the individual-specific residual 

vector and

Hj, m = Dj, m ∑
m = 1

M 1
Gm

∑
j = 1

Gm
Dj, m

⊤ W j, mDj, m

−1
Dj, m

⊤ W j, m

From Q−1ΛQ−1 we extract Σβ.
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Appendix G.: ADDITIONAL ANALYSIS OF IHS

G.1. Additional Information for Figure 3.

Figure 3 presented a visually comparison between WCLS and C-WCLS in terms of the 

moderation of average previous week’s proximal outcomes on the effect of notifications on 

average weekly mood scores, log step counts, and log sleep counts respectively in IHS. Here 

we attach the table for numerical comparison.

G.2. Lagged Treatment Effect.

We implement an extended investigation on the lag Δ = 2 treatment effect of the targeted 

mobile notifications. The same two models: β2 t; St = β0 + β1 ⋅ Y t, j + β2Y t, − j are applied to 

moderation analyses.

The first set of moderation analyses considers the standard moderation analysis where 

only individual-level moderators are included (i.e., β2 = 0), with or without accounting for 

cluster-level moderation effect heterogeneity. Figure 4 and Figure 5 visualize the estimates 

across the range of prior week’s proximal response for both our proposed approach and 

the WCLS approach from [3]. In this case, the effects do not change too much for all the 

analysis;

The second moderation analysis lets β2 be a free parameter. Table 7 and Table 8 present the 

results. Here, we see that the constant term β0 in the mood analysis becomes significant, 

while the new term β2 is insignificant. The results suggest the average proximal outcomes of 

others in the cluster have a limited moderate effect on notifications, however, the lag impact 

of a notification on mood is positive and significant.

Appendix H.: ADDITIONAL DETAILS ON THE INDIRECT EFFECT

Weights used in the estimation of the indirect effect is a natural extension of [3]. As 

in Section 4.3, the weight W t, j, j′ at decision time t for the jth individual is equal to 
p At, j, At, j′ ∣ St
pt At, j, At, j′ ∣ Ht

 where pt a, a′ ∣ St ∈ (0, 1) is arbitrary as long as it does not depend on terms 

in Ht other than St, and p At, j, At, j′ ∣ Ht  is the marginal probability that individuals j and j′
receive treatments At, j and At, j′ respectively given Ht.

In the simulation, the treatment individuals j and j′ receive At, j and At, j′ are mutually 

independent conditioning on the previous history. thus, the denominator of W t, j, j, can be 

factorized into:

p At, j, At, j′ ∣ Ht = p At, j ∣ Ht p At, j′ ∣ Ht

Besides, the numerator of W t, j, j, is defined as the empirical frequency of the treatment pair 

a, a′ , which takes the value from (0, 0), (0, 1), (1, 0), (1, 1) . Here we denote it as
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pt At, j, At, j′ ∣ St = pt At, j, At, j′ ∣ St

Therefore, the weight we used in the simulation is constructed as:

W t, j, j′ = pt At, j, At, j′ ∣ St
p At, j ∣ Ht p At, j′ ∣ Ht

When the numerators are estimated using the observed data, the variance-covariance must 

account for this. Throughout we allow for the setting in which individuals are not always 

available. For completeness we provide results for a more general estimating function which 

can be used with observational (non-randomized At) treatments, under the assumption of 

sequential ignorability and assuming the data analyst is able to correctly model and estimate 

the treatment probability p At, j, At, j′ ∣ Ht . We indicate how the results are simplified by use of 

data from an MRT.

Denote the parameterized treatment probability by pt a, a′ ∣ Ht; η  (with parameter η); note η
is known in an MRT. Denote the parameterized numerator of the weights by pt a, a′ ∣ St; ρ
(with parameter ρ). The proof below allows the data analyst to use a pt with an estimated 

parameter ρ or to pre-specify ρ as desired. Weuse asuperscript of ⋆ to denote limiting values 

of estimated parameters (e.g. η⋆, ρ⋆). Then the more general version of the estimating 

equation UW (α, β; η, ρ) is:

∑
t = 1

T
Y t, 1, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

⊤β It, JIt, J′, W t, J, J′ At, J, At, J′, Ht; η, ρ ×

gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

Note W t, , J′ in the body of the paper is replaced here by W t, J, J′ At, Ht; η, ρ , and η, ρ are 

estimators.

