
Numerical modelling of
gravitational wave sources in

general relativity

Miren Raj Radia

Supervisor: Prof. Ulrich Sperhake

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Emmanuel College January 2023





Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This thesis is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
thesis contains work that appears in the following publications:

• T. Andrade, L. A. Salo, J. C. Aurrekoetxea, J. Bamber, K. Clough, R. Croft, E.
de Jong, A. Drew, A. Duran, P. G. Ferreira, P. Figueras, H. Finkel, T. França,
B.-X. Ge, C. Gu, T. Helfer, J. Jäykkä, C. Joana, M. Kunesch, K. Kornet, E. A. Lim,
F. Muia, Z. Nazari, M. Radia, J. Ripley, P. Shellard, U. Sperhake, D. Traykova,
S. Tunyasuvunakool, Z. Wang, J. Y. Widdicombe, and K. Wong, GRChombo: An
adaptable numerical relativity code for fundamental physics, Journal of Open Source
Software 6, 3703 (2021)

• M. Radia, U. Sperhake, E. Berti, and R. Croft, Anomalies in the gravitational
recoil of eccentric black-hole mergers with unequal mass ratios, Phys. Rev. D 103,
© 2021 American Physical Society, 104006 (2021), arXiv:2101.11015

• M. Radia, U. Sperhake, A. Drew, K. Clough, P. Figueras, E. A. Lim, J. L. Ripley,
J. C. Aurrekoetxea, T. França, and T. Helfer, Lessons for adaptive mesh refinement
in numerical relativity, Class. Quant. Grav. 39, 135006 (2022), arXiv:2112.10567
[gr-qc]

• T. Helfer, U. Sperhake, R. Croft, M. Radia, B.-X. Ge, and E. A. Lim, Malaise and
remedy of binary boson-star initial data, Class. Quant. Grav. 39, 074001 (2022),
arXiv:2108.11995 [gr-qc]

Miren Raj Radia
January 2023

https://doi.org/10.21105/joss.03703
https://doi.org/10.21105/joss.03703
https://doi.org/10.1103/PhysRevD.103.104006
https://doi.org/10.1103/PhysRevD.103.104006
https://arxiv.org/abs/2101.11015
https://doi.org/10.1088/1361-6382/ac6fa9
https://arxiv.org/abs/2112.10567
https://arxiv.org/abs/2112.10567
https://doi.org/10.1088/1361-6382/ac53b7
https://arxiv.org/abs/2108.11995




Numerical modelling of gravitational wave sources in
general relativity

Miren Raj Radia

The first direct detection of gravitational waves (GWs) from a black-hole (BH) bi-
nary, GW150914, by the advanced Laser Interferometer Gravitational-wave Observatory
(aLIGO) detectors in 2015 heralded a new era in GW physics. Since then, over 90 compact
binary merger events have been detected by the GW detector network with many more
expected in the decades to come. A significant part of the theoretical foundations that
underpins this achievement is the modelling of GW sources in General Relativity (GR)
using numerical relativity (NR). In this thesis, we discuss the features and capabilities of
the NR code GRChombo. Although GRChombo is no longer a new code, its original
development and design targeted applications beyond the conventional astrophysical
paradigm that other NR codes have focussed on. Here, we describe more recent additions
that have allowed GRChombo to model BH binaries and other GW sources with good
accuracy. Through direct comparison, we demonstrate that this accuracy is comparable
to that of a more mature NR code. One of the key capabilities of GRChombo is its
adaptive mesh refinement (AMR). This allows the numerical grid to dynamically adjust
itself in order to sufficiently resolve the large range of spatial and temporal scales that
characteristically arise in non-trivial solutions of GR as a consequence of the theory’s
non-linearity. However, this flexibility requires careful control in order to achieve the
desired accuracy and we discuss in detail the lessons learned in order to achieve this with
GRChombo. We apply GRChombo and these techniques to the investigation of the
effect of orbital eccentricity on the GW emission and the gravitational recoil imparted
to the BH merger remnant from the inspiral and merger of unequal-mass non-spinning
BH binaries. Finally, we explore the modelling of a more exotic type of compact object:
boson stars (BSs) which are comprised of complex scalar field matter. In particular, we
investigate the construction of suitable initial data describing BS binaries and its effect
on the ensuing evolutions.
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Chapter 1

Introduction

Over a century ago, Einstein revolutionised modern physics by publishing his seminal
papers introducing the general theory of relativity [5, 6, 7] or general relativity (GR). The
foundations of GR rely on several fundamental conceptual leaps from previous theories of
gravity. For example, the unification of space and time into spacetime defies the common
intuition on their separation. Perhaps the most groundbreaking and beautiful aspect
of the theory is the manifestation of gravity not as a force, but as a consequence of
the geometry of spacetime. The relationship between the curvature of spacetime and
the matter it contains is described by the Einstein equation1–arguably one of the most
elegant equation of physics. In the notation we shall use in this thesis, and in units where
the gravitational constant and the speed of light are both unity, G = c = 1, it is

(4)Rµν − 1
2

(4)Rgµν + Λgµν = 8πTµν , (1.0.1)

where Λ is the cosmological constant. As put succinctly by Wheeler [8], this equation
says

Spacetime tells matter how to move; matter tells spacetime how to curve.

One of the most striking consequences of GR was first found by Schwarzschild [9]
when he published an exact solution of the Einstein equation in 1916. This was later
understood to describe a spacetime containing a spherically symmetric black hole (BH)–a
region of spacetime from which there is no escape [10, 11]2. This solution was later

1Although the Einstein equation can be regarded as a single tensorial equation, it is often thought of
as multiple equations for the individual components of the tensors comprising each side, hence we shall
use the singular term “Einstein equation” and plural term “Einstein [field] equations” interchangeably.

2These references establish the causal structure of the Schwarzschild spacetime but the term black
hole was coined slightly later by Wheeler and Dicke [12].
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generalized to include rotation by Kerr [13] and electric charge by Newman, Couch,
Chinnapared, Exton, Prakash, and Torrence [14]. Furthermore, following the uniqueness
theorems of Carter [15] and Robinson [16], the Kerr BH is expected to be the stationary
endpoint of gravitational collapse in GR.

Another early corollary of GR that Einstein predicted was the existence of gravitational
waves (GWs)–ripples in the fabric of spacetime [17, 18]. He found that in the linearised
weak-field limit, the Einstein equation (1.0.1) admits transverse plane-wave solutions that
travel at the speed of light. Furthermore, Einstein showed that such waves are generated
by the time-variation of the mass quadrupole moment of matter sources. Despite these
insights, there was still much debate about the existence and physicality of GWs which
was not settled until the late 1950s [19]. Even Einstein changed his mind several times
on their existence [20].

The first indirect evidence of the existence of GWs came when Hulse and Taylor
[21], in 1974, discovered a binary pulsar system–a two-body system where at least
one of the constituent objects is a highly magnetised neutron star (NS) that emits
electromagnetic radiation from its poles. The energy loss due to gravitational radiation
inferred from observations of the electromagnetic pulses over several years confirmed
Einstein’s quadrupole formula to remarkable accuracy [22]. This result led to Hulse and
Taylor being awarded the Nobel Prize in 1993. However, the astrophysical community
still yearned to directly observe GWs in order to provide a window to testing GR in the
strong-field regime.

Efforts to directly detect GWs began with resonant mass antennas in the 1960s [23].
Later iterations of these detectors developed in the 1980s, 1990s and early 2000s were
cryogenically cooled and operated as part of an international network [24]. Despite these
improvements, to the best of our knowledge, no GWs have ever been detected by them.
Interferometric detectors were first proposed in the 1960s [25] and 1970s [26] and by the
early 2000s several such experiments were operational including TAMA 300 in Japan,
GEO600 in Germany, the Laser Interferometer Gravitational-wave Observatory (LIGO)
in the United States and Virgo in Italy. Various combinations of these detectors made
observation runs between 2002 and 2011. Whilst their data was used to place bounds
on GW sources (see, for example, Ref. [27]), as it turned out, the elusive goal of direct
detection required greater sensitivity than achieved by these first generation detectors.
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In September 2015, almost 100 years after Einstein published his papers on GR,
the two advanced3 LIGO (aLIGO) detectors directly detected a GW signal for the
first time. The radiation was emitted from the inspiral, merger and ringdown of a BH
binary system approximately 1.3 × 1022 km away [28]. This GW150914 event marked
the start of a new and exciting period in GW physics and, like the previous indirect
evidence of GWs, also led to three significant LIGO contributors (Weiss, Barish and
Thorne) being awarded the Nobel Prize in 2017. Since GW150914, other facilities
have joined the worldwide advanced GW detector network, namely the upgaded Virgo
interferometer and the Kamioka Gravitational Wave Detector (KAGRA) located in
Japan. Together, the network has detected over 90 compact binary merger events [29,
30, 31]. One notable event is that of GW170817, the first observation of GWs emitted
from the inspiral of a NS binary system [32], which was corroborated by observations of
counterpart electromagnetic radiation. With further observing runs using the existing
network coming up and next generation detectors including the Einstein Telescope and
the space-based Laser Interferometer Space Antenna (LISA) mission on the horizon,
many more events are expected in the years to come including from previously unobserved
types of sources.

The key theoretical task that underpins these detections is the computation of
predicted waveforms through the modelling of GW sources. Many of the observed
events (including GW150914) can be found by searching for transient bursts of power in
the detectors without using a waveform model. However, inference of the sources and
exploration of the underlying physics relies on precision modelling. GW source modelling
is a collaborative effort with several different tools that are best suited to different parts
of the waveform. Let us consider the case of a typical BH binary observed by the GW
detector network, that is, with a mass ratio that is not extreme [33]. Here, the BHs
could complete many thousands of orbits before merging (depending on how the binary
originally formed). For the vast majority of such an inspiral, the post-Newtonian (PN)
approximation is the best tool to quickly and accurately determine the BH dynamics
over these relatively long timescales. Shortly after merger, the remnant BH rapidly
settles down to the Kerr solution in the ringdown phase. For this part of the waveform,
BH perturbation theory can accurately model the quasinormal modes (QNMs) of the
remnant. In the intermediate part of the waveform including the late inspiral, plunge and
merger, the aforementioned approximations break down and it is necessary to solve the

3The “advanced” specifier is used to denote the upgrade from first to second generation detectors
that substantially improved their sensitivity.
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full Einstein equations using numerical relativity (NR). Our BH binary example should
be considered as a proxy for other phenomena of interest in GR; NR is often the only
tool that can accurately model in the highly non-linear strong-field regime. We shall
focus on modelling using NR in this thesis.

NR as a field can be traced to the pioneering work of Hahn and Lindquist [34] in the
mid-1960s but these early simulations only evolved for very short times. More successful
simulations involving head-on BH collisions were undertaken by Čadež [35] and Smarr
[36] and Eppley [37] in the 1970s. However, these efforts were limited by the modest
computational resources available at the time which restricted numerical evolutions to
either spherical symmetry or low-resolution axisymmetry. In the late 1980s and 1990s,
there was significant progress in the field with many explorations of different problems in
GR using NR. However, it took until 2005 to obtain the holy grail – the simulation of
orbiting BH binaries through inspiral, merger and ringdown. This was first achieved by
Pretorius [38], and soon after by Campanelli, Lousto, Marronetti, and Zlochower [39]
and Baker, Centrella, Choi, Koppitz, and Meter [40]. This important accomplishment is
often referred to as the numerical relativity breakthrough4. Since then, NR has continued
to flourish as a field. In Chapter 2, we provide an overview of the NR techniques and
more general numerical methods that will be relevant to later chapters.

In order to perform simulations using computers, we approximate the continuum
spacetime by a discrete computational grid with finite resolution (spacing between the
cells/points). It is a generic feature of GR and its character as a highly non-linear theory
that its solutions often span a large range of spatial and temporal scales. Combined
with the inherent limits of computational resources, it follows that any finite resolution
numerical code will require some form of spatial and temporal mesh refinement to fully
capture the dynamics of these solutions. Here, by mesh refinement, we mean that in
parts of the computational domain (but not the whole domain), the grid resolution
is progressively increased by covering these regions with finer meshes. The NR code
that we predominantly use in this thesis, GRChombo, uses the technique of adaptive
mesh refinement (AMR) where the regions covered by the finer meshes are dynamically
adjusted during the evolution in order to sufficiently resolve the physics being simulated.
We discuss the current state of GRChombo in Chapter 3 and, in particular, recent
improvements we have made in order to enhance its capability to model GW sources
accurately. Furthermore, we discuss the technique of AMR and the insights we have gained
in leveraging its flexibility in the context of NR in Chapter 4. We apply GRChombo and

4For a more detailed history of the steps that lead to the breakthrough, see Sec. 5 in Ref. [41].
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these lessons to an investigation in the area of BH binary phenomenology in Chapter 5,
namely the effect of orbital eccentricity on the gravitational recoil imparted to the
remnant BH in the merger of unequal-mass BH binaries. Further motivation on this
problem can be found in the introduction to this chapter.

In the conventional astrophysical paradigm, the only compact objects in GR are
BHs and NSs. Furthermore, the Tolman-Oppenheimmer-Volkoff limit for NSs (see, for
example, Ref. [42]) means that BHs are the only ones with masses greater than 3M⊙.
Until now, analysis of GW data has largely been consistent with this picture [43, 44, 45,
46, 47]. Nevertheless, with observational data and accuracy only increasing, there are
many reasons to consider models beyond this paradigm. For instance, modified gravity
theories and/or extensions to the Standard Model of particle physics can give rise to
exotic compact objects (ECOs) (see Ref. [48] for a recent review on the zoo of ECOs).
One of the most well-motivated type of ECOs are boson stars (BSs) which we discuss
and investigate in Chapter 6.

Notational conventions

Unless otherwise stated, we take the following conventions in this thesis. We use Greek
letters µ, ν, . . . = 0, 1, 2, 3 for spacetime indices and Latin letters i, j, . . . , 1, 2, 3 for spatial
indices. We sometimes denote tensors in index-free notation using bold symbols such as
T . We use a mostly plus signature (− + + +) and geometric units where the the speed
of light c and the gravitational constant G are both unity c = 1 = G. When there is a
potential for ambiguity between spacetime and purely spatial tensors (for example, the
Ricci scalar R), we prepend a (4) to denote the spacetime quantity. Further conventions
can be inferred from Chapter 2 or are explicitly provided in the introduction of the
relevant chapter.





Chapter 2

Numerical Relativity Fundamentals

In this chapter, we will provide an overview of the mathematics and techniques that we
use for numerical evolutions of the Einstein equation. We start by introducing the 3+1
decomposition in Sec. 2.1. Next in Sec. 2.2, we look at how to construct initial data that
can be evolved numerically. Unfortunately, the ADM evolution equations that arise in
the 3+1 formalism are unsuitable for most numerical evolutions, so in Sec. 2.3, we look
at reformulations that allow for stable and accurate numerical evolutions. In Sec. 2.4
we describe how to measure the gravitational waves in numerical solutions and how
this relates to the plane-wave solutions of the linearised Einstein equation. Finally, in
Sec. 2.5, we review some of the basic numerical methods that are used for the simulations
presented in this thesis.

Though we do not aim to provide a comprehensive overview of these topics, as this
should be reserved for a good textbook rather than this chapter, we do hope to provide
sufficient detail such that someone with a working knowledge of general relativity can
follow the work described in later chapters. The reader is referred to Refs. [49, 50, 51] for
a more thorough exploration of these areas and also to Ref. [52] for further information
on the numerical aspects.

Whilst this chapter does not present any novel research, the calculation of the
electromagnetic decomposition of the Weyl tensor in Sec. 2.4.3, despite being used
ubiquitously in NR, is, to the best of our knowledge, difficult to find explicitly in the
literature.
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2.1 The 3+1 formalism

Before we can solve the Einstein equation numerically, we first need to formulate it as
an initial value problem (IVP) that will allow us to specify some initial data and then
evolve them in “time”. It should be pointed out that this is only possible due to the
hyperbolic nature of the Einstein equation1 and it wasn’t until over 30 years after Einstein
published his general theory of relativity that it was proved that his equation admits a
locally well-posed IVP [53].

When learning relativity for the first time, one usually tries [or is forced to] “think
covariantly” and treat space and time on an equal footing. Indeed, the general covariance
of GR may be viewed as part of its elegance. However, for our practical applications, we
will need to devolve to the arguably more intuitive picture of splitting space and time.

Before we proceed, we should point out that the 3+1 formalism is far from the
only way to formulate Einstein equation as an IVP. A common alternative is to use a
generalized form of harmonic coordinates where the coordinates xµ satisfy2

□g x
µ = Hµ(xν), (2.1.1)

and □g = gαβ∇α∇β is the d’Alembertian. Not only were harmonic coordinates the ones
used to prove local well-posedness of the Einstein equation by Fourès-Bruhat [53], but
they were also used in the groundbreaking first simulation of an inspiralling black-hole
binary by Pretorius [38]. Furthermore, they are used by the SXS collaboration to generate
waveforms for GW detector template banks [54]. Other, less common formulations include
the Cauchy characteristic approach where the slices of spacetime are null rather than
spatial (see Ref. [55] for a review) and the hyperboloidal slices approach where the slices
are asymptotically null.

Nevertheless, our discussion will only consider the conventional 3+1 decomposition.

2.1.1 The foliation of spacetime

We start with a spacetime (M , g) which we shall assume is globally hyperbolic which
means that there exists a Cauchy surface3 Σ ⊂ M whose domain of dependence is the
whole spacetime M . It follows that there exists a global time function t : M → R [56]
such that the level sets of t, which we shall denote Σt, are Cauchy surfaces that are

1More precisely, the Einstein equation is mixed hyperbolic-elliptic, as we will see later in Sec. 2.1.6.
2Vanilla harmonic coordinates are obtained if one chooses Hµ to vanish.
3A Cauchy surface is one where no two points are causally connected.
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M

t

Σt

Fig. 2.1 The foliation of spacetime in the 3+1 decomposition

topologically equivalent (hence we shall usually drop the t subscript) and the spacetime
can be completely foliated by these surfaces. This means we can identify M with R × Σ
as shown in Fig. 2.1. Furthermore, there exists a “time-flow”4 vector field t such that

tα∇αt = 1. (2.1.2)

The future-directed unit normal to the foliation n is given by

n = −α dt, (2.1.3)

where α is the lapse given by

α := ||dt||−1/2 = (−gβγ∇βt∇γt)−1/2 > 0, (2.1.4)

and the final inequality follows from the foliation being spacelike. The induced or spatial
metric on Σ is

γµν := gµν + nµnν . (2.1.5)

We can project spacetime tensors onto the hypersurfaces Σ using the projector

⊥µ
ν := δµ

ν + nµnν = γµ
ν , (2.1.6)

4Note that tµ is not necessarily timelike
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where the projection ⊥ T of an arbitrary rank (r, s) tensor T is given by

(⊥ T )µ1···µr

ν1···νs
:=⊥µ1

α1 . . . ⊥µr
αr

⊥β1
ν1 . . . ⊥βs

νs
Tα1···αr

β1···βs
. (2.1.7)

From this, we can decompose tensors into their normal and spatial directions using the
relation δµ

ν =⊥µ
ν −nµnν , for example, the time-flow vector field can be decomposed as

tµ = δµ
αt

α = (⊥µ
α −nµnα)tα = −nµnαt

α︸ ︷︷ ︸
normal

+ ⊥µ
α t

α︸ ︷︷ ︸
spatial

. (2.1.8)

We define the shift vector β as the spatial projection of t

βµ :=⊥µ
α t

α, (2.1.9)

and it follows from Eqs. (2.1.2) and (2.1.8) that the time flow vector field can be written
as

t = αn + β. (2.1.10)

We now introduce the Levi-Civita connection of γ which we denote as D. Remarkably,
it turns out that the covariant derivative of spatial tensors defined by this connection is
simply the projection of the corresponding spacetime covariant derivative defined by the
Levi-Civita connection of g, that is, for an arbitrary rank (r, s) spatial tensor S,

DµS
ν1···νr

ρ1···ρs
=⊥α

µ⊥ν1
β1 · · · ⊥νr

βr
⊥γ1

ρ1 · · · ⊥γs
ρs

∇αS
β1···βr

γ1···γs
. (2.1.11)

It should be pointed out that the projections on all of the indices on the right-hand-side
are necessary even though S is purely spatial, as, in general,

⊥α
µ⊥ν1

β1 · · · ⊥νr
βr

⊥γ1
ρ1 · · · ⊥γs

ρs
∇αS

β1···βr

γ1···γs
̸=⊥α

µ ∇αS
ν1···νr

ρ1···ρs
. (2.1.12)

A common pitfall, that those new to the 3+1 formalism often fall into5, is omitting these
projectors as in the right-hand-side of Eq. (2.1.12).

Until now, we have considered all tensors as being defined on [the tangent spaces
of] the whole spacetime M . However, for purely spatial tensors, that is those that are
invariant under projection (2.1.7) (or equivalently are orthogonal to n), we can identify
these with tensors defined on Σ. Similarly for tensors defined on Σ, we can identify these
with the unique tensor on M that is equal on Σ and is invariant under projection.

5The author is included here.
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2.1.2 Adapted coordinates

Now we define coordinates that are adapted to the foliation. We start by choosing
Cartesian coordinates xi on one of the hypersurfaces Σ and parallel transport these
coordinates to the rest of the foliation using t. Then, (xµ) = (t, xi) are our adapted
coordinates.

In these coordinates, the spacetime metric takes the form

g = −α2 dt2 + γij

(
dxi + βi dt

) (
dxj + βj dt

)
, (2.1.13)

or, in components,

(gµν) =
 −α2 + βkβk βi

βj γij

 , (gµν) =
 −1/α2 βi/α2

βj/α2 γij − βiβj/α2

 , (2.1.14)

and the unit vector normal to the foliation (i.e. Eq. (2.1.3) with raised indices) takes the
form

(nµ) = 1
α

(
∂t − βi∂i

)
. (2.1.15)

Similarly, using Eq. (2.1.10), the time-flow vector field in these coordinates is t = ∂t.
Note that, in these adapted coordinates, purely spatial tensors (for example, those that

have been projected with ⊥ (2.1.7)) have trivially vanishing raised temporal components
since they are orthogonal to n and it follows from Eq. (2.1.3) that

0 = nµp (⊥ T )µ1···µp···µr

ν1···νs
= −α (⊥ T )µ1···0···µr

ν1···νs
, α > 0. (2.1.16)

However, the same is not true for lowered indices since in adapted coordinates, the
components ni do not necessarily vanish by Eq. (2.1.15). Of course, these temporal
components are uniquely determined by

0 = nνp (⊥ T )µ1···µr

ν1···νp···νs
, (2.1.17)

hence it is sufficient to consider only the spatial components (whether raised or lowered)
of purely spatial tensors. We will therefore freely swap between spacetime indices
µ, ν, ρ, σ, . . . and spatial indices i, j, k, . . . for purely spatial tensors.
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Σt+δt

Σt

nµ
tµ = αnµ + βµ

βi

δτ = α δt

(t, xi)

(t + δt, xi)

(t + δt, xi − βiδt)

Fig. 2.2 Schematic diagram of how the coordinates on the hypersurface Σt are related to
the coordinates on the hypersurface Σt+δt.