Treatment Probability Model:

If the data is observational then we assume: pt a, a′ ∣ Ht; η  is a correctly specified 

model for ℙ a, a′ ∣ Ht, It, J = 1, It, J′ = 1 . Let η⋆ be the true value of η; that is, 

Pr At, J, At, J ∣ Ht, It, J = 1, It, J′ = 1 = pt a, a′ ∣ Ht; η⋆  Assume that the estimator of η, say 

η, satisfies ℙnUD(η) = 0 and n η − η⋆ = E U̇D η⋆ −1ℙnUD η⋆ + oP(1). Thus n η − η⋆

converges in distribution to a mean zero, normal random vector with variance-covaraince 

matrix given by E U̇D η⋆ −1E UD η⋆ ⊗ 2 E U̇D η⋆ −1 ⊤
, which has finite entries. Assume 

that ℙn U̇D(η)  is a consistent estimator of E U̇D η⋆ . Assume there exists finite constants, 

bD > 0 and BD < 1 such that each bD < pt a, a′ ∣ Ht; η⋆ < BD a.s.

If the data analyst elects to use a parameterized and estimated pt 1 ∣ St, ρ , then we assume:
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Numerator of Weights Probability Model:

Suppose the estimator ρ solves an estimating equation: ℙnUN(ρ) = 0. Assume that, for a 

finite value of ρ, say ρ⋆ and n ρ − ρ⋆ = E U̇N ρ⋆ −1 n ℙn − P UN ρ⋆ + oP(1) where the 

matrix, E U̇N ρ⋆  is positive definite. Assume n ℙn − P UN ρ⋆  converges in distribution to 

a mean zero, normal random vector with variance-covariance matrix given by E UN ρ⋆ ⊗ 2

which has finite entries. Assume that ℙnU̇N(ρ) is a consistent estimator of E U̇N ρ⋆ . Assume 

0 < ρ⋆ < 1.

Proof.

The solution to ℙnUW (α, β; η, ρ) = 0 gives the estimator:

α
β

= ℙnU̇W (η, ρ) −1ℙn ∑
t = 1

T
It, JIt, J′W t, J, J′ At, J, At, J′, Ht; η, ρ Y t, 1, J ×

gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St ft St

where

U̇W (η, ρ) = ∑
t = 1

T
It, JIt, J′W t, J, J′ At, J, At, J′, Ht; η, ρ

gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St ft St

⊗ 2

Define

α′
β′ = E U̇W η⋆, ρ⋆ −1E ∑

t = 1

T
It, JIt, J′W t, J, J′ At, J, At, J′, Ht; η⋆, ρ⋆ Y t, 1, J

gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St ft St

Then standard statistical arguments can be used to show that n α − α′, β − β′  converges in 

distribution to a normal, mean zero, random vector with variance-covariance matrix given 

by:

E U̇W η⋆, ρ⋆ −1ΣW α′, β′; η⋆, ρ⋆ E U̇W η⋆, ρ⋆ −1

where

ΣW (α, β; η, ρ) = E UW (α, β; η, ρ) + ΣW , D(α, β; η, ρ) E U̇D(η) −1UD(η) +

ΣW , N(α, β; η, ρ) E U̇N(ρ) −1UN(ρ)
⊗ 2

with
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ΣW , D(α, β; η, ρ) = E ∑
t = 1