2.1.3 Gauge freedom

Unlike in the conventional covariant formulation of GR, the gauge freedom (or diffeomor-
phism invariance) has been made explicit through the introduction of the lapse α and
shift vector β. Before we proceed any further we should try and understand intuitively
what these objects represent.

We call an observer travelling with 4-velocity n (2.1.15) an Eulerian or normal
observer. The “lapse” of proper time measured by such an observer δτ is related to the
change in coordinate time by

δτ = α δt. (2.1.18)

From this equation, it is not too hard to see that the lapse controls the way that the
spacetime is foliated. The shift tells us the velocity of the lines of constant coordinate
xi relative to the Eulerian observer. If the observer is at xi at coordinate time t, then
at coordinate time t + δt, the observer will be at xi − βiδt. We can see that the shift
controls the way the spatial coordinates change from one hypersurface to the next. This
picture is illustrated schematically in Fig. 2.2.

Since the lapse and shift represent our gauge freedom they are, in principle, freely
specifiable. However, in practice, the gauge plays a large part in ensuring the numerical
simulation remains stable and accurate. Choosing a bad gauge may lead to an instability
or finite-time blowup. For example, if we take the naive choice of α = 1 (which is known
as geodesic slicing) with the Schwarzschild spacetime in isotropic coordinates, it can be
shown that any observer which starts within the horizon, reaches the singularity in a
proper time ∆τ ≤ πM [57]. Since α = 1 means that ∆t = ∆τ , if we tried to evolve
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this spacetime using geodesic slicing, it is clear that we will run into problems in finite
coordinate time. The particular gauge that we use throughout the simulations presented
in this work will be described in Sec. 2.3.4.

Finally, it will be useful to consider the acceleration of an Eulerian observer which is
given by

aµ := nβ∇βnµ = Dµ logα, (2.1.19)

where the second equality follows after some algebra.

2.1.4 The extrinsic curvature

Since the Einstein equation is second order in time, we need to introduce an auxiliary
variable in order to rewrite the equations in first-order [in time] form. The canonical
choice for such an object is known as the extrinsic curvature K which is defined by6

Kµν = − ⊥α
µ ∇αnν . (2.1.20)

Note that, despite there being just one projector for two indices, the extrinsic curvature
is purely spatial since, for the second index,

nαKµα = − ⊥β
µ n

α∇βnα = −1
2 ⊥β

µ ∇β (nαnα) = 0, (2.1.21)

where the final equality follows because n is a unit vector. Combining this with the
acceleration (2.1.19) we can write the gradients of the normal vector as

∇µnν = −Kµν − nµDν logα. (2.1.22)

It can also be shown that the extrinsic curvature is given by

Kµν = −1
2Lnγµν , (2.1.23)

where Ln is the Lie derivative with respect the normal n. Indeed, this is sometimes
taken as the definition of the extrinsic curvature in some places in the literature. It
immediately follows that the extrinsic curvature is symmetric7.

6Whilst this sign convention is the usual one in NR, it differs to that used elsewhere in the literature,
for example, Ref. [56].

7This can be shown directly from its definition (2.1.20), see, for example Ref. [51]
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From Eq. (2.1.23), we can see that, heuristically, K is just the time derivative of the
spatial metric and this is typically the main source of intuition one uses in the numerical
relativity context.

However, there is also a geometrical picture as to what the extrinsic curvature
represents. Looking at the definition (2.1.20), we can see that K encodes information
about how the normal n varies over Σ, or in other words, the curvature of the embedding
of Σ in M . This geometrical interpretation explains the name “extrinsic curvature”.
It is important to distinguish between the extrinsic curvature which tells us about the
embedding of Σ in M and the intrinsic curvature encoded in the spatial Riemann tensor
(with respect to the Levi-Civita connection of the spatial metric γ) which does not know
about the embedding.

2.1.5 Projections of the Riemann tensor

In order to obtain evolution equations in the 3+1 formalism, we need to project the
spacetime Riemann tensor8 (4)R. Before we do so, we set our sign conventions by defining
the spacetime Riemann tensor applied to vector fields u, v and w by

(4)R(u,v)w := ∇u∇vw − ∇v∇uw − ∇[u,v]w, (2.1.24)

where, for a vector field u, ∇u = uα∇α and the commutator [u,v] is given by

[u,v]µ = uα∇αv
µ − vα∇αu

µ. (2.1.25)

The spatial Riemann tensor R is defined similarly with respect to D.
Naively, one might think there are many different projections of the Riemann tensor

given that, for each index, one has a choice whether to project in the spatial or normal
direction. However, the symmetries of the Riemann tensor mean that there are only
three independent ones which we look at below

(i) Projecting all four indices onto Σ gives the Gauss equation,

⊥µ
α⊥β

ν ⊥γ
ρ⊥δ

σ
(4)Rα

βγδ = Rµ
νρσ + 2Kµ

[ρKσ]ν . (2.1.26)

8This notation for the four dimensional Riemann tensor (4)R is conventional in the numerical
relativity literature since most of the time we will be using the spatial Ricci tensor.
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Contracting on µ and ρ yields the contracted Gauss equation

⊥β
ν ⊥δ

σ
(4)Rβδ + nα ⊥β

ν n
γ ⊥δ

σ
(4)Rαβγδ = Rνσ +KKνσ −Kα

σKαν , (2.1.27)

where K = γαβKαβ is the trace of the extrinsic curvature. If we then contract
again with γνσ, we obtain the scalar Gauss equation,

(4)R + 2(4)Rαβn
αnβ = R +K2 −KαβK

αβ. (2.1.28)

(ii) Projecting three indices onto Σ and one in the normal direction yields the Codacci
equation,

⊥α
µ⊥β

ν ⊥γ
ρ n

δ(4)Rαβγδ = DνKµρ −DµKνρ. (2.1.29)

Contracting this with γνρ, one obtains the contracted Codacci equation,

⊥α
µ n

β(4)Rαβ = DµK −DαK
α

µ. (2.1.30)

(iii) Finally, projecting two indices onto Σ and two in the normal direction, one obtains

nα ⊥β
µ n

γ ⊥δ
ν

(4)Rα
βγδ = LnKµν + 1

α
DµDνα +KµαK

α
ν . (2.1.31)

This is sometimes referred to as the Ricci equation.

Note that both the Gauss (2.1.26) and Codacci (2.1.29) equations (often referred together
as the Gauss-Codacci equations), do not feature the gauge variables nor the normal to
the foliation on the right-hand-side, hence can be defined for a single hypersurface Σ
embedded in M . We have not yet used the Einstein equation (1.0.1) so these equations
are purely geometrical. These equations relate the curvature of the spacetime M to the
intrinsic curvature of the hypersurfaces Σ encoded in the spatial Ricci tensor and the
extrinsic curvature of the embedding.

2.1.6 The constraint equations

In order to apply the Einstein equation (1.0.1), we first need to define our projections of
the energy-momentum (EM) tensor T . Given the symmetry of the tensor, we have three
independent contractions as follows.
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(i) Projecting both indices in the normal direction gives the energy density:

ρ = nαnβTαβ. (2.1.32)

This is the energy density as measured by the Eulerian observer.

(ii) Projecting once in the normal direction and once spatially gives the momentum
density:

jµ = − ⊥α
µ n

βTαβ. (2.1.33)

(iii) Finally, projecting both indices spatially gives the stress tensor :

Sµν =⊥α
µ⊥β

ν Tαβ. (2.1.34)

We will also use the shorthand S = γµνSµν .

We can therefore write the energy-momentum tensor as

Tµν = ρnµnν + nµjν + nνjµ + Sµν . (2.1.35)

Now, substituting the Einstein equation (1.0.1) and the definition of the energy
density (2.1.32) into the scalar Gauss equation (2.1.28), gives the Hamiltonian constraint
equation,

Hamiltonian constraint equation

H ≡ R +K2 −KijK
ij − 16πρ = 0. (2.1.36)

Similarly, substituting the Einstein equation (1.0.1) and the definition of the momen-
tum density (2.1.33) into the contracted Codacci equation (2.1.30), gives the momentum
constraint equations,

Momentum constraint equations

Mi ≡ DlK
l
i −DiK − 8πji = 0. (2.1.37)

Both of these equations involve only purely spatial quantities and their derivatives in
Σ but do not involve any time derivatives or gauge variables, hence they are not evolution
equations but rather constraints that the spatial metric γ and extrinsic curvature K

must satisfy on each hypersurface Σ. From these equations, we can see that we are
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unable to freely specify {γ,K} on the initial hypersurface Σ0 but rather must solve these
constraints which are of elliptic type. We will discuss this in Sec. 2.2.

In the next subsection, we will obtain the evolution equations for the spatial metric and
extrinsic curvature. If the constraint equations need to be satisfied on each hypersurface
Σ, one might worry that they need to be solved at each timestep of a numerical evolution.
Thankfully, it turns out that, due to the Bianchi identity, the constraints are preserved
in the continuum limit, during a time evolution (for more details see Ref. [58]). In
practice, since we do not work in the continuum limit, the constraints are never satisfied
perfectly during a numerical evolution. Sometimes, we will even start with initial data
that contain small violations of the constraints (see, for example, Sec. 6.4). If we consider
the space of all possible solutions {Σ,γ,K} (including those that violate Eqs. (2.1.36)
and (2.1.37)), then we refer to the subspace of physical solutions that satisfy Eqs. (2.1.36)
and (2.1.37) as the constraint hypersurface in solution space. Since we are interested in
physical solutions, we will want to stay as close to the constraint hypersurface as possible.
However, solving an elliptic equation can be computationally expensive, particularly if it
needs to be done at each timestep. Therefore, we will take the free evolution approach
where we do not enforce the constraints but rather monitor the quantities H and Mi to
ensure they remain small9. Additionally, in Sec. 2.3.3, we will add terms to the evolution
equations which have the property of damping constraint violations, bringing our time
evolutions closer to the constraint hypersurface.

2.1.7 The ADM evolution equations

We are now ready to obtain the evolution equations. It turns out that we have already
essentially met the evolution equation for γ in the form of Eq. (2.1.23). However, since
we want evolution equations with respect to t in our adapted coordinate system, we will
need to massage this equation into the right form. By direct calculation, it can be shown
that Lαnγij = αLnγij. Then, rearranging Eq. (2.1.10), substituting Eq. (2.1.23) and
using the fact that, in adapted coordinates Lt = ∂t, we obtain the evolution equation

∂tγij = Lβγij − 2αKij. (2.1.38)

9Unfortunately, since these quantities should vanish for physical solutions, it is unclear what we
mean by “small”. In practice, we might compare H with a term in Eq. (2.1.36), for example, 16πρ and
seek to ensure H ≪ |16πρ|.
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Deriving the evolution equation for K is a little more involved. We start with the
Ricci equation (2.1.31) and eliminate the projection of the Riemann tensor using the
contracted Gauss equation (2.1.27) to obtain

⊥α
µ⊥β

ν
(4)Rαβ = −LnKµν − 1

α
DµDνα +Rµν +KKµν − 2KµαK

α
ν . (2.1.39)

As for the spatial metric, it can also be shown that LαnKij = αLnKij . Then substituting
the Einstein equation (1.0.1) and rearranging, we obtain the evolution equation

∂tKij = LβKij −DiDjα + α
(
Rij − 2KikK

k
j +KKij

)
+

4πα [γij(S − ρ) − 2Sij] . (2.1.40)

The full ADM evolution system is thus

ADM evolution system
∂tγij = Lβγij − 2αKij, (2.1.41a)

∂tKij = LβKij −DiDjα + α
(
Rij − 2KikK

k
j +KKij

)
+

4πα [γij(S − ρ) − 2Sij] ,
(2.1.41b)

0 = R +K2 −KijK
ij − 16πρ, (2.1.41c)

0 = DlK
l
i −DiK − 8πji. (2.1.41d)

Unfortunately, it turns out these equations are usually not stable enough for numerical
evolution and this is because they are only weakly hyperbolic [49]. In Sec. 2.3, we will
look at reformulations of these equations that are suitably stable for numerical evolution
and that we use for the simulations presented in this thesis.

2.1.8 The Z4 formulation

In Sec. 2.1.6, we mentioned that, because the constraints are elliptic equations, they are
computationally expensive to solve at each timestep. However, there is a way to convert
these equations to hyperbolic evolution equations. This involves the addition of a new
4-vector Z [59] which can be added to the Einstein-Hilbert action [60] to obtain the
action

SZ4 = 1
16π

∫
d4x

√−g[(4)R + 2gµν∇µZν ] + SM . (2.1.42)



2.1 The 3+1 formalism 19

Here and in what follows, we use the colour blue to indicate terms that arise specifically
from the Z4 vector Z. Varying the action using the Palitini procedure (where the metric
g is varied independently of the connection ∇)10 yields the equations

(4)Rµν + 2∇(µZν) = 8π
(
Tµν − 1

2Tgµν

)
, (2.1.43a)

∇ρg
µν = 0, (2.1.43b)
Zµ = 0, (2.1.43c)

where T = gµνTµν . These equations are manifestly equivalent to the Einstein equation
(1.0.1), so long as we impose Z = 0. Since we are taking the “free evolution” approach
with respect to the Hamiltonian and momentum constraints (2.1.36)–(2.1.37), one might
ask how Z evolves if we do not impose this new constraint. Using the Bianchi identity
and the Z4 Einstein equation (2.1.43a), it follows that Z satisfies

□gZµ +RµαZ
α = 0, (2.1.44)

which is just a [forced] wave equation. Since Z = 0 corresponds to physical solutions, Z

provides some measure of the deviation from physical solutions of GR, but given that it
also satisfies a wave equation, we can see that these deviations propagate away.

We now perform a 3+1 split of Eq. (2.1.43a). First, we introduce the normal and
spatial projections of Z as11

Θ = −nµZ
µ, Θµ =⊥α

µ Zα, Z = Θn + Θ. (2.1.45)

Then, the Z4 equations in the 3+1 formalism are
10Note that the Levi-Civita connection might need to be assumed in the matter part of the action

SM i.e. not using the Palitini procedure for SM .
11The literature [59, 61] seems to only distinguish between Z and its spatial projection through the

type of the index, i.e. Zµ and Zi respectively. To avoid confusion, we use Θ for the spatial projection of
Z.
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3+1 Z4 equations
∂tγij = Lβγij − 2αKij, (2.1.46a)

∂tKij = LβKij −DiDjα + α
(
Rij + 2D(iΘj) − 2KikK

k
j

+(K − 2Θ)Kij) + 4πα [γij(S − ρ) − 2Sij] ,
(2.1.46b)

∂tΘ = LβΘ + α

2
[
H + 2DiΘi − 2ΘK − 2∂k(logα)Θk

]
, (2.1.46c)

∂tΘi = LβΘi + α
[
Mi + ∂iΘ − ∂i(logα)Θ − 2K k

i Θk

]
, (2.1.46d)

where H and Mi are given by Eq. (2.1.36) and Eq. (2.1.37) respectively. We can see
that the elliptic constraint equations H = 0 = Mi have become hyperbolic evolution
equations for Θ and Θ.

Note that the vanishing of the physical constraints H and Mi is equivalent to the
vanishing of Θ, ∂tΘ,Θi and ∂tΘi (assuming Θ and Θ vanish initially). We can also see
that the introduction of Z has made more explicit what we meant by the “constraint
hypersurface” of solution space mentioned in Sec. 2.1.6. If we consider the solution space
of Eq. (2.1.43a) for all arbitrary Z, then the constraint hypersurface of physical solutions
is just the subspace where Z vanishes.

2.2 Initial data

In the previous section, we have seen that, when we perform a 3+1 split, we cannot
freely specify the spatial metric γ and extrinsic curvature K on the initial hypersurface.
Instead, they must satisfy the constraint equations (2.1.36)–(2.1.37) which are elliptic
PDEs. In this section, we will briefly outline some methods to solve these equations and
the Bowen-York solution [62] that can be used to describe multiple spinning boosted
BHs and will be used in several simulations presented later in this thesis. We should
point out that we will only consider the York-Lichnerowicz conformal decomposition
[63, 64, 65, 66, 67] and not the [extended] conformal thin sandwich approach [68, 69]
which is popular for neutron star initial data. For a more detailed overview of initial
data methods, the reader is referred to Ref. [70].
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2.2.1 The York-Lichnerowicz conformal decomposition

The York-Lichnerowicz decomposition starts by conformally rescaling the spatial metric
[63, 64, 65] as12

γij = ψ̄4γ̄ij, (2.2.1)

and decomposing the extrinsic curvature K into its trace K and trace-free parts A viz.

Kij = Aij − 1
3γ

ijK. (2.2.2)

The Hamiltonian constraint (2.1.36) becomes

8D̄2ψ̄ − R̄ψ̄ + ψ̄5
(
AklA

kl − 2
3K

2
)

+ 16πψ̄5ρ = 0, (2.2.3)

where D̄ is the Levi-Civita connection associated to γ̄ij, D̄2 = D̄lD̄l and R̄ is the Ricci
scalar associated to D̄. The elliptic nature of the Hamiltonian constraint is more explicit
since Eq. (2.2.3) is an elliptic equation for ψ̄.

Next, we use a result from Refs. [66, 67] that a symmetric traceless tensor Sij can be
decomposed into its transverse13 and longitudinal parts.

Sij = Sij
∗︸︷︷︸

transverse

+ (LγW̄ )ij︸ ︷︷ ︸
longitudinal

, (2.2.4)

where Sij
∗ is symmetric, traceless and transverse, W̄ is a vector and Lh is a linear

differential operator associated to a metric h and defined by

(LγW̄ )ij := DiW j +DjW i − 2
3γ

ijDlW
l. (2.2.5)

Now, there is a choice as to whether we use the differential operator associated to
the physical metric Lγ , or the conformal metric Lγ̄ in Eq. (2.2.4). For simplicity, we
will only consider the latter, which is referred to in the literature as the conformal
transverse-traceless decomposition, as that is what is relevant for Bowen-York data in the
next section. The reader is referred to Refs. [70, 49] for a discussion of the former

12Following Ref. [49] but in contrast to Ref. [70], we use a bar to denote a conformal quantity and
reserve tilde for the specific conformal rescaling that makes the conformal metric determinant unity
γ̃ = det γ̃ = 1. However, we also use ψ̄ for the conformal factor to avoid confusion with ψ used in other
chapters.

13A transverse tensor T has zero divergence in every index e.g. DipT
i1···ip···ir = 0.
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We start by conformally rescaling the tracefree part of the extrinsic curvature as

Aij = ψ̄−10Āij ⇐⇒ Aij = ψ̄−2Āij, (2.2.6)

where we lower and raise indices of conformal tensors with the conformal metric γ̄ij and
its inverse.

Applying the decomposition (2.2.4) to the conformal tracefree extrinsic curvature,

Āij = Āij
∗ + (Lγ̄W̄ )ij, (2.2.7)

the momentum constraint (2.1.37) reduces to

∆̄Lγ̄W̄
i − 2

3 ψ̄
6D̄iK − 8πψ̄10ji = 0, (2.2.8)

where the linear differential operator ∆̄Lγ̄ is defined by

∆̄Lγ̄W̄
i := D̄l(Lγ̄W̄ )il = D̄2W̄ i + 1

3D̄
iD̄lW̄

l + R̄i
lW̄

l. (2.2.9)

Unfortunately, constructing transverse tensors such as Āij
∗ is non-trivial, so, if we

start with an arbitrary symmetric tracefree tensor M̄ ij , we decompose it as in Eq. (2.2.4)
and find its transverse part to be

M̄ ij
∗ = M̄ ij − (Lγ̄Ū)ij, (2.2.10)

where we find Ū by solving
∆̄Lγ̄ Ū

i = D̄lM̄
il. (2.2.11)

We can do all of this together by taking Āij
∗ = M̄ ij

∗ , defining V̄ := W̄ − Ū and using the
linearity of ∆̄Lγ̄ , so the conformal tracefree extrinsic curvature is given by

Āij = M̄ ij
∗ + (Lγ̄W̄ )ij = M̄ ij + (Lγ̄V̄ )ij. (2.2.12)

Combining all the transformations in Eqs. (2.2.1), (2.2.2), (2.2.6) and (2.2.12), the
Hamiltonian and momentum constraints become
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York-Lichnerowicz conformal decomposition of the constraints

8D̄2ψ̄ − R̄ψ̄ + ψ̄−7ĀklĀ
kl − 2

3 ψ̄
5K2 + 16πψ̄5ρ = 0, (2.2.13a)

∆̄Lγ̄ V̄
i + D̄kM̄

ik − 2
3 ψ̄

6D̄iK − 8πψ̄10ji = 0. (2.2.13b)

In this decomposition, the conformal metric γ̄ij, the symmetric tracefree tensor M̄ ij,
the trace of the extrinsic curvature K, and the matter energy density ρ and momentum
density ji are specified and the system (2.2.13) is solved with appropriate boundary
conditions for ψ̄ and V̄ i.

Note that these equations are coupled via the conformal factor ψ̄, and the decomposed
parts of the extrinsic curvature K and Aij. However, there are assumptions one can
make in order to decouple them.

One assumption is to choose K constant corresponding to constant mean curvature
(so DiK vanishes in Eq. (2.2.13b)). Then, if ji vanishes, the momentum constraint
(2.2.13b) can be solved first for V̄ i, Āij can be reconstructed using Eq. (2.2.12) and then
the Hamiltonian constraint (2.2.13a) can be solved for ψ̄.

Another common assumption, that we will make in the next section, is that the
conformal metric is flat, that is γ̄ij = fij , where fij is the flat metric (fij = δij in Cartesian
coordinates). Then R̄ = 0, the conformal covariant derivative D̄ becomes the usual
flat-space one which we denote as ∇̆, and the Hamiltonian constraint reduces to

8∇̆2ψ̄ + ψ̄−7ĀklĀ
kl − 2

3ψ
5K2 + 16πψ̄5ρ = 0. (2.2.14)

Furthermore, if we take Kij = 0 which corresponds to time-symmetric initial data14,
Eq. (2.2.14) becomes

∇̆2ψ̄ + 2πψ̄5ρ = 0. (2.2.15)

2.2.2 Brill-Lindquist initial data

If we seek conformally-flat, vacuum, time-symmetric initial data so that γij = fij and
0 = ρ = ji = Kij, then the Hamiltonian constraint (2.2.15) becomes the usual flat-space

14This term comes from the fact that Kij = 0 means that Lnγ vanishes. Physically this corresponds
to initial data that is instantaneously at rest and looks the same if one evolves forwards or backwards in
time. For compact object binaries, this manifests itself as the two objects, having been moving away
from each other, being instantaneously stationary as gravity causes them to accelerate back towards
each other.
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Laplace equation
∇̆2ψ̄ = 0. (2.2.16)

If we solve this system subject to the boundary condition limR→∞ ψ̄ = 1 corresponding
to an asymptotically flat end, the simplest non-trivial solution is

ψ̄ = 1 + k

R
, (2.2.17)

where R is the coordinate radius. The initial spatial metric is thus

γ =
(

1 + k

R

)
fij dxi dxj, (2.2.18)

which is just the spatial part of the Schwarzschild metric [9] in isotropic coordinates.
This describes a spherically-symmetric black hole of mass M = 2k.

Furthermore, since Eq. (2.2.16) is linear, we can superpose solutions to obtain

ψ̄(x) = 1 +
N∑

i=1

mi

2|x − xi|
, (2.2.19)

which describes initial data for N black holes with bare masses15 mi and centres xi so long
as the centres are sufficiently well separated and the horizons are distinct. This analytic
solution is known as Brill-Lindquist initial data [71, 72]. Although the time-symmetry of
the solution means that it is not typically the most astrophysically interesting/relevant
solution, its simplicity means that it is often used as a test case in numerical relativity
codes.

It should be pointed out that since Eq. (2.2.19) is singular at the centres x = xi,
these points are formally removed from the manifold, that is Σ = R3 \ {xi}N

i=1. We
commonly refer to these points as the punctures. Furthermore, as is the case for the
single Schwarzschild BH (2.2.18), each puncture corresponds to spatial infinity of a
different asymptotically flat end. This means that, topologically, the spacetime has N + 1
asymptotically flat ends. However, since N of these asymptotically flat ends are hidden
behind horizons, they are causally disconnected from the rest of the spacetime and this
topological complexity should not affect the time evolution. Finally, we note that the

15Note the bare mass differs to other mass definitions (e.g. the ADM mass) unless N = 1.
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ADM mass (see Appendix A) of the ith BH in this solution is [49]

MADM,i = mi

1 +
N∑

j=0,j ̸=i

mj

|xj − xi|

 . (2.2.20)

2.2.3 Bowen-York initial data

Since astrophysical black holes are expected to have spin and linear momentum, we
will need something more generic than Brill-Lindquist initial data. We start by taking
the same assumptions of conformal flatness and vacuum, but this time relax the time-
symmetric assumption and instead require K = 0, which corresponds to maximal slicing16.
Choosing M̄ ij = 0 means the momentum constraint (2.2.13b) reduces to

0 = ∆̄Lf
V̄ ≡ ∇̆2V̄ i + 1

3∇̆i∇̆jV̄
j = 0. (2.2.21)

This has the analytic solution17

V̄ i = − 1
4R

[
7P i + sisjP

j

R2

]
+ 1
R3 ϵ̄

ijksjSk, (2.2.22)

where P i and Si are constant vectors, si = (xi − xi
0)/|x − x0| (in Cartesian coordinates)

is the outward pointing unit radial vector centred at x0 and ϵ̄ijk is the Levi-Civita tensor
in three dimensions. The resulting conformal trace-free extrinsic curvature tensor is

(BY)Āij(x; x0,P,S) = (Lf V̄ )ij (2.2.23)

= 3
2R2

[
siPj + sjPi + skP

k(sisj − fij)
]

− 3
R3 (ϵ̄ilksj + ϵ̄jlksi) slSk.

(2.2.24)

and the physical extrinsic curvature is recovered with Kij = (BY)Āijψ̄
−2. This solution of

the momentum constraint is known as the Bowen-York solution [73, 62].
Under the assumption that ψ̄ → 1 as R → ∞ (asymptotic flatness), it turns out that

expressions for the ADM linear (A.0.2) and angular momentum (A.0.3) can be calculated
16This is because K = 0 maximises the action

V =
∫

Σ

√
γ d3x.

See Sec. 10.2.2 in Ref. [51] for details.
17See Appendix B of Ref. [50] for methods on how to solve this equation.
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without solving the Hamiltonian constraint for ψ̄. They are, respectively,

P i
ADM = P i, J i

ADM = Si. (2.2.25)

The linearity of Eq. (2.2.22) means that we can superpose multiple solutions,

Āij(x) =
N∑

i=1

(BY)Āij(x; xi,Pi,Si), (2.2.26)

corresponding to multiple sources of linear and angular momentum. As one might expect
intuitively, the total linear momentum in the spacetime for such a superposed solution
is just the vector sum of the individual linear momenta. Calculating the total angular
momentum is more involved due to the contribution of the linear momentum about the
centre of mass to the orbital angular momentum. Nevertheless, it is still possible to
do without solving the Hamiltonian constraint. One example, that will be particularly
relevant to some of the simulations presented later on, is if the two sources are centred
at x = d and x = −d with momenta P and −P respectively and d · P = 0. Then,
surprisingly18, the ADM angular momentum is given by [74]

JADM = 2d × P. (2.2.27)

Unfortunately, solving the Hamiltonian constraint (2.2.14) with Āij given by Eq. (2.2.26)
cannot be done analytically. Given that we expect a solution with behaviour similar to
the Brill-Lindquist solution (2.2.19), starting with the ansatz

ψ̄ = ψ̄BL + u, ψ̄BL =
N∑

i=1

mi

2|x − xi|
, (2.2.28)

reduces the Hamiltonian constraint to

∇̆2u+
(
ψ̄BL + u

)−7
ĀklĀ

kl = 0. (2.2.29)

Remarkably, it turns out there exists a C2 solution to this equation in all of R3 (including
at the punctures of ψ̄BL) with the outer boundary condition ∂Ru = (1 − u)/R (equivalent
to u − 1 ∝ 1/R corresponding to an asymptotically flat end) [75]. This is known as
puncture initial data. The ADM mass of each black hole in this solution (i.e. the

18Note that 2d is the coordinate separation of the two sources and one might naively assume the
proper distance would be required for this expression.
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generalization of Eq. (2.2.20)) is

MADM,i = mi

1 + u(xi) +
N∑

j=0,j ̸=i

mj

|xj − xi|

 . (2.2.30)

Given that the unique stationary, axisymmetric black-hole solution to the Einstein
equation is the Kerr spacetime [15, 16], one might hope that we have found initial data
that “evolves” into this (at least for N = 1 and P = 0). This would mean we have
stumbled upon a conformally flat slicing of the Kerr spacetime. Unfortunately, under
some reasonable assumptions19, no such slicing exists [76]. We must therefore conclude
that the evolution of this initial data cannot be stationary. It turns out that, when this
initial data is evolved in time, there is an initial burst of spurious gravitational waves
which is commonly referred to as “junk” radiation. Similar observations are made for
P ̸= 0 (independent of S). An example of this spurious radiation is shown in Fig. 2.3.
Despite this issue, Bowen-York puncture data has proved very robust over the past two
decades. It is usually straightforward to remove the contribution of the junk radiation to
calculations involving gravitational radiation by suitably truncating the signal.

2.2.4 Issues of uniqueness with matter

Consider the Hamiltonian constraint for conformally-flat, time-symmetric initial data
(2.2.15). Schematically, this is of the form

∇̆2v + fvn = 0, (2.2.31)

where f is a smooth function on the domain R3 and we shall assume a boundary condition
of the form v − 1 = O(1/R) as R → ∞. We typically solve nonlinear problems like
this by iteratively solving their linearisation. Writing v = v0 + ϵv1, the equation at O(ϵ)
becomes

∇̆2v1 + nfvn−1
0 v1 = 0, (2.2.32)

and the boundary condition for v1 is v1 = O(1/R) as R → ∞. Suppose we have two
solutions for this boundary value problem v1 and v′

1. Let w = v1 − v′
1. Then since

19These include that the foliation is axisymmetric and smoothly reduces to slices of constant
Schwarzschild time in the limit of no spin.
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Fig. 2.3 The real and imaginary parts of the dominant (ℓ,m) = (2, 2) multipole of the
Weyl scalar Ψ4 (which provides a measure of the gravitational radiation. See Sec. 2.4)
extracted at R = rex = 80M . This is from the simulation of an equal-mass, non-spinning
BH binary quasicircular inspiral with Bowen-York puncture initial data (2.2.26) and
shows the spurious “junk” radiation in a small interval around u = 0. u = t− r∗

ex is the
retarded time so u = 0 corresponds to roughly when the centre of the computational
domain is in causal contact with the extraction sphere. The inset shows the subset of
the signal where the junk radiation dominates.

Eq. (2.2.32) is linear, w also satisfies it with the same boundary condition. Consider

I[w] :=
∫
R3

∇̆k(w∇̆kw) d3x =
∫
R3

|∇̆w|2 d3x−
∫
R3
nfvn−1

0 w2 d3x, (2.2.33)

where we have applied Eq. (2.2.32) in the final equality. Now, assuming nf ≤ 0 and
vn−1

0 ≥ 0, it immediately follows that I[w] ≥ 0. However, we can also apply the divergence
theorem to see that

I[w] = lim
R→∞

∫
S2

R

w
∂w

∂R

√
h d2x, (2.2.34)

where S2
R is the 2-sphere of radius R and h is the determinant of the induced metric

on S2
R. Since w = O(1/R), it follows that ∂Rw = O(1/R2). Furthermore,

√
h = O(R2)

so, in the limit, I[w] vanishes. We conclude that w vanishes identically on R3 and the
solutions to Eq. (2.2.32) are unique.
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Unfortunately, looking at Eq. (2.2.15) we find f = 2πρ and n = 5. Assuming a
nonnegative matter energy density ρ ≥ 0 that is specified a priori20, we find nf ≥ 0,
hence the uniqueness result does not apply. We can recover uniqueness if we conformally
rescale the matter energy density, for example ρ = ψ̄−8ρ̄, and consider ρ̄ as specified.
However this is undesirable for fundamental fields such as the complex scalar fields which
comprise boson stars.

Although, this may seem like a dealbreaker, there is evidence to suggest that the
failure of uniqueness is not catastrophic [77, 78]. Rather than an infinite number of
solutions, there are usually two solution branches and it is possible to obtain a local
uniqueness result under certain assumptions [77]. This means that if one starts with an
initial guess (i.e. u0 in the iterative scheme) that is sufficiently close to the final solution,
it is still possible for numerical algorithms to converge to the desired physically relevant
solution. On the flip-side, if the initial guess is too far away from the desired solution, it
is also possible to converge to an undesired solution that lies on the other branch.

2.3 Evolution

Since our ultimate aim is to perform numerical evolutions of the initial data discussed
in the previous section, we will need a formulation of the Einstein equation that is
numerically stable. Unfortunately, as alluded to at the end of Sec. 2.1.7, the ADM
equations do not have the requisite hyperbolicity properties for a wide variety of problems
of interest so it is necessary to seek alternative formulations. Explorations of modifications
to the ADM equations for use in NR simulations had been conducted since at least the
1980s before the hyperbolicity properties of these formulations were fully understood (see
Figs. 3 and 4 in Ref. [79]), but it wasn’t until the late 1990s/early 2000s that significant
progress was made [41].

In this section we start by briefly explaining the notion of well-posedness and the
relation with the hyperbolicity properties of PDE systems. For a detailed discussion, the
reader is referred to Refs. [49, 80]. Next, we introduce the Baumgarte-Shapiro-Shibata-
Nakamura(-Oohara-Kojima) [BSSN(OK)]21 formulation [81, 82, 83], by far the most
successful formulation of the Einstein equation based on the 3+1 formalism over the past
two decades. We will also discuss the conformal and covariant Z4 (CCZ4) formulation

20This is not exactly true for the boson stars we will consider in Chapter 6 as ρ also depends on ψ̄
but a similar argument applies.

21Note that in the literature, it is often referred to as just BSSN hence the use of parentheses around
the “OK”.
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[84, 85] that has become popular in recent years and has been used for the majority of
the simulations presented in this work. Finally, we will look at the moving-puncture
gauge conditions that, in conjunction with the BSSN(OK) formulation, have proved
remarkable robust for a wide class of numerical relativity problems.

2.3.1 Well-posedness and hyperbolicity

A necessary but not sufficient condition for a PDE system that admits stable numerical
evolution is that the system is well-posed. Consider a general PDE system in first-order
form22,

∂tu + Mi∂iu = f(u), (2.3.1)

where the components of the m-dimensional vector u are the m fields we wish to solve
for, and, for each i, Mi is an m × m matrix of coefficients. A well-posed system has
solutions that depend continuously on their initial data, that is if we make a small change
to the initial data, then the corresponding change in the evolved solution is also small.
More precisely, we say the system is well-posed if there exist constants k and p and a
norm ∥ · ∥, independent of the initial data, such that

∥u(t,x)∥ ≤ kept∥u(0,x)∥, (2.3.2)

or, in other words, the growth in the solutions are at most exponential.
Given the finite precision of computers, there will always be some numerical noise in

initial data. It is therefore reasonably straightforward to see that if solutions of a PDE
system fail to satisfy Eq. (2.3.2), then we may run into problems quickly when evolving
simulations, or, at the very least, such a system will be unsuitable for obtaining reliable
and accurate results.

The well-posedness of a PDE system is related to its hyperbolicity. For the purpose
of this discussion, we will restrict to the case of Eq. (2.3.1) with each Mi having constant
coefficients and f ≡ 0. In the more general case where Mi = Mi(t,x,u), we linearise
about a background solution u0 and consider the local form of the Mi. In the case f is
linear in the u’s, it turns out that the well-posedness follows straightforwardly from the
well-posedness of the unforced system [49], hence it is sufficient to consider the unforced
system. The main difference between the general nonlinear case and the special linear

22Do not confuse the vectors denoted in bold-font here, which are just an ordered list of components,
with the vectors defined in a differential geometry sense that are relevant to GR.
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case we will consider is that the analysis can only show that solutions exist locally in
time.

For an arbitrary unit vector n, we define the principal symbol of the PDE system
(2.3.1) as23

P(n) = Mini. (2.3.3)

We then characterise the hyperbolicity of the system (2.3.1) depending on the type of
eigenvalues and the number of linearly independent eigenvectors as follows. We say the
system is

(i) weakly hyperbolic if all of the eigenvalues of P(n) are real.

(ii) strongly hyperbolic if it is weakly hyperbolic and it has m linearly independent
eigenvectors. It follows that there exist positive-definite symmetric matrices H(n)
such that HP is symmetric:

HP − PT HT = HP − PT H = 0. (2.3.4)

We call H the symmetriser.

(iii) symmetric hyperbolic if it is strongly hyperbolic and the symmetriser is independent
of n.

Note that in the above list, each notion of hyperbolicity implies the previous but the
converse is not true.

The existence of the symmetriser H allows us to define an inner product (and
subsequently a norm),

⟨u,v⟩ := u†Hv, ∥u∥ :=
√

⟨u,u⟩. (2.3.5)

To see how the hyperbolicity of the system is related to its well-posedness, consider a
Fourier mode u(t,x) = ũ(t)eikx·n. Its norm satisfies

∂t∥u∥2 = ∂t(u†Hu) = ikũT (PT H − HP)ũ = 0, (2.3.6)

where we have applied the equation of motion (2.3.1) with the definition of the principal
symbol (2.3.3) in the second equality and used Eq. (2.3.4) in the final equality, hence

23We follow here the conventions of Ref. [49] and do not multiply the principal symbol by the
imaginary unit i. However, it is commonplace in the literature to do so, for example Ref. [80]
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this result only holds for strongly or symmetric hyperbolic systems. We can see that its
norm is constant in time and this mode satisfies the definition of well-posedness (2.3.2).
In the more general case, where Mi = Mi(t,x,u), the norm remains bounded rather than
staying constant. This illustrates why strong hyperbolicity is a necessary condition for
well-posedness.

Typically, when analysing the hyperbolicity of a system, rather than considering the
principal symbol, we look at the eigenfields or eigenfunctions. For a strongly hyperbolic
system if R is the matrix of eigenvectors of the principal symbol, the eigenfields are
related to the fundamental evolution variables u by

w = R−1u. (2.3.7)

In the case of one spatial dimension (so there is only one choice for n up to a sign), we
can multiply the equation of motion (2.3.1) (with f = 0) by R−1 to obtain

∂tw + Λ∂xw = 0, (2.3.8)

where Λ = RPR−1 is the diagonal matrix of eigenvalues; the evolution equations decouple
for the eigenfields into m advection equations where the corresponding eigenvalue is the
advection speed.24. If we can form a set of m linearly independent eigenfields wa from the
fundamental variables ua that satisfy advection equations, then the system is necessarily
strongly hyperbolic.

Using the above method, the hyperbolicity of the ADM evolution system (2.1.41) can
be analysed (see Sec. 5.4 of Ref. [49] for details). It turns out that the system can be
strongly hyperbolic so long as (i) the momentum constraints are satisfied identically and
(ii) the lapse evolves via the Bona-Masso slicing condition (2.3.37) or the densitised lapse

α̃ = α/
√
γ (2.3.9)

is a specified function of space and time (but importantly not the lapse α itself). Although
(ii) is not too onerous, (i) is a bit of a showstopper. Since we always expect constraint
violations in numerical evolutions and sometimes even use initial data with small violations,
we must inevitably conclude that the ADM evolution system is merely weakly hyperbolic
and alternatives must be sought.

24Note that this is no longer true in the case of more than 1 spatial dimension as the unit vector n is
no longer trivial.
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2.3.2 The BSSNOK formulation

In order to obtain the BSSNOK formulation, we start with a conformal rescaling of the
spatial metric25

γ̃ij = χγij, γ̃ij = 1
χ
γij, χ = (det(γ))−1/3 = γ−1/3. (2.3.10)

This choice of χ ensures the determinant of the conformal metric γ̃ij is unity26. This choice
for the conformal factor means that when the metric elements blow up, for example, near
a black-hole singularity, χ smoothly goes to zero and the conformal metric components
γ̃ij remain regular. Note that, since χ factors out the metric determinant, the conformal
metric γ̃ij is no longer a tensor but rather a tensor density of weight −2/327. Similarly,
any tensor that is multiplied by χp becomes a tensor density of weight −2p/3. Care must
be taken when evaluating covariant or Lie derivatives of tensor densities as they differ
from the formulae used for ordinary tensors. See Appendix A.3 of Ref. [50] for details.

Next, the extrinsic curvature is decomposed into its trace K and trace-free parts Aij

as in Eq. (2.2.2). The tracefree part is then conformally rescaled28. We have

Ãij = χ
(
Kij − 1

3Kγij

)
. (2.3.13)

A particularly important step of the BSSN(OK) construction is the introduction of
the conformal connection functions [83] (sometimes referred to as the “BSSN Γ”) defined

25As stated in Sec. 2.1.2 here we assume Cartesian spatial coordinates. The BSSNOK formulation
has also been extended to non-Cartesian coordinate systems. See Ref. [86] for details.

26This χ choice of the conformal factor is the main choice for BSSNOK codes in the community
to the best of my knowledge at the present time. However, the original papers [82, 83] used ϕ where
χ = e−4ϕ and there are also other choices such as W = √

χ [87]. Note that Ref. [88] uses the symbol χ
for the W choice.

27A tensor density of weight W and rank (r, s) T a1···ar

b1···bs
transforms under a coordinate transfor-

mation xa 7→ x′a = x′a(xb) as

T ′a1···ar

b1···bs
= JW ∂x′a1

∂xc1
· · · ∂x

′ar

∂xcr

∂xd1

∂x′b1
· · · ∂x

ds

∂x′bs
T ′c1···cr

d1···ds
, (2.3.11)

where J is the Jacobian determinant given by

J =
∣∣∣∣det

(
∂xa

∂x′b

)∣∣∣∣ . (2.3.12)

A tensor is a tensor density of weight 0.
28Note that we take a different conformal rescaling to what we did for the York-Lichnerowicz

decomposition (2.2.6).
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by
Γ̃i := γ̃jkΓ̃i

jk = −∂j γ̃
ij, (2.3.14)

where Γ̃i
jk are the Christoffel symbols of the conformal metric γ̃ij. The conformal

connection functions Γ̃i are promoted to full evolution variables; this allows the conformal
Ricci tensor R̃ij (2.3.19a) to be expressed in a manifestly elliptic form (the only highest
derivative term features just the Laplace operator γ̃kl∂k∂l) and is crucial to removing
terms that spoil strong hyperbolicity.

Finally, the evolution equations are modified using the constraint equations in order
to improve the hyperbolicity properties. In the evolution equation for K, the Hamiltonian
constraint is used to remove the Ricci scalar and in the evolution equation for Γ̃i, the
momentum constraint is used to remove derivatives of Aij. The latter change has been
found empirically to be necessary for numerical stability [83].

The [non-gauge] evolution variables for the BSSNOK formulation are

{
χ, γ̃ij, K, Ãij, Γ̃i

}
, (2.3.15)

and the system of equations is

The BSSNOK evolution system

∂tχ = βk∂kχ+ 2
3χ(αK − ∂kβ

k), (2.3.16a)

∂tγ̃ij = βk∂kγ̃ij + γ̃ki∂jβ
k + γ̃kj∂iβ

k − 2αÃij − 2
3 γ̃ij∂kβ

k, (2.3.16b)

∂tK = βk∂kK + α
(
ÃklÃkl + 1

3K
2 + 4π[S + ρ]

)
− χγ̃klDkDlα, (2.3.16c)

∂tÃij = βk∂kÃij + χ [−DiDjα + α(Rij − 8πSij)]TF + Ãij

[
αK − 2

3∂kβ
k
]

+ 2Ãk(i∂j)β
k − 2αγ̃klÃikÃlj,

(2.3.16d)

∂tΓ̃i = βk∂kΓ̃i + 2
3Γ̃i∂kβ

k − Γ̃k∂kβ
i + γ̃kl∂k∂lβ

i + 1
3γ

ik∂k∂lβ
l

− Ãik

[
3α∂kχ

χ
+ 2∂kα

]
+ 2αΓ̃i

klÃ
kl − 4

3αγ̃
ik∂kK − 16παγ̃ikjk,

(2.3.16e)

where TF denotes the trace-free part of the expression is taken. The second covariant
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derivative of the lapse is given by

DiDjα = ∂i∂lα− Γ̃k
ij∂kα + 1

2χ
(
2∂(iα∂j)χ− γ̃ij γ̃

kl∂kα∂lχ
)
, (2.3.17)

and the spatial Ricci tensor is given by

Rij = R̃ij +
Rχ

ij

χ
, (2.3.18)

with

R̃ij = −1
2 γ̃

kl∂k∂lγ̃ij + γ̃k(i∂j)Γ̃k + 1
2Γ̃k∂kγ̃ij + γ̃lm

(
2Γ̃k

l(iΓ̃j)km + Γ̃k
imΓ̃klj

)
, (2.3.19a)

Rχ
ij = 1

2
[
D̃iD̃jχ+ γ̃ij γ̃

klD̃kD̃lχ
]

− 1
4χ

[
∂iχ∂jχ+ 3γ̃ij γ̃

kl∂kχ∂lχ
]
. (2.3.19b)

The promotion of auxiliary variables to full evolution variables means we also have some
algebraic constraints:

γ̃ = 1, (2.3.20)
γ̃klÃkl = 0, (2.3.21)

Gi ≡ Γ̃i − γ̃klΓ̃i
kl = 0. (2.3.22)

For Eq. (2.3.20), we typically do not enforce this constraint and, in most applications, it
turns out to be well satisfied throughout the evolution (assuming it is satisfied by the
initial data). On the other hand, the manual enforcement of Eq. (2.3.21)29 has been
found to be necessary for numerical stability30. The final algebraic constraint (2.3.22)
is enforced in different ways. One approach is to substitute on the right-hand side of
Eq. (2.3.16e), all undifferentiated Γ̃i with their definition in terms of the conformal metric
γ̃ij and its derivatives [90]. An alternative is to add a multiple of Gi to the right-hand
side of Eq. (2.3.16e) to act as a damping term [91].