T
Y t, 1, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

⊤β It, JIt, J′

W t, J, J′ At, J, At, J′, Ht; η, ρ
gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

dlogpt
⋆ At, J′ ∣ Ht; η

dη
⊤

,

and

ΣW , N(α, β; η, ρ) = E ∑
t = 1

T
Y t, 1, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

⊤β It, JIt, J′

W t, J, J′ At, J, At, J′, Ht; η, ρ
gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

dlogpt
⋆ At, J′ ∣ St; ρ

dρ
⊤

+E ∑
t = 1

T
Y t, 1, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

⊤β It, JIt, J′

W t, J, J′ At, J, At, J′, Ht; η, ρ
0

− 1 − At, J pt
⋆ 1 ∣ St; ρ ft St

dlogpt
⋆ 1 ∣ St; ρ
dρ

⊤

+E ∑
t = 1

T
1 − At, J pt

⋆ 1 ∣ St; ρ ft St
⊤βIt, JIt, J′W t, J, J′ At, J, At, J′, Ht; η, ρ

gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

dlogpt
⋆ 1 ∣ St; ρ
dρ

⊤

In our simulation, an individual’s randomization probabilities only depends on their 

observed history, then pt
⋆ 1 |St, j′ = pt 1 ∣ St, j′ . Since the data is from an MRT (we know 

pt) and we pre-specify (not estimate) pt, then ΣW = E UW (α, β) ⊗ 2  greatly simplifying the 

variance-covaraince matrix.

A consistent estimator of the variance-covariance matrix is given by:

ℙn U̇W(η, ρ) −1ΣW(α, β ; η, ρ) ℙn U̇W(η, ρ) −1
(22)

where

ΣW (α, β; η, ρ) = ℙn UW (α, β; η, ρ) + ΣW , D(α, β; η, ρ) ℙn U̇D(η) −1UD(η) +

ΣW , N(α, β; η, ρ) ℙn U̇N(ρ) −1UN(ρ)
⊗ 2

with

ΣW , D(α, β; η, ρ) = ℙn ∑
t = 1

T
Y t, 1, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

⊤β It, JIt, J′

W t, J, J′ At, Ht; η, ρ
gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

dlogpt
⋆ At, J′ ∣ Ht; η

dη
′

,

and
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ΣW , N(α, β; η, ρ) = ℙn ∑
t = 1

T
Y t, 1, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

⊤β It, JIt, J′

W t, J, J′ At, J, At, J′, Ht; η, ρ
gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

dlogpt
⋆ At, J′ ∣ St; ρ

dρ
⊤

+ℙn ∑
t = 1

T
Y t, 1, J − gt Ht

⊤α − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

⊤β It, JIt, J′

W t, J, J′ At, J, At, J′, Ht; η, ρ
0

− 1 − At, J pt
⋆ 1 ∣ St; ρ ft St

dlogpt
⋆ 1 ∣ St; ρ
dρ

⊤

+ℙn ∑
t = 1

T
1 − At, J pt

⋆ 1 ∣ St; ρ ft St
⊤βIt, JIt, J′W t, J, J′ At, J, At, J′, Ht; η, ρ

gt Ht

1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ ft St

dlogpt
⋆ 1 ∣ St; ρ
dρ

⊤

It remains to show that β′ = β ⋆ ⋆ . Since E UW α′, β′; η⋆, ρ⋆ = 0,

0 = E ∑
t = 1

T
Y t, 1, J − gt Ht

⊤α′ − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ⋆ ft St

⊤β′ It, JIt, J′

W t, J, J′ At, J, At, J′, Ht; η⋆, ρ⋆ 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ⋆ ft St

= E ∑
t = 1

T
E Y t, 1 ∣ At, J, At, J′, Ht, It, JIt, J′ = 1 − gt Ht

⊤α′ − 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ⋆ ft St

⊤β′

It, JIt, J′W t, J, J′ At, J, At, J′, Ht; η⋆, ρ⋆ 1 − At, J At, J′ − pt
⋆ 1 ∣ St; ρ⋆ ft St

= E ∑
t = 1

T
∑

a′ ∈ [0, 1]
E Y t, 1 ∣ At, J = 0, At, J′ = a′, Ht, It, JIt, J′ = 1 − gt Ht

⊤α′ −

a′ − pt
⋆ 1 ∣ St; ρ⋆ ft St

⊤β′ It, JIt, J′pt 0, a′ ∣ St; ρ⋆ a′ − pt
⋆ 1 ∣ St; ρ⋆ ft St

where the last equality averages out over At, J′. The above simplifies to:

0 = E ∑
t = 1

T
∑

a′ ∈ 0, 1
E Y t, 1 ∣ At, J = 0, At, J′ = a′, Ht, It, JIt, J′ = 1 − gt Ht

⊤α′ −

a′ − pt
⋆ 1 ∣ St; ρ⋆ ft St

⊤β′ It, JIt, J′pt 0, a′ ∣ St; ρ⋆ a′ − pt
⋆ 1 ∣ St; ρ⋆ ft St

= E ∑
t = 1

T
E Y t, 1 ∣ At, J = 0, At, J′ = 1, Ht, It, JIt, J′ = 1 − gt Ht

⊤α′ −

1 − pt
⋆ 1 ∣ St; ρ⋆ ft St

⊤β′ It, JIt, J′pt 0, 1 ∣ St; ρ⋆ 1 − pt
⋆ 1 ∣ St; ρ⋆ ft St

+E ∑
t = 1

T
E Y t, 1 ∣ At, J = 0, At, J′ = 0, Ht, It, JIt, J′ = 1 − gt Ht

⊤α′ −

−pt
⋆ 1 ∣ St; ρ⋆ ft St

⊤β′ It, JIt, J′pt 0, 0 ∣ St; ρ⋆ −pt
⋆ 1 ∣ St; ρ⋆ ft St

= E ∑
t = 1

T
E Y t, 1 ∣ At, J = 0, At, J′ = 1, Ht, It, JIt, J′ = 1 − E Y t, 1 ∣ At, J = 0, At, J′ = 0, Ht, It, JIt, J′ = 1

−ft St
⊤β′ ft St γ η⋆, ρ⋆ It, JIt, J′

SHI et al. Page 29

Biometrika. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where γ η⋆, ρ⋆ = pt 0, 1 ∣ St 1 − pt
⋆ 1 ∣ St; ρ⋆ = pt 0, 0 ∣ St pt

⋆ 1 ∣ St; ρ⋆ . From this we obtain:

0 = E ∑
t = 1

T
ft St γ η⋆, ρ⋆ It, JIt, J′ E E Y t, 1 ∣ At, J = 0, At, J′ = 1, Ht, It, JIt, J′ = 1 −

E Y t, 1 ∣ At, J = 0, At, J′ = 0, Ht, It, JIt, J′ = 1 ∣ St, It, JIt, J′ = 1 − ft St
⊤β′

Thus

β′ = EU̇W η⋆, ρ⋆
(2, 2)

−1 E ∑
t = 1

T
ft St γ η⋆, ρ⋆ It, JIt, J′E

E Y t, 1 ∣ At, J = 0, At, J′ = 1, Ht, It, JIt, J′ = 1 −
E Y t, 1 ∣ At, J = 0, At, J′ = 0, Ht,It, JIt, J′ = 1 ∣ St, It, JIt, J′

= 1

(23)

where

EU̇W η⋆, ρ⋆
(2, 2) = E ∑

t = 1

T
ft St ft St

⊤γ η⋆, ρ⋆ It, JIt, J′

□

Appendix I.: CONNECTION TO A SEMIPARAMETRIC EFFICIENT ESTIMATOR

A special case of both effects is when St is set to the observed history Ht and Δ = 1. In this 

case, estimators for this fully conditional case can be derived using techniques from [25] 

based on semiparametric efficiency theory [26, 27] under a lack of interference assumption. 

Proofs can be found in Appendix I.1.

Lemma I.1.