The hyperbolicity of the BSSNOK system was investigated by Sarbach, Calabrese,
Pullin, and Tiglio [92] and Gundlach and Martin-Garcia [93] where they show that the
formulation is indeed strongly hyperbolic and thus well-posed. It should be pointed
out that other strongly hyperbolic formulations of the Einstein equation exist [79].
Nevertheless, for reasons that are still not well-understood, the BSSNOK formulation

29We enforce this before every evaluation of the RHS.
30For the CCZ4 formulation, which we will discuss in the next section, some groups have experimented

with enforcing this constraint using a damping term, for example Ref. [89].
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has proved more numerically robust than most others and, at least until the introduction
of conformal variants of the Z4 formulation, it dominated 3D numerical relativity codes
based on the 3+1 formalism.

2.3.3 The CCZ4 formulation

We now move on to discussing the covariant and conformal Z4 formulation (CCZ4) [84,
85] that will be used for the majority of the simulations presented in this thesis. The
CCZ4 formulation modifies the Z4 formulation discussed in Sec. 2.1.8 in two fundamental
ways. The first is by adding terms to the equations that damp constraint violations and
the second is by performing a conformal decomposition à la BSSNOK.

Let us illustrate the idea behind constraint damping with a very simple example.
Consider the [trivial] system

∂tλ = 0, (2.3.23)

subject to the “constraint” λ = 0 and suppose at some time λ = k ̸= 0 (in the more
general case, such violations can be caused by numerical truncation error, regridding
when using adaptive mesh refinement or just exist in the initial data). Evolving with
Eq. (2.3.23), the violation remains throughout the evolution. We can add a constraint
damping term to the RHS of Eq. (2.3.23) viz.

∂tλ = −κλ, κ > 0. (2.3.24)

Evolving with Eq. (2.3.24), we now find that the violations are damped away and the
“constraint hypersurface” in solution space (the point λ = 0 in this simple example) is an
attractor. This is shown in Fig. 2.4.

In this spirit, Gundlach, Martin-Garcia, Calabrese, and Hinder [61] modified the Z4
Einstein equation (2.1.43a) to include constraint damping terms31:

(4)Rµν + 2∇(µZν) − κ1(2n(µZν) − (1 + κ2)gµνn
αZα) = 8π

(
Tµν − 1

2Tgµν

)
. (2.3.25)

Here, in addition to the colour blue for the Z4-specific terms, we also use the colour
red to indicate these covariant damping terms. The forced wave equation for Z (2.1.44)
becomes

□Zµ +RµαZ
α − κ1∇α

(
2n(αZµ) + κ2gµαn

βZβ

)
= 0. (2.3.26)

31Note that κ1 has dimensions [κ1] = L−1 whereas κ2 is dimensionless.
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without damping

with damping

“true” solution

t

λ

Fig. 2.4 Simple illustration of constraint damping. The constraint or “true” solution
is λ = 0 [teal, solid line]. The undamped solution evolved with Eq. (2.3.23) has
constant violations throughout [blue, dot-dashed] and the damped solutions evolved with
Eq. (2.3.24) tend towards the true solution [red, dashed].

Linearising about Minkowski space, a mode analysis of Eq. (2.3.26) shows [61] that
violations of the constraint Zµ = 0 are damped so long as

κ1 > 0, κ2 > −1. (2.3.27)

Unlike the ADM formulation, the Z4 formulation (2.1.43) is strongly hyperbolic (even
without the damping terms) [61] so long as the densitised lapse α̃ (2.3.9) is specified
as a function of space and time (as opposed to the physical lapse α) or a Bona-Masso
slicing condition is used, but the momentum constraint is no longer required. Since the
damping terms do not affect the highest order derivatives, they do not therefore affect
the principal symbol and therefore the hyperbolicity.

There are several obvious advantages to the addition of constraint damping. Since
numerical approximations/mesh refinement (see Sec. 3.1.4) always introduce violations
of the constraints, we can mitigate these with damping. It may also help ameliorate
the effect of constraint-violating boundary conditions32. Furthermore, we can be more
confident that the numerical solutions we obtain are closer to the constraint hypersurface

32However, Bernuzzi and Hilditch [94] actually found the opposite with their Z4c formulation.
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than they would otherwise be and are thus, more physically relevant. The use of constraint
damping has even enabled the exploration of new physics [95]. Nevertheless, we should
still remain cautious when using constraint damping. Although solutions should move
closer to the constraint hypersurface as the solution progresses, it is not possible to
control where on the constraint hypersurface they tend toward. It is of course possible
that the constraint-damped solution, whilst closer to a true solution of the Einstein
equation (1.0.1), may be further away from the physical configuration that was intended
to be simulated. Therefore, one should not try to evolve initial data with very large
constraint violations and just hope for the best.

We now perform a conformal decomposition of the metric and extrinsic curvature
as in Eqs. (2.3.10) and (2.3.13) for BSSNOK. However rather than choosing somewhat
arbitrarily to promote Γ̃i to an evolution variable, we instead combine it with Θi and
define the new evolution variable

Γ̂i = Γ̃i + 2γ̃ikΘk = Γ̃i + 2Θi

χ
. (2.3.28)

At each evaluation of the RHS of the CCZ4 system, the quantity Θi/χ is reconstructed
using the above equation, where Γ̃i is calculated from the conformal metric γ̃ij and its
derivatives.

There is then a choice as to whether the evolution equations should be modified
using the Hamiltonian (2.1.36) and momentum (2.1.37) constraints to bring them closer
to the BSSNOK form. In the CCZ4 formulation [84, 85], these modifications are not
made (hence the “covariant” in the name) but in the similar Z4c formulation [94, 96],
the equations are modified accordingly. There seems to be little difference between the
performance of the two formulations [85]. One observation from Ref. [85] is that Z4c
exhibited a smaller deviation in the final BH mass compared to CCZ4 for simulations of
vacuum BHs and collapsing neutron stars. However, Bernuzzi and Hilditch [94] mention
that Z4c seems to be particularly sensitive to constraint violating boundary conditions
(hence the development of constraint-preserving BCs by Ruiz, Takahashi, Alcubierre,
and Nunez [97]) which has not been reported with CCZ4. From now on, we will only
consider CCZ4.

The CCZ4 evolution variables are

{χ, γ̃ij, K, Ãij,Θ, Γ̂i} (2.3.29)

and the system of equations is
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The CCZ4 system

∂tχ = βk∂kχ+ 2
3χ(αK − ∂kβ

k), (2.3.30a)

∂tγ̃ij = βk∂kγ̃ij + γ̃ki∂jβ
k + γ̃kj∂iβ

k − 2αÃij − 2
3 γ̃ij∂kβ

k, (2.3.30b)

∂tK = βk∂kK + α
(
RZ +K(K − 2Θ)

)
− 3ακ1(1 + κ2)Θ − γklDkDlα

+ 4πα(S − 3ρ),
(2.3.30c)

∂tÃij = βk∂kÃij + χ
[
−DiDjα + α(RZ

ij − 8πSij)
]

TF

+ Ãij

[
α(K − 2Θ) − 2

3∂kβ
k
]

+ 2Ãk(i∂j)β
k − 2αγ̃klÃikÃlj,

(2.3.30d)

∂tΘ = βk∂kΘ + 1
2α

(
RZ − ÃklÃ

kl + 2
3K

2 − 2ΘK
)

− ακ1Θ(2 + κ2)

− Θk∂kα− 8παρ,
(2.3.30e)

∂tΓ̂i = βk∂kΓ̂i + 2
3

[
∂kβ

k

(
Γ̃i + 2κ3

Θi

χ

)
− 2αKΘi

χ

]
− 2ακ1

Θi

χ

+ 2γ̃ik(α∂kΘ − Θ∂kα) − 2Ãik∂kα + 2αΓ̃i
klÃ

kl

− α

[
4
3 γ̃

ik∂kK + 3Ãik ∂kχ

χ

]
−
(

Γ̃k + 2κ3
Θk

χ

)
∂kβ

i

+ γ̃kl∂k∂lβ
i + 1

3 γ̃
ik∂l∂kβ

l − 16παγ̃ikjk.

(2.3.30f)

Here we have introduced the modified Ricci tensor RZ
ij which is the only form in which

the spatial Ricci tensor appears. It is defined by

RZ
ij := Rij + 2D(iΘj) = R̂ij + 1

χ

(
Rχ

ij +RΘ
ij

)
, (2.3.31)

with the parts given by

R̂ij = −1
2 γ̃

kl∂k∂lγ̃ij + γ̃k(i∂j)Γ̂k + Γ̂k∂kγ̃ij + γ̃lm
(
Γ̃k

liΓ̃jkm + Γ̃k
ljΓ̃ikm + Γ̃k

imΓ̃klj

)
,

(2.3.32a)

Rχ
ij = 1

2
[
D̃iD̃jχ+ γ̃ij γ̃

klD̃kD̃lχ
]

− 1
4χ

[
∂iχ∂jχ+ 3γ̃ij γ̃

kl∂kχ∂lχ
]
, (2.3.32b)

RΘ
ij = Θk

χ
(γ̃ik∂jχ+ γ̃jk∂iχ− γ̃ij∂kχ) , (2.3.32c)

This combination means that terms which would spoil strong hyperbolicity cancel out
[95]. The second covariant derivative of the lapse DiDjα is calculated as in Eq. (2.3.17).
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The extra parameter κ3 (and terms coloured in teal) was introduced by Alic, Bona-
Casas, Bona, Rezzolla, and Palenzuela [84] as they were unable to obtain stable BH
evolutions without κ3 ̸= 1. This parameter does not appear in the damped Z4 Einstein
equation (2.3.25) and in order to maintain covariance, we must choose κ3 = 1. However,
in Ref. [85], it is shown that one can retain spatial covariance when evolving BHs by
setting κ3 = 1 and replacing

ακ1 → κ1. (2.3.33)

This is because, for the gauge choice we typically make (and shall discuss next), the lapse
becomes very small inside the BH which has the unintended consequence of turning off
the constraint damping here. Note that this choice still breaks temporal covariance.

Whilst κ2 and κ3 are dimensionless, κ1 is a decay rate (cf. Eq. (2.3.25)), and thus has
units of inverse time. In practice, since we take code units where M ∼ 1, the default
values for these damping parameters is

ακ1 = 0.1, κ2 = 0 and κ3 = 1. (2.3.34)

Now, in order to close the system, we need to specify what conditions we will use for
the gauge variables.

2.3.4 The moving puncture gauge

As mentioned in Sec. 2.1.3, the choice of gauge has a large influence on the stability and
accuracy of a simulation. Arguably, one of the main advantages of the 3+1 formalism
over, for example, generalized harmonic coordinates is the intuition it provides over how
to control the coordinates through the choice of lapse α and shift βi (see Fig. 2.2).

We have already met a “bad” gauge condition in the form of geodesic slicing (α = 1)
in Sec. 2.1.3. Consider the evolution of the volume element √

γ for fixed coordinate xi

(i.e. along t = ∂t). Using Eq. (2.1.38), we find that this satisfies

∂t log √
γ = −αK +Dkβ

k. (2.3.35)

Now, it follows from Eq. (2.1.40) with α = 1 and βi = 0 (so the coordinates move along
geodesics) that

∂tK = KijK
ij + 4π(ρ+ S). (2.3.36)
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Assuming Kij is non-vanishing, the first term is strictly-positive and the second term is
nonnegative if the strong energy condition33 holds. It follows that K grows indefinitely.
Looking back at Eq. (2.3.35), we can see that this implies the volume elements of the
coordinates collapse to zero.

One solution to this problem is to enforce K = 0 (maximal slicing) [63]. This is
achieved by choosing initial data with K = 0 and, at each timestep, setting ∂tK = 0
in Eq. (2.3.16c) (or Eq. (2.3.30c) for CCZ4) and solving the resulting elliptic equation
for α. A particularly useful feature of maximal slicing is its singularity avoidance; it
does not allow the hypersurfaces to come arbitrarily close to a physical singularity which
is essential if one wishes to simulate black holes. Unfortunately, since maximal slicing
involves solving an elliptic equation at each timestep, it is computationally very expensive
even with fast elliptic solvers.

This motivated intense efforts in the early 1990s to seek alternatives choices that
perform similarly. These efforts culminated in the Bona-Masso family of slicing conditions
[98] where the lapse satisfies

(∂t − Lβ)α = −αf(α)K, (2.3.37)

where f is an arbitrary positive function. In the case f(α) = 2/α and assuming zero shift,
by substituting Eq. (2.3.35) into the RHS of Eq. (2.3.37), we find that ∂tα = 2∂t log √

γ

which can be integrated up directly to get α = g(x) + log γ for some arbitrary g. This
explains why this choice for f is known as 1+log slicing. It can be shown that this slicing
condition has strong singularity avoidance properties [99] and has proved extremely
robust for a wide variety of spacetimes so has become ubiquitous in 3+1 numerical
relativity codes. Since 1+log slicing has proved so successful in the BSSNOK formulation,
in order to match as closely as possible to it in the CCZ4 formulation, we make the
replacement K → K − 2Θ. This arises because the Hamiltonian constraint (2.1.36) is
used to replace the Ricci scalar to obtain the evolution equation for K (2.3.16c). Thus,
1+log slicing condition in the CCZ4 formulation is

CCZ4 1+log slicing

∂tα = βk∂kα− 2α(K − 2Θ). (2.3.38)

In practice, we use a generalised version of the above condition which takes the form
33The strong energy condition says that, for any timeline or null vector u, we must have (Tαβ −

1
2gαβT )uaub ≥ 0.
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∂tα = a1β
k∂kα− a2α

a3(K − 2Θ), (2.3.39)

and reduces to Eq. (2.3.38) in the case of our default parameter values,

a1 = 1, a2 = 2 and a3 = 1. (2.3.40)

Now that we have nailed down the slicing condition, one might hope that the naive
shift condition βi = 0 works for our needs [although perhaps the reader is sufficiently
wary after seeing how badly the naive geodesic slicing condition failed that they won’t
fall into this trap again]. As expected, 1+log slicing with zero shift is not sufficient to
stably and accurately evolve black holes for long times. This is because as the evolution
proceeds, the size of the horizon increases rapidly in coordinate space until it encompasses
the entire computational domain. Physically, this can be thought of as the Eulerian
observers continuously falling in. Furthermore, since observers closer to the black hole
move faster, the physical distance between coordinates increases which results in rapid
growth of radial metric components and eventually leads codes to fail. This effect is
referred to as slice stretching.

In order to prevent the coordinate lines falling into the black hole, looking at Fig. 2.2,
it is clear that we need to pick an outward-pointing shift vector. Today, the most popular
way to do this is to use a Gamma driver condition. We will use such a condition in the
form34

CCZ4 Gamma driver shift condition
∂tβ

i = b1β
k∂kβ

i + b2B
i, (2.3.41a)

∂tB
i = b1(βk∂kB

i − βk∂kΓ̂i) + ∂tΓ̂i − ηBi, (2.3.41b)

where b1, b2 and η are specifiable parameters. The discovery of this gauge condition led
to the breakthrough simulations of binary black-hole systems through inspiral and merger
without the need for excision35 by Campanelli, Lousto, Marronetti, and Zlochower [39]
and Baker, Centrella, Choi, Koppitz, and Meter [40]36.

There is still the question of what values for the parameters to choose in (2.3.41).
For the advection parameter b1 = 0 turns off the advection terms (“non-shifting shift”)

34For the BSSNOK version, make the replacement Γ̂i → Γ̃i.
35Note that these were not the first simulations of a binary black-hole system through inspiral and

merger as this accolade goes to Pretorius [38] who used generalized harmonic coordinates and excision.
36Baker, Centrella, Choi, Koppitz, and Meter [40] actually use a slightly different condition compared

with (2.3.41) and this is discussed in Sec. II of [100].
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and b1 = 1 includes them (“shifting shift”). A linear mode analysis that compared
different variants of the Gamma driver shift condition was conducted by van Meter,
Baker, Koppitz, and Choi [100] where it was found that b1 = 1 was the better option.
However, in practice, little difference is found between the different variants and we shall
typically take b1 = 1. For b2, the conventional choice is b2 = 3/4. This seems to stems
from Ref. [101] as this choice makes the longitudinal speed of the shift be that of the
speed of light (when α = 1). For the Z4 formulation, it is mentioned in Ref. [84] that
b2 = 3/4 can lead to weak hyperbolicity when α ∼ 1 and hence Ref. [94] suggests b2 = 1.
However, b2 = 3/4 seems to work fine in practice for CCZ4 and this is what we shall
use. Looking at the form Eq. (2.3.41b), we can see that the final term is acting as a
damping term (cf. Eq. (2.3.24)) so η controls the decay timescale. Using dimensional
analysis, we find that [η] = L−1. Typically, for a spacetime of ADM mass M , we choose
η ∼ 1/M but we note that for some scenarios (e.g. BH binaries with small mass ratios),
it can help to allow η to vary in space and time [102]. After the gauge has settled, the
coordinate size of the black hole horizon can be seen to increase as η increases (see Fig.
4 in [103]). Empirically, for comparable mass black-hole binaries, simulations are found
to be reasonably robust against variations in η within an order of magnitude. However,
if it is chosen too small η ≪ 1/M , the simulation can become unstable and, on the other
hand, if it is made too large η ≫ 1/M , the aforementioned slice stretching effects can
come into play.

The position of the punctures can be tracked by integrating their equation of motion
(cf. Fig. 2.1)

dxi
p

dt = −βi(xp). (2.3.42)

With the Gamma driver shift condition, the punctures become attractors. It should be
stressed that the trajectories one obtains are gauge dependent.

The combination of 1+log slicing (2.3.38) and the Gamma driver shift condition
(2.3.41) is known as the moving puncture gauge [39, 40] as it allows the BH punctures to
move around the computational domain without the need for excision or special care.
Although for Brill-Lindquist data (2.2.19) and Bowen-York puncture data (2.2.28), each
puncture initially corresponds to its own asymptotically flat end, after a short time of
evolution with the moving puncture gauge, they instead correspond to infinitely long
“cylinders” at area-radius r0 ∼ 1.31M < 2M [104]. This is known as the trumpet solution.
A seasoned numerical analyst might worry that evaluating numerical derivatives across
the puncture (which is still a coordinate singularity even if it does not correspond to



44 Numerical Relativity Fundamentals

the physical singularity) might lead to artefacts that cause uncontrollable numerical
errors and contaminate the rest of the computational domain destroying any accuracy.
Remarkably, this does not turn out to be the case and the numerics are surprisingly
regular [105]. This might be attributed to the presence of a horizon which shields the
rest of computational domain from the crimes within.

2.4 Gravitational wave extraction

Now that we know how to construct initial data and evolve it, it is time to consider how
we extract gravitational waves from numerical simulations. In this section, we will briefly
review the plane-wave solution to the linearised Einstein equation that one typically
meets in a first course in GR. Next, we look at the Weyl tensor and its electromagnetic
decomposition. We then discuss the Newman-Penrose formalism and explain how the
Weyl scalar Ψ4 can be related back to the previously found plane-wave solution. Finally
we show how the energy, linear and angular momentum radiated in gravitational waves
can be calculated from Ψ4.

It should be noted that using the Newman-Penrose formalism is not the only way
to extract gravitational waves in 3+1 simulations. However, it is arguably one of the
more straightforward approaches and has thus become the most popular method in
the community. For a review of other methods and a comparison between them, see
Ref. [106].

2.4.1 Plane wave solutions to the linearised Einstein equation

For this subsection, we follow the canonical treatment in Ref. [107]. In the weak-field
limit of GR, we can consider the spacetime as a perturbation of Minkowski space, so
there exist coordinates xµ such that the metric can be written as

gµν = ηµν + hµν , (2.4.1)

where (ηµν) = diag(−1, 1, 1, 1) is the Minkowski metric and |hµν | = O(ϵ) ≪ 1. Here ϵ
is merely an expansion parameter that we will use to keep track of orders. Note that
we have implicitly assumed that the coordinates xµ are approximately Cartesian. We
regard hµν as the components of a tensor field on the Minkowski background (so indices
of tensors are raised and lowered with the Minkowski metric). To first order in ϵ, the
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inverse metric is
gµν = ηµν − hµν , hµν := ηµαηνβhαβ. (2.4.2)

At linear order in ϵ, the Riemann tensor is given by

(4)Rµνρσ = 1
2 (∂ν∂ρhµσ + ∂σ∂µhνρ − ∂ν∂σhµρ − ∂µ∂ρhνσ) . (2.4.3)

It turns out that the equations are simplified if we consider the trace reversed metric
perturbation

h̄µν := hµν − 1
2ηµνh

α
α. (2.4.4)

Then, at linear order in ϵ, the Einstein equation (1.0.1) becomes

∂α∂(µh̄ν)α − 1
2
(
∂α∂

αh̄µν + ηµν∂
α∂βh̄αβ

)
= 8πTµν . (2.4.5)

We now make a gauge transformation in order to simplify this equation. Under the
change of coordinates

xµ 7→ x̃µ = xµ + ξµ, (2.4.6)

where |ξµ| = O(ϵ), the spacetime metric becomes

g̃µν = ηµν + hµν − 2∂(µξν), (2.4.7)

at linear order in ϵ. We can read off the transformation in the metric perturbation as

hµν → hµν − 2∂(µξν), (2.4.8)

and its trace-reversal as

h̄µν → h̄µν − 2∂(µξν) + ηµν∂αξ
α. (2.4.9)

Now, its divergence transforms as

∂αh̄αµ → ∂αh̄αµ − ∂α∂αξµ, (2.4.10)

so we can choose ξµ such that ∂α∂αξµ = ∂αh̄αµ (this equation is simply a sourced wave
equation so there exists a solution). In the new gauge (dropping the tildes), we find

∂αh̄αµ = 0, (2.4.11)
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which is known as Lorenz gauge37 (in analogy with electromagnetism). Note that,
looking at Eq. (2.4.5), we can see that the components of the energy-momentum tensor
|Tµν | = O(ϵ) so at linear order in ϵ, they do not change under the gauge transformation.
In this new gauge, the linearised Einstein equation (2.4.5) becomes

□ηh̄µν = −16πTµν , (2.4.12)

where □η = ∂α∂α is the usual flat-space wave operator.
In vacuum Tµν = 0, we find that Eq. (2.4.12) admits plane wave solutions of the form

h̄µν = Re [Aµν exp(ilαxα)] , (2.4.13)

where Aµν is the constant symmetric amplitude tensor and lµ is the real wavevector
which must be null in order for this solution to satisfy Eq. (2.4.12). From now on, we
drop the “Re” and take it as understood. The Lorenz gauge condition (2.4.11) implies

lαAαµ = 0, (2.4.14)

which means the waves are transverse (i.e. the amplitudes are orthogonal to the wavevector
and thus the direction of propagation), like electromagnetic waves. However, Eq. (2.4.11)
does not completely fix the gauge as we can perform another transformation of the form
(2.4.6) with ξ′µ satisfying the wave equation □ηξ

′µ = 0 and Eq. (2.4.11) will still be
satisfied. In particular, we can choose

ξ′µ = Bµ exp(ilαxα), (2.4.15)

where Bµ is an arbitrary constant vector. It can be shown that we can use a gauge
transformation of this form to further impose

A0µ = 0, Aα
α = 0. (2.4.16)

The conditions (2.4.14) and (2.4.16) are known as transverse-traceless (TT) gauge.
Note that, in this gauge, hµν = h̄µν . In the case of a plane wave in the z-direction

37This is commonly called Lorentz gauge.
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(lµ = (1, 0, 0, 1)), we can write

(Aµν) =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 . (2.4.17)

The two constants A+ and A× correspond to the two independent polarizations of
gravitational waves.