Under the semiparametric model (4.1), Assumption 3.2, and the stronger lack of interference 

assumption, the semiparametric efficient score Seff(β) for β is

1
G ∑

j = 1

G
∑
t = 1

T
Y t, 1, j − μ Ht, j − At, j − pt 1 ∣ Ht, j ft Ht, j

⊤β Kt, j At, j − pt 1 ∣ Ht, j f

Ht, j ,
(24)

where

μt Ht, j = E Y t, 1, j ∣ Ht, j , and σt + 1
2 Ht, j, At, j = V ar Y t, 1, j ∣ Ht, j, At, j

Kt, j = 1
σt + 1, j

2 Ht, j, 1 + pt 1 ∣ Ht, j
pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 1 + 1 − pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 0 ×

1
σt + 1, j

2 Ht, j, 1 − 1
σt + 1, j

2 Ht, j, 0 .

Semiparametric efficiency theory states that the solution β  to ℙn S(β) = 0 achieves the 

semiparametric efficiency bound [26]. Corollary I.2 motivates the C-WCLS criterion 
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for the direct effect given by (7) from the semiparametric efficiency perspective under 

particular working homoskedastic assumptions on the conditional variance σt + 1
2 Ht, j, At, j

and a working model gt Ht, j
⊤α for the unknown quantity μ Ht, j . While this establishes a 

connection between the C-WCLS criterion and semiparametric efficiency scores, more work 

on efficiency theory for causal excursions effects is considered important future work.

Corollary I.2.

Assuming Var Y t, 1, j ∣ Ht, j, At, j : = σt + 1
2 Ht, j , i.e., is constant in the second argument At, j, the 

weight Kt, j is equal to σt + 1
2 Ht, j

−1 and the semiparametric efficient score (24) weights each 

decision time by the corresponding conditional variance. Under the further assumption that 
this variance does not depend on the history, i.e., σt + 1

2 Ht, j = σ2, and a working model for 

the conditional mean μ Ht, j : = g Ht, j
⊤α, criterion (7) is equivalent to the semiparametric 

efficient score for the fully conditional effect.

I.1. Proof of semiparametric efficiency.

In this section, we assume lack of interference and therefore the potential outcomes can be 

written to only depend on one’s observed history. Then we consider a semiparametric model 

characterized by the following assumptions:

Assumption I.3.

For all ≤ t ≤ T, E Y t, 1, J At − 1, J, 0 ∣ Ht, J, At, J = E Y t, 1, J At − 1, J, 0 ∣ Ht, J

Assumption I.4.

Assume that there exists a function γ() and a true parameter ψ0 ∈ ℝp, such that for any 

1 ≤ t ≤ T ,

E Y t, 1, J At − 1, J, at ∣ zt, at − E Y t, 1, J At − 1, J, 0 ∣ zt, at = γ t + 1, zt, at; ψ

We next gather the definitions necessary for defining the semiparametric efficient score:

1. The longitudinal data is O1, A1, Y 2, O2, A2, …, OT, AT, Y t, 1 where Ot is the time-varying 

covariates on all individuals in the cluster, At is the treatment assignments for the 

cluster, and Y t, 1 is the set of proximal outcomes on the cluster

2. Zt, j = Y t, j, Ot, j

3. Ht, j = At − 1, j, Zt, j

4. V t, j = Ht, j, At, j

5. Ut + 1, j(ψ) = Y t, 1, J − γ t + 1, zt, at; ψ

6. U̇ t + 1, j(ψ) = Ut + 1, j − E Ut + 1, j ∣ Ht, j
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7. W t, j = Var Ut + 1, j ψ0 ∣ V t, j
−1

Then by [4, Lemma I.8], a general form of the efficient score is

Seff ψ0 = − 1
G ∑

j = 1

G
∑

t = 1

T
ρt, jU̇ t + 1, j ψ0

where

ρt, j = E ∂Ut + 1, j
∂ψ ∣ V t, j − E ∂Ut + 1, j

∂ψ ∣ Ht, j E W t, j ∣ Ht, j
−1 W t, j

Note that E ρt, j ∣ Ht = 0. Therefore by [4, Lemma I.1] we have

ρt, j = ρ At, j = 1 − ρ At, j = 1 At, j − pt 1 ∣ Ht, j

where ρ At, j = a  denotes ρt, j evaluated at At, j = a.