It follows from the equation of geodesic deviation (see, for example Ref. [106]) that
the effect of a gravitational wave of the form (2.4.13) (in TT gauge) on the displacement
ϵi of two nearby freely-falling test particles is governed by

ϵ̈i = 1
2 ḧ

TT
ik ϵ

k, (2.4.18)

which has solution
ϵi(t) = ϵk(0)

[
δik + 1

2h
TT
ik (t)

]
, (2.4.19)

or, in other words, the relative strain δϵ/ϵ between these two particles is proportional
to the metric perturbation amplitude. This is why hTT

ij is commonly referred to as the
gravitational wave strain.

2.4.2 The Weyl tensor

Given a D dimensional spacetime with Riemann tensor (D)R of the Levi-Civita connection
∇ with respect to the metric gµν , the Weyl tensor is defined by [108]

Cµνρσ := (D)Rµνρσ − 2
D − 2

(
gµ[ρ

(D)Rσ]ν − gν[ρ
(D)Rσ]µ

)
+ 2

(D − 1)(D − 2)gµ[ρgσ]ν
(D)R.

(2.4.20)
It incorporates the degrees of freedom of the Riemann tensor that are not present in the
Ricci tensor and thus shares the symmetries of the Riemann tensor. Furthermore, from
the above definition, it can also be verified that the Weyl tensor is traceless in all pairs
of indices:

Cα
µαν = 0. (2.4.21)

It is well known that the Riemann tensor has D2(D2 − 1)/12 independent components
and the Ricci tensor, which is symmetric, has D(D + 1)/2 independent components (for
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D > 2). Therefore, the number of independent components in the Weyl tensor is

D2(D2 − 1)
12 − D(D + 1)

2 = D(D + 1)(D + 2)(D − 3)
12 , D > 3 (2.4.22)

Note that both in D = 2 and 3, the Ricci and Riemann tensor have the same number of
independent components (1 and 6 respectively), so the Weyl tensor vanishes identically.
It follows that the first nontrivial dimension is D = 4 which is conveniently the dimension
most relevant to us and is what we shall now assume.

An important property of the Weyl tensor is that under a conformal transformation38

of the form
gµν → g̃µν = Ωgµν , (2.4.23)

the Weyl tensor is invariant:
Cµ

νρσ = C̃µ
νρσ. (2.4.24)

In other words, the Weyl tensor captures the degrees of freedom within a conformal
equivalence class of metrics. Note that Eq. (2.4.24) only holds with the indices in these
positions as the respective metrics will need to be used to raise and lower indices and
these differ by a conformal factor.

2.4.3 The electromagnetic decomposition of the Weyl tensor

Given an arbitrary timelike unit vector nµ (we will later restrict to the case where nµ

is the unit normal to the foliation (2.1.3) so the ambiguous notation is intentional), we
define the electric and magnetic parts of the Weyl tensor respectively by,

Eµν := nαnβCαµβν , (2.4.25a)
Bµν := nαnβ(∗C)αµβν , (2.4.25b)

where the dual Weyl tensor, (∗C)µνρσ is defined by39

(∗C)µνρσ := 1
2ϵ

αβ
ρσCµναβ, (2.4.26)

38Some theoretical physicists call such a transformation a Weyl transformation. It’s not too difficult
to see where this comes from.

39Note that this is just the Hodge dual if the Weyl tensor is considered to be a 2-form valued 2-form
hence the similar notation.
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and ϵµνρσ is the volume form. Note that the dual satisfies

(∗ ∗ C)µνρσ = −Cµνρσ, (2.4.27)

which is derived by using contractions of the volume form in terms of Kronecker deltas40.
It follows from the symmetries of the Weyl tensor that the electric and magnetic parts
are symmetric, trace-free and spatial in the sense that

nαEαµ = 0 = nαBαµ. (2.4.29)

Here, the only non-trivial relation is the symmetry of the magnetic part. One would hope
that the dual Weyl tensor shares the same symmetries as the Weyl tensor, in particular,

(∗C)µνρσ
?= (∗C)ρσµν ⇐⇒ ϵαβ

ρσCµναβ
?= ϵαβ

µνCαβρσ, (2.4.30)

where we have already applied the corresponding Weyl tensor symmetry in the final
expression. Let Aµνρσ = (∗C)µνρσ − (∗C)ρσµν , and consider

2ϵµναβAαβρσ = ϵµναβϵγδρσC
γδ

αβ − ϵµναβϵγδαβC
γδ

ρσ = 0, (2.4.31)

where the final equality follows after expanding products of the epsilon tensor in terms of
Kronecker deltas (2.4.28) and simplifying41. This equality holds if and only if A[µν]ρσ = 0
whence (2.4.30) holds and then the symmetry of the magnetic part follows.

The electric and magnetic parts each have 16 independent components. However,
they are purely spatial so, in practice, they have at most 9 independent components.
Their symmetry then restricts this to at most 6 and finally the tracelessness means
they only have 5 independent components. Assuming the electric and magnetic parts
are independent of one another, this gives 10 total, which is precisely the number of
independent components in the Weyl tensor. Therefore, it is not unreasonable to believe
that it can be written in terms of the electric and magnetic parts. Unfortunately whilst

40In D dimensions, the contraction of two volume forms over p indices is given by

ϵα1···αpµ1···µD−pϵα1···αpν1···νD−p
= ±p!(n− p)!δ[µ1

β1
· · · δαD−p]

βD−p
, (2.4.28)

where the + is for Riemannian signature and the − is for Lorentzian signature.
41The algebra is quite fiddly and the author resorted to a computer algebra system (as well as for

many of the other calculations in this subsection) in the form of the Mathematica package, xAct [109].
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the result (2.4.44) is quoted throughout the literature, its derivation is difficult to find so
we explain it below in more detail than has been provided in the rest of this chapter.

Before we can directly tackle the Weyl tensor, it is helpful to consider something
more simple in the form of self-dual 2-forms.

2.4.3.1 Self-dual 2-forms

Let ω be a complex-valued 2-form that satisfies

ω = i ⋆ ω ⇐⇒ ωµν = 1
2iϵ αβ

µν ωαβ, (2.4.32)

where ⋆ denotes the usual Hodge star42 and define the associated 1-form η by

ηµ := nαωαµ. (2.4.34)

Then, we can recover ω from η using the identity tensor

Iµνρσ = −
(
2gµ[ρgσ]ν + iϵµνρσ

)
(2.4.35)

We have

I β
µνα nαηβ = −

(
gµαδ

β
ν − gναδ

β
µ + iϵ β

µνα

)
nαnγωγβ

= −nµn
γωγν + nνn

γωγµ + 1
2ϵµναβϵ

γβδεnαnγωδε

= −2nγn[νωµ]γ − 1
2(3!)δ[δ

µ δ
ε
νδ

γ]
α n

αnγωδε

= −2nγn[νωµ]γ − 1
2
(
−2ω[µν] − 4nδn[νωµ]δ

)
= ωµν .

(2.4.36)

Of course, we could change (2.4.32) to

ω = −i ⋆ ω, (2.4.37)
42For a p-form ξ on a D dimensional manifold, the Hodge dual ⋆ξ is a (D − p)-form defined by

(⋆ξ)α1...αD−p
= 1
p!ϵα1...αD−pβ1...βp

ξβ1...βp . (2.4.33)
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which can be recovered with the complex conjugate identity tensor

Īµνρσ = −2gµ[ρgσ]ν + iϵµνρσ. (2.4.38)

2.4.3.2 Recovering the Weyl tensor from its electric and magnetic parts

Now, in order to apply the result in Eq. (2.4.36), we want to write the Weyl tensor in a
form that satisfies something similar to (2.4.32). We do this by defining a new tensor

Cµνρσ = Cµνρσ + i(∗C)µνρσ. (2.4.39)

This satisfies a property similar to (2.4.32) since

i(∗C)µνρσ = −(∗ ∗ C)µνρσ + i(∗C)µνρσ = Cµνρσ + i(∗C)µνρσ = Cµνρσ, (2.4.40)

where we have used Eq. (2.4.27) in the second equality. The object analogous to the
“associated 1-form” (2.4.34) is

Q̄µν := nαnβCαµβν = Eµν + iBµν , (2.4.41)

where we have written Q̄ for consistency with the quantity Q which is often defined
in the literature (e.g. Eq. (8.6.18) in Ref. [49]). Then, we apply the recovery identity
(2.4.36) on both pairs of indices to obtain

Cµνρσ = Re (Cµνρσ)
= Re

(
I β

µνα I δ
ρσγ nαnγQ̄βδ

)
= Re

{(
gµαδ

β
ν − gναδ

β
µ + iϵ β

µνα

) (
gργδ

δ
σ − gσγδ

δ
ρ + iϵ δ

ρσγ

)
nαnγ(Eβδ + iBβδ)

}
= 2nµn[ρEσ]ν − 2nνn[ρEσ]µ − ϵ β

µν ϵ δ
ρσ Eβδ − 2ϵ β

µν n[ρBσ]β − 2ϵ δ
ρσ n[µBν]δ,

(2.4.42)

where we have chosen the convention ϵµνρ = nαϵαµνρ for the 3-dimensional volume element
and implicitly used the symmetry (2.4.30) in the second equality. Using Eq. (2.4.28), we
find that

ϵ β
µν ϵ δ

ρσ Eβδ = 2γν[ρEσ]µ − 2γµ[ρEσ]ν , (2.4.43)

where γµν is given by Eq. (2.1.5) (except we still do not require that nµ is necessarily the
normal to the foliation). Substituting back into the final line of Eq. (2.4.42), we obtain
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Cµνρσ = 2
(
lµ[ρEσ]ν − lν[ρEσ]µ − n[ρBσ]βϵ

β
µν − n[µBν]δϵ

δ
ρσ

)
, (2.4.44)

where
lµν = γµν + nµnν = gµν + 2nµnν . (2.4.45)

This result allows us to calculate the Weyl tensor in terms of purely spatial quantities
that we can compute in a 3+1 simulation.

2.4.3.3 3+1 expressions for the electric and magnetic parts

We now show how to derive expressions for the electric and magnetic parts in the 3+1
formalism. In order to do this, we have to assume that nµ is the unit normal to the
foliation (2.1.3). Since we mainly use the CCZ4 formulation, we will also include the
terms that depend on the Z4 vector (or rather its projections).

Starting from the contracted Gauss equation (2.1.27), we use the definition of the
Weyl tensor (2.4.20) to substitute for the Riemann tensor in terms of the Weyl tensor,
the Ricci tensor and the Ricci scalar. Then we use the electromagnetic decomposition of
the Weyl tensor (2.4.44) to substitute for the electric and magnetic parts. Rearranging
for the electric part, we get

Eµν = Rµν −K α
µ Kνα +KKµν + 1

3
(4)Rγµν − (4)Rαβγµ(αγν)β. (2.4.46)

We then use the damped Z4 equation (2.3.25) to remove the spacetime Ricci tensor and
scalar. Furthermore we replace all spacetime quantities (e.g. Zµ via Eq. (2.1.45) and Tµν

via Eq. (2.1.35)) with their respective projections and apply Eqs. (2.1.19) and (2.1.22) as
necessary to remove gradients of the normal. This yields

Eij = Rij −K m
i Kjm +KKij − Θ

(
Kij + 1

3Kγij

)
− 2

3Λγij − 4
3Gπ(4ργij + 3Sij − Sγij)

− 2
3κ1Θ(2 + κ2)γij +D(iΘj) + 1

3γijDmΘm − 2
3γij (ΘmDm logα + LnΘ) , (2.4.47)

where we have switched to spatial indices since all the quantities are purely spatial.
Finally, we use the evolution equation for Θ (2.1.46d) to replace LnΘ. This gives an
explicitly-trace-free form which we can write more succinctly as

Eij =
[
Rij −K m

i Kjm +Kij(K − Θ) − 4GπSij +D(iΘj)
]TF

. (2.4.48)
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where the TF indicates the tracefree part is taken. Unfortunately, the Ricci tensor does
not appear in the usual modified Ricci tensor form (2.3.31) due to the missing factor of
2 in front of the D(iΘj) term which means existing code to calculate the modified Ricci
tensor needs to be modified in order to calculate Eq. (2.4.48). Note that this expression
differs from the usual [non-Z4] 3+1 expression which is

Eij = Rij +KKij −KimK
m

j − 4π
[
Sij + 1

3γij(4ρ− S)
]
. (2.4.49)

This expression relies on the Hamiltonian constraint (2.1.36) in order to be tracefree
whereas the tracelessness appears manifestly in the Z4 expression.

For the magnetic part, we start with the Codacci equation (2.1.29) and play the same
game as we did for the electric part, using Eq. (2.4.20) to substitute for the Riemann
tensor and then applying the electromagnetic decomposition of the Weyl tensor (2.4.44).
Rearranging for the magnetic part, we find

Bµν = 1
2ϵνµαn

β (4)R α
β + ϵ αβ

ν DαKµβ, (2.4.50)

Now we could use the damped Z4 equation (2.3.25) to substitute for the Ricci tensor,
but instead we just use the symmetry of Bµν and symmetrize both sides to obtain

Bij = ϵmn(iD
mK

n
j) , (2.4.51)

where we have switched to spatial indices as all the quantities are purely spatial. Note
that the symmetry of Kij and the antisymmetry of ϵijk ensures that this expression is
tracefree.

2.4.4 The Newman-Penrose formalism and null tetrads

The Newman-Penrose formalism [110] starts by introducing a tetrad of null vector fields.
Normally, we can only construct two linearly independent null vectors at a point but if
we allow complex numbers, we can extend this to four. To construct these null vectors we
can start with an orthonormal tetrad {eµ

(a) : a = 0 . . . 3} which satisfy gαβe
α
(a)e

β
(b) = η(a)(b),
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where (η(a)(b)) = diag(−1, 1, 1, 1). Then, we define our null tetrad as43

lµ := 1√
2
(
eµ

(0) + eµ
(1)

)
, (2.4.52a)

kµ := 1√
2
(
eµ

(0) − eµ
(1)

)
, (2.4.52b)

mµ := 1√
2
(
eµ

(2) + ieµ
(3)

)
, (2.4.52c)

m̄µ := 1√
2
(
eµ

(2) − ieµ
(3)

)
, (2.4.52d)

Writing lµ(0) = lµ, lµ(1) = kµ, lµ(2) = mµ and lµ(3) = m̄µ, these satisfy

gαβl
α
(a)l

β
(b) = ζ(a)(b), (ζ(a)(b)) =


0 −1 0 0

−1 0 0 0
0 0 0 1
0 0 1 0

 . (2.4.53)

We can now represent the 10 independent components of the Weyl tensor in terms
of its projection onto the null tetrad (2.4.52). The five complex scalars Ψa, a = 0, . . . , 4
are defined as such and are known as the Weyl scalars (also commonly referred to as
the Newman-Penrose scalars). In particular, the outgoing gravitational radiation is
encapsulated in44

Ψ4 := Cαβγδk
αm̄βkγm̄δ. (2.4.54)

Using Eq. (2.4.44), it can be shown that

Ψ4 = Qijm̄
im̄j, (2.4.55)

where Qij = Eij − iBij is the complex conjugate of Eq. (2.4.41); this is the formula we
use in our numerical code to calculate Ψ4.

One of the main conceptual issues with the Newman-Penrose formalism is that Ψ4

depends on the choice of the null tetrad. For the Kerr spacetime, the “natural” null tetrad
which has the required asymptotic behaviour and principal null directions is known as the
Kinnersley tetrad [111]. However, it can be shown that under a small perturbation of the
Kinnersley tetrad, Ψ4 is invariant at first order [112]. Thus, the ambiguity in the choice

43Following Ref. [49], we use kµ to denote the second null vector rather than the more conventional
nµ to avoid confusion with the unit normal to the foliation (2.1.3).

44Note that we follow the sign convention of Ref. [49] which differs to that of Refs. [50, 106]
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of tetrad is a second-order effect and should not be too important. Of course in practice,
we are not typically evolving Kerr but one would expect that far from the sources of
gravitational radiation, the spacetime is close to Kerr. We therefore wish to construct
what is known as a quasi-Kinnersley tetrad which tends to the Kinnersley tetrad as the
spacetime tends to Kerr. We will avoid discussing the details of this ambiguity further,
but the reader is referred to Ref. [106] for a brief overview particularly with respect to
the intended numerical application.

In practice, during a numerical simulation, we follow the construction of a null tetrad
using step (a) from Sec. V A in Ref. [113] which we now outline. We start by constructing
an orthonormal basis. First, we pick eµ

(0) = nµ. Then, we define the purely spatial vectors

ẽi
ϕ = −y(∂x)i + y(∂x)i, (2.4.56)
ẽi

r = x(∂x)i + y(∂y)i + z(∂z)i, (2.4.57)
ẽi

θ = √
γγimϵ̃mnpẽ

n
ϕẽ

p
r, (2.4.58)

where ϵ̃ijk is the totally-antisymmetric alternating symbol. This is just the flat-space
tetrad in spherical coordinates. Note that these vectors are neither normalised nor
orthogonal so we orthonormalise them using a Gram-Schmidt procedure:

êi
ϕ =

ẽi
ϕ√

γklẽk
ϕẽ

l
ϕ

, (2.4.59)

êi
r =

ẽi
r − êi

ϕ(γklê
k
ϕẽ

l
r)√

γmn[ẽm
r − êm

ϕ (γklêk
ϕẽ

l
r)][ẽn

r − ên
ϕ(γklêk

ϕẽ
l
r)]
, (2.4.60)

êi
θ =

ẽi
θ − êi

ϕ(γklê
k
ϕẽ

l
θ) − êi

r(γklê
k
r ẽ

l
θ)√

γmn[ẽm
θ − êm

ϕ (γklêk
ϕẽ

l
θ) − êm

r (γklêk
r ẽ

l
θ)][ẽn

θ − ên
ϕ(γklêk

ϕẽ
l
θ) − ên

r (γklêk
r ẽ

l
θ)]
. (2.4.61)

The strange order in which this is applied is for consistency with Ref. [113]. There, they
claim it is important to start the Gram-Schmidt procedure with the azimuthal direction
vector in order to avoid frame-dragging effects although these are attributed to the use
of a vanishing shift vector whereas we use the Gamma driver shift condition (2.3.41).
Finally we set eµ

(1) = êµ
r , e

µ
(2) = êµ

θ and eµ
(3) = êµ

ϕ and construct the null tetrad using
(2.4.52).

Now, Ref. [113] proceeds to apply a set of null rotations and boosts (that preserve
Eq. (2.4.53)) in order to bring the tetrad into a quasi-Kinnersley form. However, following
Refs. [114, 103], we dispense with this step.
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2.4.5 The Weyl scalar Ψ4 and gravitational radiation

In order to relate Ψ4 to outgoing gravitational waves, we assume the null tetrad is
constructed using (2.4.52) from the standard flat-space orthonormal tetrad in spher-
ical coordinates {eµ

t , e
µ
r , e

µ
θ , e

µ
ϕ}. This means that our expressions will only be valid

asymptotically.
For the plane-wave solution derived in Sec. 2.4.1, we can write the metric perturbation

more generally in the TT gauge as

hµν = h+A+
µν + h×A×

µν , (2.4.62)

where A+,×
µν are constant symmetric polarization tensors. For an outgoing wave in the

radial direction, we choose

A+
(θ)(θ) = −A+

(ϕ)(ϕ) = 1, (2.4.63)

A×
(θ)(ϕ) = A×

(ϕ)(θ) = 1, (2.4.64)

with all other components vanishing (these are components with respect to the orthonor-
mal basis rather than the coordinate basis hence the parentheses). Note the similarity
with the expression for the amplitude tensor of a wave moving in the z-direction (2.4.17).

Now, note that when substituting the definition of the Weyl tensor (2.4.20) into the
definition of Ψ4 (2.4.54), the only non-vanishing term is the first one containing the
Riemann tensor (since most contractions of two null tetrad vectors vanish (2.4.53)). We
can then use the linearised expression for the Riemann tensor (2.4.3) with our expression
for the metric perturbation above (2.4.62) to calculate Ψ4. Putting this all together, one
can show that

Ψ4 = 1
4[∂2

t − 2∂t∂r + ∂2
r ]h, h = −h+ + ih×, (2.4.65)

where we refer to h as the strain. For an outgoing wave, we expect h = h(t − r), so
∂rh = −∂th and we find that

Ψ4 = −ḧ+ + iḧ×. (2.4.66)

2.4.6 Spherical harmonic decomposition

It is often convenient to decompose Ψ4 and h into spherical harmonic modes. Not
only is numerical noise filtered by the decomposition process since it tends to be of
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higher frequency than the physical signal, but knowledge of the symmetries or even the
expected dominant modes of the configuration being simulated enables sanity checks of
the numerical solution. Furthermore, some characteristics of gravitational radiation, such
as quasinormal modes, are best understood in terms of these multipoles. We compute
these modes with respect to the spin weight45 s = −2 spherical harmonics −2Y

ℓm [115]
which are defined and computed using the formula

sY
ℓm(θ, ϕ) = (−1)s

√
2ℓ+ 1

4π dℓ
m(−s)(θ)eimϕ, (2.4.67)

where the Wigner d functions are given by [103]

dℓ
ms(θ) =

min(ℓ+m,ℓ−s)∑
t=max(0,m−s)

(−1)t
√

(ℓ+m)!(ℓ−m)!(ℓ+ s)!(ℓ− s)!
(ℓ+m− t)!(ℓ− s− t)!t!(t+ s−m)!

×
(

cos θ
2

)2ℓ+m−s−2t (sin θ
2

)2t+s−m

. (2.4.68)

Using the orthogonality relation over the unit sphere,
∮

S2
sY

ℓm
s′Ȳ ℓ′m′ dΩ = δss′δℓℓ′δmm′ , (2.4.69)

we can decompose Ψ4 into a superposition of modes:

Ψ4(t, r, θ, ϕ) =
∞∑

ℓ=2

m=ℓ∑
m=−ℓ

ψℓm(t, r) −2Y
ℓm(θ, ϕ), (2.4.70)

where the multipolar amplitudes are given by

ψℓm(t, r) =
∮

S2
Ψ4(t, r, θ, ϕ) −2Ȳ

ℓm(θ, ϕ) dΩ. (2.4.71)

In a similar fashion, we decompose the strain as

h = −h+ + ih× =
∞∑

ℓ=2

ℓ∑
m=−ℓ

hℓm(t, r) −2Y
ℓm(θ, ϕ), (2.4.72)

45A function f has spin weight s if under a rotation by angle ϑ of the angular basis {eθ, eϕ}, it
transforms as f → e−isϑf . It can be shown that Ψ4 (and thus also h) has spin weight s = −2 (see
appendix D of Ref. [49])
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where we also write hℓm = −h+
ℓm + ih×

ℓm. It then follows from Eqs. (2.4.66) and (2.4.70)
that

ḧ+
ℓm = − Re(ψℓm), ḧ×

ℓm = Im(ψℓm). (2.4.73)

Typically, we compute ψℓm according to Eq. (2.4.71) during a numerical simulation and
then compute the strain amplitudes by integrating Eq. (2.4.73).

By the peeling theorem [110], we expect Ψ4 = O(1/r) as r → ∞, hence we typically
consider rΨ4 (or rψℓm, rhℓm, etc.) rather than just Ψ4. Because we typically extract at
finite radius r = rex, this makes the extrapolation to null infinity more straightforward.

For most astrophysical problems, the ℓ = 2 modes dominate and for some applications
it is reasonable to ignore contributions from ℓ > 2. However, we will see an explicit
example in Chapter 5 where it is important to include them. In the case of axisymmetry,
so long as the polar axis for the spherical harmonics is aligned with the axis of symmetry,
the m ̸= 0 modes necessarily vanish (Eq. (2.4.67) depends on m through eimϕ).

2.4.7 Radiated energy and momentum

We can calculate an object that can be interpreted as the energy-momentum tensor for
GWs by adding a second order correction to the linearised metric (2.4.1) viz.

gµν = ηµν + hµν + h(2)
µν , (2.4.74)

where h(2)
µν = O(ϵ2). Then, at quadratic order in ϵ, the Einstein equation (in vacuum)

can be written as [116]

(4)R(1)
µν

[
h(2)

]
− 1

2
(4)R(1)

[
h(2)

]
ηµν = 8πtµν [h], (2.4.75)

where (4)R(1)
µν

[
h(2)

]
and (4)R(1)

[
h(2)

]
are the contributions to the full Ricci tensor and

scalar respectively that contain parts linear in h(2)
µν and

tµν = − 1
8π

{
(4)R(2)

µν [h] − 1
2

(4)R(2)[h]ηµν

}
. (2.4.76)

Here (4)R(2)
µν [h] and (4)R(2)[h] are the contributions to the full Ricci tensor and scalar

respectively that are quadratic in hµν
46. It can be shown that tµν is symmetric and

transverse, hence it can almost be interpreted as an energy-momentum tensor for GWs.
46The observant reader may have noticed that we have omitted the term − 1

2
(4)R(1)[h]hµν in this

equation. However, this vanishes by the Einstein equation at linear order in ϵ.
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Unfortunately it is not invariant under a gauge transformation of the form (2.4.6). This
problem can be eliminated if we consider the average over distances much greater than
the wavelength of the radiation, which we denote with ⟨·⟩. This is known as the Isaacson
stress-energy tensor [116] and, in the TT gauge, it is given by

Tµν := ⟨tµν⟩ = 1
32π

〈
∂µh

TT
αβ ∂νh

TT,αβ
〉
. (2.4.77)

For an outgoing gravitational wave in the radial direction as discussed in Sec. 2.4.5,
in locally Cartesian coordinates, the outgoing energy flux is47,

dE
dtdΩ = T 0r = 1

16π
〈
∂0h∂rh̄

〉
= 1

16π
〈
|ḣ|2

〉
, (2.4.78)

where we have used ∂th = −∂rh in the final equality. Integrating this expression in time
and over the unit sphere S2, and using Eq. (2.4.66), we find that the accumulated energy
radiated in GWs is given by [117]

Erad(t) = lim
r→∞

r2

16π

∫ t

t0
dt′
∮

S2
dΩ

∣∣∣∣∣
∫ t′

−∞
dt′′ Ψ4(t′′, r, θ, ϕ)

∣∣∣∣∣
2

. (2.4.79)

The accumulated linear momentum radiated in GWs Prad can be calculated similarly:

Prad(t) = lim
r→∞

r2

16π

∫ t

t0
dt′
∮

S2
dΩ er

∣∣∣∣∣
∫ t′

−∞
dt′′ Ψ4(t′′, r, θ, ϕ)

∣∣∣∣∣
2

, (2.4.80)

where er is the unit radial vector with Cartesian components

er = (sin θ cosϕ, sin θ sinϕ, cos θ). (2.4.81)

The formula for the accumulated radiated angular momentum Jrad is a little more
complicated to derive (see e.g. Ref. [49] for further details). It takes the form [117]

47Here, h̄ denotes the complex conjugate of the strain h rather anything to do with trace-reversal.
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Jrad(t) = − lim
r→∞

r2

16π Re
∫ t

t0
dt′
{∮

S2

(∫ t′

−∞
dt′′ Ψ̄4(t′′, r, θ, ϕ)

)

×Ĵ
(∫ t′

−∞
dt′′

∫ t′′

−∞
dt′′′ Ψ4(t′′′, r, θ, ϕ)

)
dΩ
}
, (2.4.82)

where the angular momentum operator Ĵ for spin weight s = −2 is given by

Ĵ =
(

Re Ĵ+, Im Ĵ+,
∂

∂ϕ

)
, (2.4.83)

and
Ĵ+ = eiϕ

(
i ∂
∂θ

− cot θ ∂
∂ϕ

+ 2i cosec θ
)
. (2.4.84)

Typically, we calculate Eqs. (2.4.79), (2.4.80) and (2.4.82) at finite extraction radius
r = rex using the extracted values of Ψ4 there and then extrapolate these to infinity (or
at least use the extrapolated value as an estimate of the error from the result at finite
extraction radius). The value of the lower integration limit in these formulae should be
t0 = −∞. However, in practice, we choose t0 in order to exclude the contribution of the
spurious “junk” radiation coming from the initial data (see, for example the discussion
at the end of Sec. 2.2.3).

2.5 Numerical methods

Now that we have introduced the differential equations we wish to solve, it is time to
explore how we translate these equations into a form that can be solved using a computer
program. In this section, we focus mainly on techniques applicable to the evolution of
hyperbolic equations rather than finding solutions to elliptic problems as is necessary
for solving the constraint equations for initial data. However, some of the ideas are
applicable to both kinds of problem.

Here we will focus on the method of finite differences which is often the first numerical
method to solve a differential equation that one typically meets, for example, at an
undergraduate level. Whilst the method of finite differences is arguably one of the simpler
methods, it is definitely not the only method. Some popular alternatives within the
numerical relativity community are spectral methods where the solution is expanded
in terms of a basis of functions. For example, these are used by the SXS collaboration
in the Spectral Einstein Code (SpEC) [118] and by the TwoPunctures code for
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constructing binary Bowen-York puncture data [119] (see Sec. 3.2.3). Another approach
that is somewhat less common within the numerical relativity community is the method
of finite elements.

Although the simulations presented later on in this thesis are in three spatial dimen-
sions and use adaptive mesh refinement, for the purposes of this section we will focus on
a much simpler example. This will allow us to explain the basic concepts of numerical
analysis without getting bogged down in technical details.

2.5.1 The one-dimensional linear wave equation

For many examples in this section, we will consider the linear wave equation in one
dimension which is probably the archetypal example of a linear hyperbolic partial
differential equation (PDE). In units where the wavespeed c = 1, it takes the form

∂2
t u(x, t) = ∂2

xu(x, t), (x, t) ∈ R2 (2.5.1)

Given suitable initial data, for example,

u(x, 0) = f(x), ∂tu(x, 0) = g(x), x ∈ R, (2.5.2)

the problem is well posed. In particular, we have d’Alembert’s solution

u(x, t) = 1
2 [f(x+ t) + f(x− t)] + 1

2

∫ x+t

x−t
g(y) dy. (2.5.3)

Although the linear wave equation appears to be a relatively simple example that
can be solved analytically, we will explore how to solve it numerically as some of the
features it exhibits and methods we use will be applicable to the more complicated
equations we have already met. Furthermore, as we have seen in Sec. 2.4.1, the linearised
Einstein equation can be written in such a way that it is essentially just a simple wave
equation (albeit typically in three spatial dimensions). Indeed, even the full nonlinear
Einstein equation can be written as a [rather complicated] nonlinear wave equation in
some coordinate systems (for example, the harmonic coordinates mentioned at the start
of Sec. 2.1) and this is often how mathematical properties of the equation are understood.
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2.5.2 Finite differences and evaluating numerical derivatives

In the method of finite differences, the continuous spacetime coordinates x and t are
replaced with a grid of a countable number of points with spacings ∆x and ∆t. For this
section, we will restrict to the case of uniform and fixed ∆x and ∆t. Furthermore, we
will consider a finite computational domain, (x, t) ∈ D = [xmin, xmax] × [0, tmax] ⊂ R2,
rather than considering compactifications. Then, we label our points in the grid as

xj = xmin + j∆x, j = 0, . . . , J, (2.5.4)
tn = n∆t, n = 0, . . . , N, (2.5.5)

where ∆x, J , ∆t and N are chosen such that J∆x = xmax − xmin and N∆t = tmax. It is
conventional to use the following shorthand notation to label the value of u at points in
the grid:

un
j = u(xj, tn). (2.5.6)

We can use Taylor expansions to approximately calculate derivatives of u given
multiple neighbouring grid values un

j . For example, using

un
j+1 = un

j + ∆x(∂xu)n
j + (∆x)2

2 (∂2
xu)n

j + (∆x)3

6 (∂3
xu)n

j + O
(
∆x4

)
, (2.5.7)

un
j−1 = un

j − ∆x(∂xu)n
j + (∆x)2

2 (∂2
xu)n

j − (∆x)3

6 (∂3
xu)n

j + O
(
∆x4

)
, (2.5.8)

we find that
(∂2

xu)n
j =

un
j+1 − 2un

j + un
j−1

(∆x)2 + O
(
∆x2

)
. (2.5.9)

It is commonplace to refer to finite difference formulae that calculate approximate
derivatives as stencils. This example is centred because it is symmetric about the point
of evaluation (xt, tn). In general, we will prefer centred stencils as these minimise the
largest number of points needed on one side of the evaluation point and tend to have
smaller coefficients in their leading order corrections. In parallelised codes such as
GRChombo (see Chapter 3), the points are distributed across multiple processors which
means that ghost points are needed on either side of the subset of the grid an individual
processor is working on in order to evaluate derivatives. At each step, these ghost points
are exchanged between processors. Therefore, minimising the number of needed ghost
points reduces the amount of communication between processors and memory required
to store them thereby improving computational efficiency. Unfortunately, it turns out
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that lopsided stencils are necessary for stability when evaluating the advection terms (i.e.
terms of the form βk∂ku in (2.3.16), (2.3.30), (2.3.38) and (2.3.41)) where the “sign” of
the lopsidedness depends on the sign of the shift vector component. These stencils tend
to be the limiting factor in terms of minimum number of ghost points required.

2.5.3 Consistency, convergence and stability

Before we look at some examples of numerical schemes for the wave equation (2.5.1), it
is important to understand the difference between consistency, convergence and stability
as these concepts describe how “good” a particular numerical scheme is.

Suppose we have a PDE
L u = 0, (2.5.10)

where L is a differential operator which we approximate using finite differences as L∆x,∆t.
Let ũ be the true solution to Eq. (2.5.10) and u∆x,∆t be the finite-difference solution.

2.5.3.1 Consistency

We say the numerical scheme is consistent if

lim
∆x,∆t→0

L∆x,∆tũ = 0. (2.5.11)

In other words, a consistent finite difference scheme correctly approximates the original
differential equation and not some other equation in the continuum limit. Typically if
one finds the numerical scheme is inconsistent, then one has made a mistake when trying
to derive it.

The truncation error is
τ∆x,∆t = L∆x,∆tũ, (2.5.12)

and, if τ∆x,∆t = O(∆xm,∆tn), as ∆x,∆t → 0, we say the method is mth order in space
and nth order in time or just kth order where k = min(m,n).

2.5.3.2 Convergence

We say the numerical scheme is convergent if, in the limit as ∆x,∆t → 0 with x = j∆x
and t = n∆t fixed (so j, n → ∞),

(u∆x,∆t)n
j → ũ(x, t), (2.5.13)
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that is the finite-difference solution approaches the true solution in the continuum limit.
Note that the difference between convergence and consistency is subtle; consistency is
about the equations (or scheme) and convergence is about the solution.

The solution error is
ε∆x∆t = u∆x,∆t − ũ. (2.5.14)

Given that we are usually trying to numerically solve a problem that cannot be solved
analytically, it is often impossible to determine the convergence of a numerical solution
to its continuum limit. However, there may exist a quantity which is a function of
the evolution variables for which we do know the analytic solution (for example the
Hamiltonian and momentum constraints should vanish in the continuum limit) and we
can use these as a verification of the convergence. Of course, whilst it is necessary for
this derived quantity to converge if the solution is converging, it is usually not sufficient
to show convergence of the solution

2.5.3.3 Stability

Firstly, we need to define the Lp norm ∥ · ∥∆x,p of a grid function w∆x,∆t which is defined
by

∥(w∆x,∆t)n∥p :=
∆x

J∑
j=0

∣∣∣(w∆x,∆t)n
j

∣∣∣p
1/p

≈
(∫ xmax

xmin
|w|p dx

)1/p

. (2.5.15)

Note that the generalization to higher dimensional spaces is straightforward. For example
in three dimensions, we have

∥(w∆x,∆t)n∥p :=
∆x∆y∆z

Jx∑
jx=0

Jy∑
jy=0

Jz∑
jz=0

∣∣∣(w∆x,∆t)n
jx,jy ,jz

∣∣∣p
1/p

. (2.5.16)

We say the numerical scheme is stable in some region Λ ⊂ R2, if, for any T > 0, there
exists a constant CT such that

∥(u∆x,∆t)n∥2 ≤ CT

∥∥∥(u∆x,∆t)0
∥∥∥

2
, (2.5.17)

where 0 ≤ n∆t ≤ T and (∆x,∆t) ∈ Λ. Intuitively, a stable numerical scheme does not
amplify some component of the initial data arbitrarily. Comparing with Eq. (2.3.2), we
can see that this is essentially the discrete analogue of well-posedness.
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2.5.3.4 The relation between them

An important result in the study of finite difference approximations is the Lax equivalence
theorem [120] which states that for a consistent finite difference approximation to a
well-posed linear initial value problem, stability is a necessary and sufficient condition for
convergence. Whilst this applies to our one dimensional wave equation (2.5.1), it does
not apply to the nonlinear equations we typically want to solve in NR. Nevertheless, it
provides intuition that the convergence of a finite difference approximation is related to
its stability.

2.5.4 Von Neumann stability analysis

Proving stability using the definition (2.5.17) is non-trivial, even for linear problems, and
we will often rely instead on von Neumann stability analysis [121] (also known as Fourier
mode analysis). Below we go through the general theory behind the analysis and specific
examples can be found in the next section.

Suppose we have a finite difference approximation to a linear IVP of the form

K∑
k=0

R∑
r=0

Arkun+r
j+k = 0, (2.5.18)

where u is a vector of evolution variables of length m and Ark is an m × m matrix of
constant coefficients for each k and r. In the case of non-constant coefficients, we assume
they are slowly varying enough to be considered constants and the analysis applies only
locally. We proceed by considering a Fourier mode of the form

un
j = ξneikj∆xu0, (2.5.19)

where the superscript n on the right-hand side is an exponent as opposed to an index.
Substituting into Eq. (2.5.18) yields a matrix equation of the form Bu0 = 0 for some
m×m matrix B with non-trivial solution if and only if detB = 0. This is a polynomial in
ξ of degree mR so let the roots be ξi(k) for i = 1, . . . ,mR. We call these the amplification
factors. The von Neumann stability condition is

|ξi(k)| ≤ 1, for all i = 1, . . . ,mR, k ∈ R. (2.5.20)

In other words, a mode should not grow in magnitude. This is somewhat similar to our
heuristic argument that strong hyperbolicity implied well-posedness for an IVP (2.3.6).
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For nonlinear equations, we can linearise and then apply the analysis. Although von
Neumann stability analysis is far from rigorous, empirically it is found to be quite reliable
in providing the right intuition.

2.5.5 Numerical schemes

We are now ready to look at a few numerical schemes. Often, it is convenient to rewrite
the equations so they are first order in time by introducing the auxiliary variable s = ∂tu.
Then the wave equation (2.5.1) becomes

∂tu = s, (2.5.21a)
∂ts = ∂2

xu. (2.5.21b)

2.5.5.1 Forward time centred space

In the forward time centred space scheme (FTCS), the system (2.5.21) becomes

un+1
j = un

j + ∆t sn
j (2.5.22a)

sn+1
j = sn

j + ∆t
4∆x2

(
un

j+2 − 2un
j + un

j−2

)
. (2.5.22b)

Note that the non-centred temporal differencing and centred spatial differencing means
that this scheme is first-order accurate in time and second-order accurate in space. This
is an example of an explicit scheme because the value of variables at the latest timestep
can be written explicitly in terms of the variables at earlier timesteps. On the other hand
implicit schemes require a [sparse] matrix equation to be solved at each timestep. This
can be computationally expensive, particularly in higher than one dimension which is
why we will only consider explicit methods.

Now, consider a von Neumann stability analysis. Rewriting the scheme just in terms
of u, we have

un+2
j − 2un+1

j + un
j

∆t2 =
un

j+2 − 2un
j + un

j−2

4∆x2 . (2.5.23)

Substituting a Fourier mode of the form (2.5.19) (with m = 1) gives the quadratic
equation

ξ2 − 2ξ +
(
1 + α2

C sin2(k∆x)
)

= 0, (2.5.24)
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where αC = ∆t/∆x with solutions

ξ± = 1 ± iαC sin(k∆x). (2.5.25)

We can see that |ξ±| > 1 in general and therefore, this scheme is unconditionally unstable.
We would expect the numerical solution to quickly blow up and this is indeed what
happens for generic initial data.

2.5.5.2 Staggered Leapfrog

In the staggered leapfrog scheme we think of s = ∂tu as living halfway between two
timesteps, so the stencil

s
n+1/2
j =

un+1
j − un

j

∆t = (∂tu)(xj, tn + ∆t/2) + O(∆t2) (2.5.26)

is second-order accurate. The full system is

un+1
j = un

j + ∆t sn+1/2
j , (2.5.27)

s
n+1/2
j = s

n−1/2
j + ∆t

∆x2 (un
j+1 − 2un

j + un
j−1). (2.5.28)

Performing a von Neumann analysis yields the amplification factors

ξ± = 1 − 2α2
C sin2(k∆x/2) ± 2αC sin(k∆x/2)

√
α2

C sin2(k∆x/2) − 1. (2.5.29)

If we have
αC = ∆t/∆x ≤ 1, (2.5.30)

then |ξ±| = 1 for all k but if α > 1, then one of ξ± has magnitude greater than 1 and
the scheme is unstable. This is known as the Courant-Friedrichs-Lewy (CFL or just
Courant) stability condition [122] (see Ref. [123] for an English translation) and αC is
called the Courant factor. It can be interpreted geometrically as requiring the numerical
domain of dependence to contain the physical domain of dependence. For the nonlinear
system we typically encounter in numerical relativity (for example (2.3.30)), it is often
found empirically that αC < αC,max is required for stability, where αC,max depends on
the system of equations and numerical scheme but is often approximately 1/2.
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2.5.5.3 Method of lines

It is often convenient to separate the differencing in time and in space. This is known
as the Method Of Lines (MOL). More precisely, consider our first-order-in-time wave
equation system (2.5.21) and suppose ∆2

xu is some finite difference approximation to ∂2
xu.

Then, consider the system

∂tu = s, (2.5.31)
∂ts = ∆2

xu, (2.5.32)

which is now simply an ODE system in time and hence we can apply standard methods
for numerical ODE integration.

In particular, we could use fourth order Runge-Kutta (RK4). Consider a general
first-order ODE of the form

du
dt = F(u), (2.5.33)

where u is a vector of variables. We then calculate the four substeps

k1 = F(u), (2.5.34a)
k2 = F(u + k1∆t/2), (2.5.34b)
k3 = F(u + k2∆t/2), (2.5.34c)
k4 = F(u + k3∆t), (2.5.34d)

and the full step is performed using

un+1 = un + ∆t
6 (k1 + 2k2 + 2k3 + k4). (2.5.35)

So long as the IVP (Eq. (2.5.31) with suitable initial data) is well-posed, there exists
a nontrivial stability region for the method of lines with RK4 [124]. Because of the
simplicity in adapting this method to nonlinear equations, it has become ubiquitous
amongst finite difference NR codes and it is what we shall mainly use.

2.5.6 Boundary conditions

Since we work on a finite [non-compactified] computational domain, we need to impose
some boundary conditions. One particularly simple example consists of prescribing
periodic boundary conditions; for the first-order-in-time wave equation system (2.5.21)
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this can be imposed as

un
J = un

0 , (2.5.36a)
sn

J = sn
0 . (2.5.36b)

Unfortunately periodic boundary conditions are often not physically relevant to astro-
physical scenarios and instead we prefer a radiative boundary condition that does not
allow incoming waves from x < xmin or x > xmax. This can be written in differential
form as

∂tu =

∂xu, x = xmin,

−∂xu, x = xmax.
(2.5.37)

If we use the method of lines, we can perform the time integration using the same scheme
as in the main part of the problem domain. For the spatial discretisation, if our main
domain uses stencils that require m points either side of the evaluation point, then we
can add m ghost points just outside the main computational domain and use one-sided
stencils for the spatial derivatives in Eq. (2.5.37) as necessary. It is usually sufficient
to use at most second order stencils for these derivatives even if using higher stencils
elsewhere. In the nonlinear case, using lower-order stencils can even be helpful as they
tend to be more dissipative than higher order ones.

In the three dimensional case, we typically assume an outgoing spherical radiation
condition so that an evolution variable u behaves as

u ∼ u∞ + f(t− r)
r

, (2.5.38)

as r → ∞, where f is an arbitrary function and u∞ is a prespecified constant that we
have added to take into account the fact that for some variables such as the conformal
factor χ in the BSSNOK and CCZ4 systems, we require χ → 1 as r → ∞. In differential
terms, this can be written as

∂tu = −xi

r
∂iu− u− u∞

r
. (2.5.39)

This is often called a Sommerfeld radiation condition [125].
Although Eq. (2.5.37) is exact for our linear wave equation (and Eq. (2.5.39) for the

linear wave equation in three dimensions), in the nonlinear case, this will no longer be
true. We generally find that so long as these conditions are applied sufficiently far away
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from highly nonlinear physics they work reasonably well in practice, although inevitably
there is a small amount of reflection at the boundaries.

2.5.7 Convergence testing

When performing numerical simulations, it is important to test their convergence so that
we can obtain a quantitative error estimate, otherwise the results obtained are essentially
worthless. Since the CFL condition (2.5.30) means that we always choose ∆t ∝ ∆x, we
will now only refer to a single discretisation parameter ∆.

For a stable convergent finite-difference approximation u∆ to a solution of a PDE
L u = 0, if we interpret u∆ as continuous function of t and x (for example using sufficiently
high order interpolation), we expect

u∆(x, t) = ũ(x, t) + ∆ξ1(x, t) + ∆2ξ2(x, t) + . . .+ ∆iξi(x, t) + . . . , (2.5.40)

where the ξi are independent of ∆. This idea is due to an observation by Richardson
[126]. For a kth order scheme, we expect that ξi = 0 for i = 1, . . . , k − 1 and ξi ̸= 0 for
i ≥ k.

If we know the true solution ũ to our problem, we can verify the convergence of our
kth order scheme by computing the ratio of the solution errors ε∆ for two different values
of ∆. For example, if ∆1 > ∆2, then

ε∆1(x, t)
ε∆2(x, t) = u∆1(x, t) − ũ(x, t)

u∆2(x, t) − ũ(x, t) =
(

∆1

∆2

)k

+ O(∆1). (2.5.41)

Note that if interpolation is used, it should ideally be at least kth order. However, in
practice, these interpolation errors tend to be subdominant at the typical resolutions
used.