We now calculate these terms based on the above notation. Under 

γ t + 1, zt, at; ψ0 = At, jf Ht, j
⊤ψ, we have

∂Ut + 1, j ψ0
∂ψ = − At, jf Ht , and U̇ t + 1, j(ψ) = Y t, 1, j − μt Ht + At, j − pt 1 ∣ Ht ft Ht, j

⊤ψ

and hence we have

E ∂Ut + 1, j ψ0
∂ψ ∣ Ht, j, At, j = 1 = − f Ht, j

E ∂Ut + 1, j ψ0
∂ψ ∣ Ht, j, At, j = 0 = 0

Var Ut + 1, j ψ0 ∣ V t, j = Var Y t, 1, J ∣ V t, j = :σt + 1, j
2 Ht, j, At, j

Then

E W t, j ∣ Ht, j = pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 1 + 1 − pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 0

and we can express

ρ At, j = 1 = − 1 − pt 1 ∣ Ht, j
pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 1 + 1 − pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 0

f Ht, j

σt + 1, j
2 Ht, j, 1
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ρ At, j = 0 = − 0 − pt 1 ∣ Ht, j
pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 1 + 1 − pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 0

f Ht, j

σt + 1, j
2 Ht, j, 1

Therefore ρt, j is given by

1
σt + 1, j

2 Ht, j, 1 + pt 1 ∣ Ht, j
pt 1 ∣ Ht, j

σt + 1, j
2 Ht, j, 1 + 1 − pt 1 ∣ Ht

σt + 1, j
2 Ht, j, 0 ×

1
σt + 1, j

2 Ht, j, 1 − 1
σt + 1, j

2 Ht, j, 0 × At, j − pt 1 ∣ Ht, j f Ht, j .

Moreover, under the simplifying assumption σt + 1, j
2 Ht, j, a = σt + 1, j

2 Ht, j  we have

ρt, j = 1
σt + 1, j

2 Ht
× At, j − pt 1 ∣ Ht, j f Ht, j .

Under the even stronger assumption σt + 1, j
2 Ht, j : = σ2 we have

Seff ψ0 = σ2
G ∑

j = 1

G
∑

t = 1

T
Y t, 1, J − μt Ht, j − At, j − pt 1 ∣ Ht, j ft Ht, j

⊤β ×

× At, j − pt 1 ∣ Ht, j ft Ht, j .

Appendix J.: CODE TO REPLICATE SIMULATION AND CASE STUDY RESULTS

The R code used to generate the simulation experiments and case study results in this paper 

can be obtained at https://github.com/Herashi/MRT-mHealthModeration.
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Figure 1. 
Heterogeneous estimated causal excursion effects across the largest M = 19 clusters defined 

as specialties of size G ≥ 6; the estimates are obtained using cluster-specific applications of 

the existing WCLS method.
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Figure 2. 
C-WCLS offers valid 95% confidence intervals in Scenario II. WCLS does not. Empirical 

coverage varies by group size (G) (left), and relative variance of bg as compared to eg (right).
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Figure 3. 
Moderation of average previous week’s proximal responses on the effect of notifications on 

average weekly mood scores, log step counts, and log sleep counts respectively in IHS.
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Figure 4. 
Moderation analysis of lag Δ = 2 effect of notifications on average weekly mood scores, log 

step counts, and log sleep counts respectively under the sequential treatment policy.
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Figure 5. 
Moderation analysis of lag Δ = 2 effect of notifications on average weekly mood scores, log 

step counts, and log sleep counts respectively under the observed treatment distribution.
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Table 1.

Simulation: C-WCLS and WCLS comparison for Scenario I-IV.

Scenario Estimator # of Clusters Cluster Size Estimate SE RMSE CP

I

C-WCLS
WCLS

C-WCLS
WCLS

50
50

10
25

−0.198
−0.198 
−0.198
−0.198

0.025
0.026
0.016
0.016

0.027
0.026
0.016
0.017

0.935
0.944
0.950
0.937

II

C-WCLS
WCLS

C-WCLS
WCLS

50
50

10
25

−0.200
−0.200 
−0.200
−0.199

0.051
0.029
0.047
0.019

0.049
0.052
0.049
0.048

0.957
0.723
0.947
0.555

III

C-WCLS
WCLS

C-WCLS
WCLS

50
50

10
25

−0.198
−0.199
−0.199
−0.200

0.051
0.029
0.047
0.018

0.052
0.052
0.048
0.048

0.941
0.742
0.946
0.561

IV C-WCLS 50 10
25

−0.097
−0.100

0.020
0.013

0.021
0.013

0.953
0.942
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Table 2.