More often, if we are using numerical methods, we do not know the true solution to
our problem. In this case, we can only verify the Cauchy convergence of our solution. In
other words, we can only check that our method is converging to something at the rate
we would expect from the scheme we are employing. This time, we take our approximate
solution at three different resolutions ∆1 > ∆2 > ∆3 and compute the ratio

u∆1(x, t) − u∆2(x, t)
u∆2(x, t) − u∆3(x, t) = Qk(∆1,∆2,∆3) + O(∆1) (2.5.42)
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where Qk is the convergence factor which is given by

Qk(∆1,∆2,∆3) := ∆k
1 − ∆k

2
∆k

2 − ∆k
3
. (2.5.43)

In practice, in order to avoid dividing by zero, one usually plots the numerator u∆1 −u∆2

and the rescaled denominator Qk(u∆2 − u∆3) and then checks that they roughly agree
in order to verify convergence. For more complicated codes, particularly those that use
mesh refinement, it is not always obvious what order we expect the solution to converge
at. These codes employ a variety of ingredients at different orders (in order to handle
the added complications e.g. interpolation at the boundaries of refined regions) and it is
not known a priori which of these will dominate at the resolutions used. Therefore, we
usually plot the rescaled denominator for several different values of k and assume the
convergence order is the one that gives the best agreement with the numerator.

Verification of the convergence order allows us to compute an error estimate via
Richardson extrapolation. For example suppose we have two numerical solutions at
resolutions ∆1 and ∆2, where ∆1 > ∆2, and we have verified that these are converging
at kth order. Then using Eq. (2.5.40), we find

uRich
k := ∆k

1u∆2 − ∆k
2u∆1

∆k
1 − ∆k

2
= ũ+ O(∆k+1

1 ), (2.5.44)

that is the kth order Richardson extrapolant uRich
k converges at least one order higher

than the two individual solutions. We can then estimate the solution error of a numerical
solution (not necessarily one of the two used to compute the extrapolant) by computing

ε∆ ≃ u∆ − uRich
k . (2.5.45)

So far we have only considered local convergence tests (i.e. the convergence of a
solution at a point). It is often more practical, particularly in higher dimensions, to
consider global convergence tests where we take a norm ∥ · ∥p of the difference between
two solutions. However, rather than analysing the convergence of the evolution variables
we will usually analyse the convergence of a diagnostic computed from them, for example
a gravitational wave multipole ψℓm (2.4.71). Like the global convergence test, this has
the advantage of only being a single number (assuming we only look at one extraction
radius and a single mode for the case of ψℓm) for each timestep, so we can easily plot the
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differences as a function of time and assess how the convergence changes. Furthermore,
this allows us to directly obtain an error estimate for particular quantities of interest.



Chapter 3

GRChombo

In this chapter, we look at the current state of the GRChombo numerical relativity
code [1] that has been used to conduct many of the simulations presented in this thesis.
Much of the code infrastructure was in place when I was first introduced to it, and thus
I am not responsible for large parts of its implementation. Nevertheless, over the last
few years I have been one of the main developers of the code and its largest contributor1

since its public release in January 2018.
The GRChombo code was originally developed by Clough, Figueras, Finkel, Kunesch,

Lim, and Tunyasuvunakool [88], a group of collaborators from the University of Cam-
bridge, King’s College London and Queen Mary, University of London, in the mid 2010s.
Its intention was to provide greater flexibility and enable the exploration of new physics
through the use of fully adaptive mesh refinement (AMR) and a modular design. Origi-
nally, large parts of the code were written in Fortran. However, in order to enable the
use of vector intrinsics for better performance on the latest CPU architectures, the code
was ported fully to C++ in 2016. Since then, the GRChombo collaboration has grown
in size to over twenty researchers from over eight institutions covering a wider variety of
different numerical relativity applications

In Sec. 3.1 we describe the fundamental features of the code and their implementation.
Next in Sec. 3.2, we discuss in more detail some specific features that have been contributed
to by the author, although this is not comprehensive, and it may be more natural to
discuss some features in other sections. Finally, we explain some postprocessing tools in
Sec. 3.3 that have been developed in order to analyse GRChombo simulations.

This chapter contains sections from the coauthored publication, Ref. [3] for which I
was the sole or main contributor.

1This is based on the number of lines added at the time of writing according to GitHub.

https://github.com/GRChombo/GRChombo/graphs/contributors?from=2018-01-21&to=2021-07-23&type=a
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3.1 Fundamental code features

The GRChombo code is based on the Chombo library [127] for solving PDEs with adap-
tive mesh refinement. The tools from Chombo that GRChombo inherits, include the
timestepping algorithm, the distributed memory load balancing and the Berger-Rigoutsos
style adaptive mesh refinement. The rest of the code has mostly been implemented by
the GRChombo collaboration. We describe both parts below.

3.1.1 Structure of the code

In order to improve maintainability and reduce code duplication, we have attempted to
consistently organise the main parts of the code according to the following hierarchy:

(i) Chombo: These are mostly features related to the underlying Chombo library
tools and most of the code in this part of the hierarchy is provided by Chombo
itself.

(ii) GRChombo generic: These are generic features that are implemented in the GR-
Chombo code that are applicable to all problems that one might use GRChombo
for. In particular, this does not include anything about the underlying physics or
GR as GRChombo can be used to evolve any suitable hyperbolic equation.

(iii) Problem-specific: This is for code that will likely be different for each problem.

We call the collection of code for a specific problem a GRChombo example. For the rest
of this section, we will discuss the structure of the BinaryBH example in GRChombo
that is used to evolve binary BH spacetimes.

The fundamental class structure for the BinaryBH example is shown in Fig. 3.1. The
central class in a GRChombo example is the AMR class or rather its derived classes GRAMR
and BHAMR. This stores a vector of pointers of AMRLevel objects, each corresponding to a
single level in the mesh refinement hierarchy. At the start of a simulation the AMR object
sets up the initial grid and then orchestrates the evolution. Furthermore, it manages the
outputting of checkpoint files and regridding (this is the reshaping of levels finer than
the coarsest level in order to increase resolution where it is needed) at user-specified
intervals. Although the AMR object manages most of the simulation, it does not contain
or know about the implementation of how to perform many of the necessary tasks and in
most cases this involves just calling member functions of the AMRLevel objects and their
derived objects. For example, at each timestep on a particular level, in order to “advance”
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AMR

GRAMR

BHAMR

AMRLevel AMRLevel . . .

GRAMRLevel GRAMRLevel . . .

BinaryBHLevel BinaryBHLevel . . .

LevelData<FArrayBox>

GRLevelData

DisjointBoxLayout

FArrayBox

FArrayBox

...

Fig. 3.1 Diagram showing the class structure of the BinaryBH example in GRChombo.
The blue rounded rectangles are Chombo classes, the purple rounded rectangle are
GRChombo generic classes and the green rectangles are problem-specific classes. A
solid arrow denotes class inheritance in the direction of child to parent and a dotted
arrow indicates an object is a member of another object in the direction of member to
aggregator. The grey rectangles indicate that the enclosed objects are stored as a vector
of pointers. Finally, a dashed border indicates the class is abstract meaning that part of
its implementation must be defined by the child

the solution forward one step, the AMR object calls the GRAMRLevel::advance() function;
this function in turn calls other functions to implement the particular timestepping
algorithm (see Sec. 3.1.2).

The GRAMR child of the AMR class includes generic GRChombo additions to the AMR
class that require access to the full mesh refinement hierarchy such as a pointer to an
AMRInterpolator object that allows interpolation of data on the grid using the best
resolution available (see Sec. 3.1.6). The BHAMR class includes black-hole-specific additions
that also require access to the full level hierarchy, for example an AHFinder object for
finding apparent horizons2 and a PunctureTracker object that tracks the location of
the punctures.

Each refinement level is represented by a BinaryBHLevel object. The BinaryBHLevel
class is a child of the GRAMRLevel class. The latter implements problem-agnostic features
such as the particular timestepping algorithm and how to perform a regrid on the actual
data on the level. The former defines all the problem-specific operations on a single level,
such as the calculation of the initial data, the evaluation of the right-hand side (RHS)
for the timestepping algorithm and any analysis tasks to perform at the end of timesteps
(e.g. extracting Ψ4 or finding apparent horizons).

2At the time of writing, the AHFinder is still in development and has not been added to the main
branch of the public code
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Each GRAMRLevel object contains a GRLevelData object3 which [via its parent Level-
Data<FArrayBox> class] stores a collection of pointers to FArrayBoxes (which each store
the values of the data in a box) and a DisjointBoxLayout object which knows about
the layout of these FArrayBoxes on the grid and how many ghost cells they contain.
Since these boxes are distributed across many processors with MPI, the complexity that
arises from this is abstracted away from the user by these classes.

3.1.2 Discretisation and timestepping

GRChombo evolves in time using the method of lines (see the end of Sec. 2.5.5).
The time stepping is performed using the standard fourth order Runge-Kutta method
(RK4) (2.5.34)-(2.5.35). Until recently, for the spatial discretisation, GRChombo only
supported fourth order stencils. However, in order to achieve the necessary accuracy for
the simulations presented in Chapters 4 and 5, it was necessary to add support for sixth
order stencils. The improvement of sixth order over fourth order is shown in terms of the
strain from a BH binary inspiral in Fig. 3.2. For both orders, we use centred stencils
except for the advection terms for which we switch to lopsided stencils of the same order
depending on the sign of the shift vector component. For completeness, the expressions
for the stencils are provided in Appendix 3.A.

Finite difference methods can often introduce spurious high-frequency modes, par-
ticularly when using adaptive mesh refinement and regridding. To ameliorate this,
GRChombo uses N = 3 Kreiss-Oliger (KO) dissipation [128]. At every evaluation of
the RHS for an evolution variable F , we add the term

σ

64∆x (Fi−3 − 6Fi−2 + 15Fi−1 − 20Fi + 15Fi+1 − 6Fi+2 + Fi+3) (3.1.1)

to the RHS. Note that the inclusion of this term does not ruin the consistency of
our scheme since it vanishes in the continuum limit (it is merely a finite-difference
approximation to (∆x5)∂6

xF = O(∆x5)). A von Neumann stability analysis shows that
this scheme, when applied to the trivial PDE,

∂tF = 0, (3.1.2)
3It actually has three of these objects corresponding to the evolution variables at the current step,

the values of the evolution variables at the previous step and the values of any diagnostic variables.
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Fig. 3.2 An example of the improved accuracy one obtains with sixth order spatial
derivatives compared to fourth order ones. The + polarization of the (2, 2) mode of the
strain h+

22 extracted at rex = 120M from the simulation of an equal-mass, non-spinning
BH binary (configuration q1-d12 from Table 4.1) is shown. Both cases use the same
grid setup and resolution (with finest grid spacing h = M/80). The superior accuracy
of the sixth order stencils in this case can be inferred from this plot combined with the
convergence analysis of this configuration shown in Fig. 4.2.

is linearly stable only if
0 ≤ σ ≤ 2

αC

, (3.1.3)

where αC = ∆t/∆x is the CFL factor which we typically set to 1/44. Note that we
always use N = 3 KO dissipation, independent of the order of spatial discretisation.
Naively, one might question this choice for sixth order spatial derivative stencils as the
conventional wisdom is to pick N such that 2N − 1 > m, where m is the order of finite
difference scheme (see, for example, Ref. [49]). However, in this case, what matters is
the order of the time stepping which is still fourth order5, hence the dissipation operator
does not “spoil” the convergence properties of the scheme. This is consistent with the
approach discussed in Sec. 3.2 of Ref. [129].

4Note that the stability analysis makes a number of assumptions and problems can begin to appear
towards the upper end of this range. A typical symptom of the instability from too high σ is the
appearance of a checkerboard-like pattern in otherwise spatially homogeneous regions of the spacetime.

5Also note that Theorem 9.1 in Ref. [128] only refers to the order of the time stepping
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3.1.3 Parallelisation

Like other numerical relativity codes and, more generally, scientific computing codes,
GRChombo exploits parallelisation at several different levels in order to achieve good
performance and scaling on modern supercomputers.

For each AMR level, GRChombo splits the domain into boxes and these boxes
are shared between processes running on multiple distributed-memory nodes using the
Message Passing Interface (MPI). In practice, even though the memory is shared within
a node, we typically still use multiple MPI processes per node in order to achieve optimal
performance. For example, if a node has n cores, we might choose to use between n/4-n/2
MPI processes per node. At every regrid, we use a load balancing routine in Chombo in
order to evenly distribute the boxes. We sort the boxes using a Morton ordering [130],
as this minimises communication by increasing the chance that neighbouring boxes are
on the same or nearby MPI processes.

One of the most common operations in an NR code is looping through all the
cells/points on the grid, calculating some expression and then storing its value in a grid
variable. An example is the calculation of the RHS at every RK4 substep which is often
where a code spends a large proportion of its time. Within an MPI process, GRChombo
uses OpenMP to thread these loop over the z and y coordinates of the boxes. For the
x direction, GRChombo relies on SIMD/vector intrinsics6 in order to utilize the full
vector-width of the targeted architecture. We use intrinsics because the complexity of
the CCZ4 equations (2.3.30) means that compilers will usually fail to auto-vectorize
these loops. The main disadvantage of using SIMD intrinsics is that they are complex
and difficult to implement properly. In order to hide the technical implementation
from users, many NR codes rely on code-generation scripts to convert more familiar
Mathematica/Python expressions to optimized and vectorized Fortran/C/C++ code,
for example, Kranc [131] and NRPy+ [132]. GRChombo takes a different approach,
keeping the programming at the lower level but relying on C++14 templates to provide a
somewhat more user-friendly interface for writing optimized code. Vectorized expressions
can be enforced by replacing the C++ type double with a template type data_t, which
represents a vector of values of the variables on the grid of arbitrary length (e.g. the
value of χ at the points with x index ix = 0, 1, 2, 3, and constant y and z). In order to
make this functionality work, the user is required to write their code in a compute class

6For the x86_64 architecture, GRChombo currently supports SSE2, AVX and AVX-512 instructions.
We have also tested intrinsics for the ARM AArch64 architecture using Neon and SVE instructions and
plan to add these to the public code soon.
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with a compute member function which can then be instantiated as an object and then
passed to a loop function which calls the compute member function in each vector of
cells. Multiple compute objects can be combined into a compute pack which can then
be called by the loop function for added efficiency. For a more detailed description and
examples, see Sec 2.5 in Ref. [95].

3.1.4 Berger-Rigoutsos adaptive mesh refinement

In GRChombo, the grid comprises a hierarchy of cell-centred Cartesian meshes consisting
of up to lmax + 1 refinement levels labelled from7 l = 0, . . . , lmax each with grid spacing

∆xl = 2lmax−l∆xlmax = ∆x0/2l. (3.1.4)

GRChombo uses block-structured AMR, so each refinement level is split into boxes
which are distributed between the CPUs as described in 3.1.3.

At regridding or initial grid creation, on a given refinement level l, cells are tagged
for refinement according to a tagging criterion C = C(i). In a given cell with indices
i = (i, j, k) and corresponding Cartesian coordinates8 x = (xi, yj, zk), if C(i) > τR, where
τR is a prespecified threshold value (which may vary with l), then the cell is tagged for
refinement. We discuss techniques to design a suitable tagging criterion and aspects to
consider in Sec. 4.2.

In block-structured AMR, the main challenge after tagging cells is finding an efficient
algorithm to partition the cells that require refinement into blocks or boxes. GRChombo
uses Chombo’s implementation of the Berger-Rigoutsos grid generation algorithm [133]
in order to do this.

For this purpose, we define the block factor as the number of cells that must divide the
side lengths of all blocks; it is a specifiable parameter. Furthermore, these side lengths
must not exceed the specified maximum box size. In order to enforce the block factor on
level l + 1, starting with the tagged cells on level l, Chombo generates a temporary new
set of tagged cells on a virtual coarser level l − n where n is chosen such that the length
of one cell on level l − n corresponds to the block factor on level l + 19. The new set of
coarser tags are derived using a global OR operation, i.e. as long as any of the l level
cells corresponding to the coarser level cell is tagged, the virtual coarser level cell will

7Note that the finest level that exists may be less than lmax.
8Note that the indices here are of the discrete cells on the grid as opposed to spacetime components.
9For example if the block factor is 4, then n = 1 since the refinement ratio is 2 and 2(l+1)−(l−1) = 4.

Note that this means the block factor must be a power of 2.
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be tagged. Chombo then applies the Berger-Rigoutsos partitioning algorithm on this
coarser level to construct boxes of grids which obey both the desired block factor and
maximum box size. We typically choose both to be a multiple of the processor vector
width for optimal performance.

For completeness, we next review the Berger-Rigoustos algorithm (see also Fig. 3.3).
We find the minimum box that encloses all of the tagged cells on this level. Let T (i) be
the tagging indicator function defined by

T (i) =

1, if C(i) > τR,

0, otherwise.
(3.1.5)

and define the signatures or traces of the tagging by

Sx(i) :=
∑
j,k

T (i) =
∫
T (i) dy dz, (3.1.6)

Sy(j) :=
∑
i,k

T (i) =
∫
T (i) dx dz, (3.1.7)

Sz(k) :=
∑
i,j

T (i) =
∫
T (i) dx dy. (3.1.8)

First, we look for “holes” in the signatures i.e. if there exist i, j or k for which Sx(i),
Sy(j) or Sz(k) vanish which corresponds to there being no tagged cells along the plane
orthogonal to the signature direction. If there are holes, we choose the one with the
largest index over all the dimensions (since it is more efficient to have fewer big boxes
than more small boxes) as the plane of partition. If there are no holes, we next look for
inflections (see Ref. [133] and their discussion of Fig. 10 for details) in the signatures by
computing their discrete Laplacian, for example,

∆Sx(i) = Sx(i− 1) − 2Sx(i) + Sx(i+ 1), (3.1.9)

and searching for zero-crossings in ∆Sx(i). Heuristically, this corresponds to a rough
boundary between tagged and untagged regions. (cf. the partitioning in step (2) of
Fig. 3.3) If there are inflections, then, in each direction, we pick the inflection with the
greatest difference, for example,

|δ(∆Sx(i))| = |∆Sx(i− 1) − ∆Sx(i)|, (3.1.10)
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(1)

(2)

(3)

x

Sx

x

∆Sx

Fig. 3.3 Schematic illustration of the partitioning algorithm. For simplicity, we show a
2D grid and only consider partitioning in the x direction. The cells tagged for refinement
are indicated with •. In (1), the signature Sx is computed and two “holes” are found
where the signature vanishes. The line (plane in 3D) of partition is then at the hole with
the largest index (rightmost). The result of the partitioning is shown in (2). To partition
the right box in (2), the signature is computed, but this time there are no holes, so the
algorithm looks for zero crossings of the discrete Laplacian of the signature ∆Sx. The
zero-crossing with the largest change is then selected. This algorithm terminates once all
boxes have reached the required fill ratio ϵFR.
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As for the holes, we then pick the greatest inflection index over all the dimensions as our
plane of partition. If there are no holes or inflections in the signatures, we simply split
the box along the midpoint of the direction with the longest side.

After partitioning, we check whether the partition is sufficiently efficient, specifically
whether the proportion of tagged cells to all cells in the partition exceeds a user-specified
fill ratio threshold, ϵFR < 1 and that the lengths of the boxes are at most the prespecified
maximum box size (which we choose in order to ensure sufficient load balancing). If
these tests are passed then we accept the partition and, if not, we continue to partition
recursively discarding any boxes that do not contain tagged cells.

Note that, whilst a higher value of ϵFR will result in a more efficient partition in the
sense that there will be a greater ratio of tagged to untagged cells, this is not always
the most computationally efficient choice as there are greater overheads with smaller
boxes (for example, there will be more ghost cells). There could also be more fluctuation
in the structure of the grids between consecutive regrids which may result in greater
noise. Although the optimal fill ratio depends on the particular physical problem and
the computational resources, we typically use ϵFR = 0.7.

Finally, the boxes in the partition are refined, that is, they are defined on the next
finer level (l+ 1) with twice the resolution (3.1.4). For newly created regions on this finer
level, we interpolate the data from the coarser level using fourth-order interpolation.

The regridding process starts on the finest level that currently exist (or at most level
lmax − 1) and works up the hierarchy on increasingly coarse levels until the base level,
from whose timestep the regrid was called, is reached (which need not be l = 0). It is
therefore only possible to add a single extra level (up to lmax) at each regrid. After the
regrid on level l, the union of the set of cells in the new boxes on this level (plus an
additional prespecified buffer region) with the set of cells tagged on level l − 1 is used as
the final set of tagged cells on level l − 1 in order to ensure proper nesting10 [134]. This
also ensures that cells on coarser levels will be tagged if any of their corresponding finer
level cells are tagged.

10By proper nesting we mean that

(i) The physical region corresponding to a level l − 1 cell must be fully refined or not refined at all,
that is it must be completely covered by level l cells and not partially refined.

(ii) There must be at least one level l cell between the boundary of l + 1 and the boundary of level l
except at the boundary of the entire computational domain. In practice, we even need two such
buffer cells (corresponding to 4 cells on level l + 1) for fourth and sixth-order spatial stencils.
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The frequency of regridding is user-specifiable on each refinement level l < lmax,
though, since a regrid on level l = l′ enforces a regrid on all levels l′ ≤ l < lmax, for
problems without rapidly varying (in time) length scales, it is usually sufficient to regrid
every few timesteps on one of the coarser levels (e.g. for compact object binaries). Not
only does reducing the frequency of regridding reduce the computational cost, but since
regridding introduces errors/noise due to interpolation, we have also found that this can
improve the accuracy of the simulation.

The Courant condition (2.5.30) limits the size of the maximum time steps one can
take on the finer levels. Rather than evolving all refinement levels with the same timestep
we use subcycling by following the Berger-Colella evolution algorithm [134], which we now
review. As the algorithm is recursive, we can consider evolving a set of coarser and finer
grids at level l and l + 1 respectively in the AMR grid hierarchy. First, one time step is
taken on the coarser grids (i.e. those at level l). One then evolves the finer (level l + 1)
grids for as many time steps until they have advanced to the same time as the coarse
grid. As we have hard-coded the time steps on each level, ∆tl, so that ∆tl = ∆tl−1/2,
the grids on level l + 1 will then take two time steps after the grids on level l that takes
one time step. After level l + 1 has “caught up” with level l, the mean of the data in the
[23 = 8] cells covering a single level l cell is calculated and this value is copied back onto
level l. Note that this particular procedure is only second-order accurate in contrast to
the restriction operation in a vertex-centred code which requires no approximation. This
may partially explain some of the difference in convergence orders we observed between
GRChombo and the vertex-centred code Lean in Sec. 4.3.

The ghost cells at the interface between the finer and coarser grids are set by
interpolating the values of the coarser grid in both space (due to the cell centered grid)
and time (due to the requirement for intermediate values in the RK4 timestepping). The
time interpolation is achieved by fitting the coefficients of a 3rd order polynomial in t

using the values obtained at each substep of the RK4 timestepping on the relevant cells
of the coarser level (see Ref. [135] for more detail).11

11An alternative approach would be the use of larger ghost zones in the finer level, with the outer
ones discarded at each RK step (for example, see Sec. 2.3 of Ref. [136]). One disadvantage here is the
extra memory use, especially beyond the fixed-box-hierarchy case.
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3.1.5 Boundary conditions

GRChombo implements several types of boundary condition which can be applied
independently to the “high” and “low” boundaries in each Cartesian direction. These
are:

• Periodic: evolution variables φ obey

φ(x + Liei) = φ(x), (no sum) (3.1.11)

where Li is the length of the computational domain in the ith direction.