Moderation analysis for the direct and indirect effect of notifications on average weekly mood scores, log step 

counts, and log sleep minutes respectively in IHS. Coefficient β0 represents the indirect effect under At, j = 0, 

while the coefficient β1 represents the indirect effect under At, j = 1.

Direct Effect Indirect Effect

Variables Estimate Std. Error p-value Variables Estimate Std. Error p-value

Mood

Intercept β0 0.563 0.251 0.028 β0 −0.054 0.045 0.883

Prior Week Avg. β1 −0.066 0.027 0.016 β1 −0.015 0.031 0.684

Cluster Pr. Wk. Avg. β2 −0.016 0.017 0.349

Steps

Intercept β0 1.165 0.782 0.139 β0 −0.038 0.134 0.612

Prior Week Avg. β1 −0.048 0.036 0.177 β1 0.019 0.090 0.417

Cluster Pr. Wk. Avg. β2 −0.010 0.014 0.482

Sleep

Intercept β0 1.545 0.779 0.050 β0 0.007 0.096 0.469

Prior Week Avg. β1 −0.081 0.039 0.037 β1 −0.004 0.065 0.526

Cluster Pr. Wk. Avg. β2 0.000 0.006 0.961
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Table 3.

Additional simulation results: cluster-based weighted-centered least squares (C-WCLS) and weighted-least 

squares estimator (WCLS) comparison for Scenarios I, II, III, and IV.

Scenario Estimator # of Clusters Cluster Size Estimate SE RMSE CP

I

C-WCLS
25 10

−0.198 0.035 0.036 0.945

WCLS −0.200 0.036 0.035 0.956

C-WCLS
25 25

−0.199 0.022 0.023 0.948

WCLS −0.199 0.023 0.022 0.958

C-WCLS
50 10

−0.198 0.025 0.027 0.935

WCLS −0.198 0.026 0.026 0.944

C-WCLS
50 25

−0.198 0.016 0.016 0.950

WCLS −0.198 0.016 0.017 0.937

C-WCLS
100 10

−0.199 0.018 0.018 0.949

WCLS −0.198 0.018 0.019 0.949

C-WCLS
100 25

−0.198 0.011 0.012 0.941

WCLS −0.199 0.011 0.012 0.944

II

C-WCLS
25 10

−0.199 0.070 0.076 0.935

WCLS −0.201 0.041 0.076 0.710

C-WCLS
25 25

−0.196 0.065 0.071 0.933

WCLS −0.200 0.026 0.065 0.557

C-WCLS
50 10

−0.200 0.051 0.049 0.957

WCLS −0.200 0.029 0.052 0.723

C-WCLS
50 25

−0.200 0.047 0.049 0.947

WCLS −0.199 0.019 0.048 0.555

C-WCLS
100 10

−0.198 0.036 0.035 0.955

WCLS −0.198 0.021 0.037 0.718

C-WCLS
100 25

−0.198 0.033 0.035 0.942

WCLS −0.199 0.013 0.032 0.583

III

C-WCLS
25 10

−0.199 0.070 0.073 0.948

WCLS −0.202 0.041 0.074 0.734

C-WCLS
25 25

−0.196 0.066 0.069 0.931

WCLS −0.200 0.026 0.068 0.563

C-WCLS
50 10

−0.198 0.051 0.052 0.941

WCLS −0.199 0.029 0.052 0.742

C-WCLS
50 25

−0.199 0.047 0.048 0.946

WCLS −0.200 0.018 0.048 0.561

C-WCLS
100 10

−0.200 0.036 0.037 0.946

WCLS −0.200 0.021 0.037 0.740

C-WCLS
100 25

−0.201 0.034 0.033 0.956

WCLS −0.198 0.013 0.034 0.555
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Table 4.

Simulations show strong finite sample estimation and accurate coverage for indirect effects.

Scenario # of Clusters Cluster Size Estimate SD RMSE CP

IV

25 10 −0.097 0.028 0.029 0.958

25 25 −0.101 0.017 0.019 0.942

50 10 −0.097 0.020 0.021 0.953

50 25 −0.100 0.013 0.013 0.942

100 10 −0.097 0.015 0.015 0.943

100 25 −0.100 0.009 0.009 0.944
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Table 5.

Simulation: cluster-based weighted-centered least squares (C-WCLS) estimators for lag Δ = 2 effect, under the 

policy of observed treatment distribution (OTD) versus sequential treatment (ST), and comparison for 

Scenarios I, II, III.

Scenario Policy # of Clusters Cluster Size Estimate SE RMSE CP

I

OTD
50 10

−0.098 0.031 0.032 0.938

ST −0.123 0.062 0.063 0.949

OTD
50 25

−0.098 0.020 0.020 0.948

ST −0.124 0.040 0.039 0.955

II

OTD
50 10

−0.099 0.054 0.054 0.944

ST −0.122 0.077 0.078 0.949

OTD
50 25

−0.099 0.048 0.049 0.942

ST −0.121 0.059 0.061 0.950

III

OTD
50 10

−0.096 0.054 0.056 0.942

ST −0.122 0.075 0.075 0.948

OTD
50 25

−0.099 0.048 0.050 0.944

ST −0.125 0.059 0.059 0.955
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Table 6.

Moderation Analysis with β t; St = β0 + β1 ⋅ Y t, j

Outcome Setting Variables Estimate Std. Error t-value p-value

Mood

WCLS
β0 0.369 0.086 4.267 0.000

β1 −0.055 0.011 −4.822 0.000

C-WCLS
β0 0.421 0.214 1.968 0.053

β1 −0.061 0.028 −2.181 0.032

Steps

WCLS
β0 0.729 0.295 2.472 0.015

β1 −0.037 0.015 −2.484 0.015

C-WCLS
β0 0.997 0.734 1.357 0.176

β1 −0.049 0.037 −1.343 0.181

Sleep

WCLS
β0 1.325 0.350 3.782 0.000

β1 −0.068 0.017 −3.916 0.000

C-WCLS
β0 1.543 0.767 2.012 0.046

β1 −0.081 0.039 −2.082 0.039
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Table 7.

Moderation analysis for lag Δ = 2 treatment effect with cluster-level moderators, under the policy of sequential 

weeks of treatment

Outcome Setting Variables Estimate Std. Error t-value p-value

Mood C-WCLS

β0 0.665 0.321 2.072 0.040

β1 −0.067 0.037 −1.804 0.072

β2 −0.027 0.019 −1.393 0.164

Steps C-WCLS

β0 0.234 1.039 0.225 0.823

β1 −0.011 0.045 −0.254 0.800

β2 −0.007 0.021 −0.354 0.725

Sleep C-WCLS

β0 −0.073 0.887 −0.082 0.935

β1 0.002 0.043 0.049 0.961

β2 0.001 0.008 0.135 0.893
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Table 8.

Moderation analysis for lag Δ = 2 treatment effect with cluster-level moderators, under the policy of observed 

treatment distribution

Outcome Setting Variables Estimate Std. Error t-value p-value

Mood C-WCLS

β0 0.585 0.292 2.002 0.046

β1 −0.061 0.036 −1.702 0.090

β2 −0.022 0.021 −1.038 0.299

Steps C-WCLS

β0 0.107 0.951 0.113 0.911

β1 −0.001 0.041 −0.033 0.974

β2 −0.011 0.018 −0.629 0.531

Sleep C-WCLS

β0 −0.211 0.802 −0.263 0.793

β1 0.009 0.040 0.233 0.816

β2 0.001 0.007 0.193 0.848
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