• Static: the boundary values of the evolution variables φ are fixed at their initial
values by imposing

∂tφ = 0. (3.1.12)

• Reflective: across each reflective boundary, an evolution variable φ is assumed to
satisfy either odd or even parity reflective symmetry. For example, if imposed on
the boundary x = 0, we have

φ(x, y, z) = ±φ(−x, y, z), (3.1.13)

where the parity depends on the specific variable (and the direction of the boundary).
One can use these boundary conditions and the symmetry of the spacetime to
reduce the volume evolved. For instance, in the case of a simple equal-mass head-on
binary BH merger, one needs only 1/8 of the domain12; the rest can be inferred
from the evolved values [137].

• Extrapolating: the evolution variables φ are assumed to satisfy

φ = a+ bR (3.1.14)

in the boundary cells, where R is the coordinate radius from a prespecified centre
(typically the centre of the computational domain), and a and b are coefficients. In
the case of zeroth order extrapolation, b = 0 and the value of a is simply the value of
the φ in the cell closest to the boundary. In the case of first order extrapolation, the
coefficients a and b are calculated using the two outermost non-boundary cells that

12Of course this particular example is axisymmetric, so one could use an explicitly axisymmetric code
instead.
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lie on the line perpendicular to the boundary that passes through the boundary cell.
These are especially useful for variables which asymptote to a spatially uniform
but time varying value (see Refs. [138, 139, 140]).

• Sommerfeld/radiative: see Sec. 2.5.6. Note that, unlike the other conditions, since
spatial derivatives are taken parallel to the boundaries, it is important that ghost
cells are exchanged between neighbouring boxes that contain boundary cells13

Furthermore, for an individual boundary GRChombo supports having mixed bound-
ary conditions with some variables satisfying Sommerfeld conditions and others using
extrapolating conditions.

3.1.6 Interpolation of AMR data

Often, when analysing simulations, one requires data to be defined at points that do
not coincide with the numerical grid. In order to circumvent this problem, we use
interpolation to calculate an approximation to the values of the variables at these points.

Consider the problem of interpolating a function f on a one-dimensional grid with
points xj, j = 0, . . . J and uniform spacing xj − xj−1 = ∆x. Let fj = f(xj) be given. If
we want to interpolate f at x, where x ∈ [x0, xJ ], then there must be some s ∈ [0, 1) and
j∗ such that x = xj∗ + s∆x (i.e. xj∗ is the largest grid point less than or equal to x).
Then, we seek an interpolant f̃(x) of the form

f(x) ≃ f̃(xj∗ + s∆x) =
k∑

j=−k+1
fj∗+jwj(s), (3.1.15)

where wj(s) are called the weights. We use Lagrange polynomials where the weights are
given by

wj(s) =
k∏

i=−k+1,i ̸=j

xj∗ + s∆x− xj∗+i

xj∗+j − xj∗+i

=
k∏

i=−k+1,i ̸=j

s− i

j − i
. (3.1.16)

These polynomials are of degree 2k−1 and the error converges as |f(x)− f̃(x)| = O(∆x2k)
as ∆x → 0. We always use k = 2 (fourth order) and use the algorithm in Ref. [141]
to generate the weights. It should be noted that GRChombo also supports other
interpolation algorithms (see, for example, Sec. 7.4 in Ref. [142] for a discussion on the
advantages of polynomial convolution methods which are implemented in the code) but
we will not discuss these here.

13Indeed, without this exchange of ghost cells, it is found empirically that an instability develops.
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In order to extend this problem to three spatial dimensions, we recursively iterate on
the dimension and apply the algorithm above to interpolate one dimension at a time.
We start along the z direction by interpolating (2k)2 points that are at the desired z

coordinate but aligned with the grid in the x and y directions. Next we interpolate 2k
points that are at the desired z and y coordinates but aligned with the grid in the x
direction. We then perform the last interpolation along the x axis to obtain the final
answer.

Finally, we could ignore the mesh refinement and just interpolate points on the
coarsest level that covers the whole computational domain but these results would be
far too inaccurate. In GRChombo, the AMRInterpolator class starts searching for
points on the finest available level and then progresses down the hierarchy to increasingly
coarse levels until all requested points are found. This way, the best resolution available
for a particular point is always used. Furthermore, the AMRInterpolator can be made
aware of any reflective boundary conditions corresponding to bitant, quadrant or octant
symmetry and infer the value of a point outside the main computational domain but
within the unsymmetrised domain from the corresponding point within the domain,
applying parity changes as necessary.

Since GRChombo splits the domain across multiple processors using MPI, the
AMRInterpolator allows each process to request an arbitrary and not necessarily identical
set of points. Each point can be anywhere in the computational domain (a process need
not restrict to the subset of the domain which it covers). For an individual point, the
finest level covering it may, in general, lie on any process, hence, in principle, a process
requesting points may need to communicate with an arbitrary number of other processes.
In order to do this, an expensive MPI collective [Alltoallv] operation is used. This
operation is sufficiently flexible such that redundant communication should be minimised.
Often, the processing of interpolated data is sufficiently simple so as to not warrant
parallelisation (see, for example, Sec. 3.2.1). In these cases, it is important to only request
the points from a single process rather than every process, otherwise the complexity
of the MPI collective operations will scale as O(N2) rather than O(N) where N is the
number of MPI processes leading to poor scaling of the whole code.
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3.2 New code features

3.2.1 General extraction of data on a 2D surface

Although we will primarily be interested in the extraction of Ψ4 on spheres of fixed
coordinate radius in this thesis, in order to reduce code duplication, we have built a
general SurfaceExtraction class that is templated14 over a SurfaceGeometry class.
The latter specifies a two-dimensional surface S parametrised by coordinates (u, v) and
the former allows the user to straightforwardly extract values of grid variables and their
derivatives on S (which uses the AMRInterpolator class discussed in Sec. 3.1.6) and
then write these values to a file with a uniform format. Furthermore, it then allows the
user to perform surface integrals of the form

∫∫
S
f(u, v, φa)ϵS du dv, (3.2.1)

where f is a user-specified function, φa denotes a collection of grid variables that have
been interpolated onto the surface and ϵS is the coordinate15 area element of S which must
be provided in the SurfaceGeometry class and write these results to a file in a similarly
uniform format. For the numerical integration in each dimension, the code allows the user
to choose the quadrature such as the trapezium rule (second-order accurate), Simpson’s
rule (fourth-order accurate) and Boole’s rule (sixth-order accurate).

We now specialise to the case of a sphere at coordinate radius R, S = S2
R. Typically,

we use u = θ and v = ϕ, the usual spherical polar coordinates and constant grid spacings:
∆θ = π/(nθ − 1) and ∆ϕ = /(nϕ − 1). This gives the usual ϵS = R2 sin θ. Unfortunately,
since the aforementioned quadratures for the numerical integration require inclusion of
the endpoints (θ = 0, π) as they are closed, this means we end up extracting the same
value on each pole nϕ times despite its contribution to the surface integral vanishing.
Furthermore, due to the uniform spacing in θ, the parts of the sphere nearest the pole are
better resolved than the parts near the equator (θ = π/2). In order to rectify the latter
problems we are currently investigating a more uniform coordinate system on the sphere,
where the polar coordinate θ is replaced by u = z/R and the surface area element becomes
ϵS = R2. Nevertheless, for the simulations in this thesis, we will use the more conventional

14In C++, a class template allows a class to be written for a generic template parameter type T that
can then be reused with different specialisations of T (e.g. T = int, double, etc.) without having to
rewrite the class.

15The metric in the context of GR is not taken into account here and this must be handled separately
in f .
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parametrisation. We have written a child class SphericalExtraction that inherits from
SurfaceExtraction<SphericalGeometry> (this is the SurfaceExtraction template
class specialised with SphericalGeometry) and additionally provides functions to extract
the multipoles of functions on the spheres with respect to the spin-weighted spherical
harmonics, sY

ℓm. In this case, the function f in Eq. (3.2.1) is

f(θ, ϕ, φa) = 1
R2 g(R, θ, ϕ, φ

a) sȲ
ℓm(θ, ϕ), (3.2.2)

where g is a user-specified function. Since ϕ is a periodic coordinate on the sphere,
the convergence in the ϕ integration, as ∆ϕ → 0, is exponentially fast independent
of the type of quadrature used [143]. For this reason, we default to using Simpson’s
rule for the integration in θ but just use the trapezium rule for the ϕ integration with
nθ ≈ 49 > nϕ ≈ 32. It should be noted that the spherical geometry is not the only
SurfaceGeometry in GRChombo as we have also provided an implementation for a
cylinder that was used for some of the simulations in Ref. [144].

SurfaceExtraction<SphericalGeometry>

SphericalExtraction

WeylExtraction

Fig. 3.4 Class inheritance structure
of the code used to extract values
of RΨ4 on coordinate spheres.

Finally, we define a child class WeylExtraction
of SphericalGeometry that extracts the real and
imaginary parts of Ψ4 and then calculates the mul-
tipolar amplitudes with Eqs. (3.2.1) and (3.2.2) and

g(R, θ, ϕ,Ψ4) = RΨ4. (3.2.3)

Here the right-hand side is automatically multiplied
by R, since we know Ψ4 = O(1/R) as R → ∞ (see
Sec. 2.4.6). The final class inheritance structure is
shown in Fig. 3.4.

3.2.2 Apparent horizon finding

In addition to the extraction of gravitational waves via the extraction of Ψ4 described in
the previous subsection, we will also typically want to be able to locate black hole horizons
during a numerical simulation. Typically, the main type of horizon that one thinks of
when it comes to black holes are event horizons which correspond to the boundary of the
region of the spacetime that is causally disconnected from future null infinity I +. Indeed,
the existence of such a region is the defining characteristic of a black hole. Unfortunately,
since finding the event horizon requires the maximal development of the spacetime (or at
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least a significant part of it) up to I +, this is generally impractical during a numerical
simulation. Instead, we will seek apparent horizons which are defined locally as the
outermost marginally trapped surface in Σ. More precisely, in 3 + 1 dimensions, a trapped
surface is a closed two-dimensional surface S ⊂ Σ such that the expansion of outgoing
null geodesics orthogonal to S is negative and it is marginally trapped if the expansion is
non-positive. We then define a trapped region as the subset of Σ that contains trapped
surfaces and the apparent horizon H as the boundary of this region. Thus, the expansion
must vanish on H . The reason why we can consider apparent horizons is because, if the
weak cosmic censorship conjecture and the null energy condition holds, then the apparent
horizon must lie within the black hole (Proposition 9.2.8 in Ref. [145]) and in certain
cases can be expected to approximate the intersection of the event horizon with Σ.

Let s be the outward-pointing unit normal to S lying in Σ (so s is spacelike) and let
n be our usual future-directed unit normal to the foliation (2.1.3). The outgoing null
vector on S is given by l = n + s and the induced metric on S is

hµν := γµν − sµsν . (3.2.4)

We next define the expansion Θ of outgoing null geodesics as

Θ := hαβ∇αlβ. (3.2.5)

Then, it follows from the formula for the gradients of the unit normal (2.1.22) and
sαsα = 1 that

Θ = hαβ∇α(nβ + sβ) = hmn(Dmsn −Kmn) = (γmn − smsn)(Dmsn −Kmn). (3.2.6)

The condition for finding the apparent horizon is therefore

0 = Θ = (γmn − smsn)(Dmsn −Kmn). (3.2.7)

One of the most common approaches to finding apparent horizons is to assume that
H coincides with the zero contour of some scalar function:

F = 0. (3.2.8)
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The unit normal is then given by si = DiF/|DF |, where |DF | =
√
γmnDmFDnF is the

normalisation factor. Substituting into Eq. (3.2.7) yields
(
γmn − DmFDnF

|DF |2
)(

DmDnF

|DF | −Kmn

)
= 0, (3.2.9)

which is an elliptic PDE for F . There are a variety of different methods to solve this
equation and for a detailed review, the reader is referred to Ref. [146].

It is convenient to choose coordinates (u, v, w) that are adapted to the shape of the
horizon such that the F can be written as

F (u, v, w) = u− f(v, w), (3.2.10)

and Eq. (3.2.9) becomes a 2D PDE on v and w. We will assume the horizon is star-shaped
and choose (u, v, w) = (R, θ, ϕ), the usual spherical polar coordinates. In GRChombo
we solve this equation using the SNES (Scalable Nonlinear Equation Solver) library of
the PETSc software package [147, 148, 149]. Internally, this uses a line search based on
Newton’s method to iteratively find the solution.

Once we have found the location of the horizon at R = f(θ, ϕ), we can determine the
metric on it in terms of θ and ϕ by substituting dR = ∂θf dθ+∂ϕf dϕ into the expression
for the spatial metric γ in spherical polar coordinates to obtain

h = (γθθ + γRR∂θf∂θf + 2γRθ∂θf) dθ2 + 2(γθϕ + γRR∂θ∂ϕf + γRθ∂ϕf + γRϕ∂θf) dθ dϕ
+ (γϕϕ + γRR∂ϕ∂ϕf + 2γRϕ∂ϕf) dϕ2. (3.2.11)

The area of the horizon is then given by

AH =
∫∫

H

√
h dθ dϕ, (3.2.12)

where h is the determinant of (3.2.11).
To determine the angular momentum of the horizon, we use the formula from the

isolated horizon formalism [150]:

Ja
H = 1

8π

∫∫
H
φlasmKlm

√
h dθ dϕ, (3.2.13)
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where, for each a = 1, 2, 3, the components of the array (i.e. not a tensor) φia are the
flat-space Killing vectors associated to angular momentum:

φia = ϵ̄iakxk. (3.2.14)

Here ϵ̄ijk is the totally antisymmetric alternating symbol (ϵ̄123 = 1) and xk are the
Cartesian coordinates. Note that unlike Ref. [150], we do not determine an approximate
Killing vector but rather use the so-called “coordinate angular momenta” as in Ref. [151].
Therefore, there is, a priori, no reason to believe that Eq. (3.2.13) accurately calculates
the angular momentum. However, it has been found empirically to work very well
when the angular momentum is known (e.g. for Bowen-York initial data) and with the
conservation of angular momentum calculated from the radiated angular momentum
(2.4.82) (assuming the initial angular momentum is known).

Finally, we calculate the mass of the horizon by assuming it is sufficiently close to
Kerr, so we can apply Christodoulou’s formula [152] with Eqs. (3.2.12) and (3.2.13):

MH =
√
AH

16π + 4π|JH |2
AH

. (3.2.15)

We have used this quantity to assess the ability of different tagging criteria to suitably
resolve the horizons in simulations of black-hole spacetimes. When the horizon is poorly
resolved, we have found that this leads to unacceptably large drifts in the horizon mass.
This is discussed further in Sec. 4.2.2.

3.2.3 TwoPunctures initial data

Recall from Sec. 2.2 that constructing suitable initial data in GR is non-trivial since one
needs to solve the elliptic constraint equations (2.1.36)-(2.1.37) in addition to ensuring
the solution physically represents the problem at hand.

As part of the preparation for the simulations presented in Chapter 5, we have
integrated the TwoPunctures code [119] into GRChombo. This code constructs
binary Bowen-York puncture initial data (see Sec. 2.2.3) using a pseudospectral method.
However, since the exponential convergence of spectral methods only applies when the
solution is C∞, and we know that the solution to the Hamiltonian constraint (2.2.29) for
the auxiliary function u = ψ − ψBL is only C2, the TwoPunctures code switches to a
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Fig. 3.5 The lines of constant A [red, solid] and B [blue, dashed] from Eq. (3.2.16). Since
the grid is axisymmetric about the x-axis, the radius on the vertical axis is ρ =

√
y2 + z2.

In TwoPunctures, the punctures are located at x = ±b.

new coordinate system (A,B, φ). These are related to the Cartesian coordinates via

x = b
A2 + 1
A2 − 1

2B
1 +B2 , (3.2.16a)

y = b
2A

1 − A2
1 −B2

1 +B2 cosφ, (3.2.16b)

z = b
2A

1 − A2
1 −B2

1 +B2 sinφ, (3.2.16c)

with A ∈ [0, 1], B ∈ [−1, 1] and φ ∈ [0, 2π) and b is half of the coordinate separation
between the punctures. The lines of constant A and B are shown in Fig. 3.5. Since the
punctures are placed at x = ±b (note that in the case of unequal masses, this means
the origin is not at the centre of mass), it can be seen from the figure that these new
coordinates are well adapted to the symmetries of the problem. Furthermore, it can be
shown that u is now C∞ in these new coordinates. [119].

3.2.4 Optimisation of GRChombo

Here we briefly discuss some recent optimisation of the GRChombo code. Since
GRChombo is already a relatively highly optimised code (see Ref. [95] for scaling
tests performed in 2018), additional optimisations tend to lead to diminishing returns.
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Fig. 3.6 Time taken to evolve 8 timesteps (on the coarsest level) of a typical equal-mass
non-spinning BH binary before the optimisations described in Sec. 3.2.4 and after each
one. For these simulations we have used 8 dual socket Intel Xeon Platinum 8168 (Skylake)
nodes, each with 48 cores. Each simulation used 96 MPI processes and 4 OpenMP
threads per process. The size of the whole computational domain is (384M)3, there are
lmax + 1 = 8 refinement levels and the resolution on the finest level is h = M/64, where
M is the sum of the two BH masses.

Nevertheless, below we describe some recent changes that have led to ∼ 30% speedups in
typical BH binary simulations with extraction of Ψ4:

(1) Optimisation of SurfaceExtraction: The first optimisation we have performed
on the code is directly related to the comment at the end of Sec. 3.1.6. Before this
change, every MPI process requested all of the points on the extraction spheres
to be interpolated despite the calculation of modes taking place in serial and the
output of data only occurring on a single process, resulting in a large amount of
unnecessary communication between processes. After this change, only process 0
requests the points for interpolation and calculates the modes. We found that this
reduced the time spent in this part of the code by over 50%.

(2) Optimisation of the addition of the RHS to the solution: Next, we considered
the function which implements the operation schematically represented by the
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equation
new_solution = old_solution + ∆t ∗ RHS. (3.2.17)

Considering we use RK4 (2.5.34)-(2.5.35), this operation is performed at every
substep after the first and also the final completion step (2.5.35), that is 4 times per
timestep on every level. Previously, this operation used a function from Chombo
but we decided to reimplement it in order to add OpenMP parallelisation for the
loops in the y and z directions (as for the calculation of the RHS described in
Sec. 3.1.3). However, we typically only use 2-4 OpenMP threads and thus the
speedup gained from this optimisation is relatively minor.

(3) Reduction in the unnecessary exchanging of ghost cells: The final optimisa-
tion concerns the exchanging of ghost cells. Since the AMRInterpolator uses ghost
cells to interpolate points that are near the sides of the boxes (cf. Eq. (3.1.15)), it
is necessary to exchange ghost cells on the levels that will be used for interpolation.
Previously, we would exchange ghost cells for all evolution and diagnostic variables
on all levels. However, this is computationally expensive due to the large amounts
of communication required between the MPI processes, so we added the ability to
exchange only a subset of the ghosts. For example, the tracking of the location of
puncture (2.3.42) requires interpolation of the shift vector βi. For any reasonable
tagging criterion, we can expect the puncture to lie on one of the finest few levels.
Therefore, a significant reduction in the number of ghost cells that need to be
exchanged can be made if only the ghost cells for the shift vector components are
exchanged and only on the finest few levels. We found this change sped up the
tracking of the punctures by over 80%.

The effect of these optimisations is shown in Fig. 3.6 where we show the time taken
to evolve a typical BH binary configuration for several timesteps before and after each
change.

3.3 Analysis tools

In order to analyse the results coming from GRChombo simulations, we have developed
several tools to postprocess the generated data which we briefly describe here.
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3.3.1 Calculation of the radiated energy and momentum from
Ψ4 output

In order to calculate the expressions for the radiated energy (2.4.79), linear momentum
(2.4.80) and angular momentum (2.4.82) in GWs (see Sec. 2.4.7), we first read in the values
of Ψ4 extracted on the spheres of fixed coordinate radii outputted by the WeylExtraction
class in GRChombo at each step. Recall that, on each sphere, these lie on a uniform
grid in the angular coordinates (θ, ϕ) with uniform spacing in each direction. Consider
the expression for the radiated angular momentum

Jrad(t) = − lim
r→∞

r2

16π Re
∫ t

t0
dt′
{∮

S2

(∫ t′

−∞
dt′′ Ψ̄4(t′′, r, θ, ϕ)

)

×Ĵ
(∫ t′

−∞
dt′′

∫ t′′

−∞
dt′′′ Ψ4(t′′′, r, θ, ϕ)

)
dΩ
}
, (3.3.1)

which we use as an example for any of the radiated quantities. We perform all time
integrations using Simpson’s rule. Note that the lower integration limit for all but the
outermost integrals (−∞ in the above formula) is always set to t = 0 in practice (i.e.
when the simulation starts), whereas we adjust t0 to exclude the contribution from
the junk radiation. For the calculation of the angular derivatives in Ĵ (2.4.84), we use
second-order centred stencils everywhere except at θ = 0, π where we use second order
one-sided stencils. The computation of the angular integration is performed in the same
way as for the SphericalExtraction class in GRChombo: we use the trapezium rule
for the integration over ϕ (due to the previously mentioned exponential convergence of
periodic integrals) and Simpson’s rule for the integration over θ. We do not evaluate the
limit r → ∞ at this step but rather compute a separate result for each finite extraction
radius extracted in GRChombo. We then use a separate tool to extrapolate the results
to infinity (see Sec. 3.3.3).

3.3.2 Integration of Ψ4 to obtain the strain

We will often want to translate the Weyl scalar Ψ4 into the strain h which requires two
integrations in time:

h = −h+ + ih× =
∫ t

t0
dt′
∫ t′

t′
0

dt′′Ψ4. (3.3.2)

The “correct” choice for the lower integration limits is t0 = t′0 = −∞ but given that our
numerical simulations start at some finite time (without loss of generality t = 0), we
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have two free integration constants which we typically choose to minimise the linear drift.
Unfortunately, it is found in practice that even when the linear drift is removed there
can still be a residual nonlinear drift when the integration is performed with standard
methods such as Simpson’s rule. In order to minimise this drift, we switch to the Fourier
domain and use the method of fixed frequency integration (FFI) first introduced in
Ref. [153] which we briefly describe below.

First we set our conventions by defining the Fourier transform of g(t) by16

g̃(f) = Ft[g(t)](f) :=
∫ ∞

−∞
e2πiftg(t) dt, (3.3.3)

and its inverse by
g(t) = F−1

f [g̃(f)](t) =
∫ ∞

−∞
e−2πiftg(f) df. (3.3.4)

Then, integrations in the time domain correspond to frequency divisions in the frequency
domain: ∫ t

−∞
g(t′) dt′ = F−1

f

[
i g̃(f)
2πf

]
(t) = i

∫ ∞

−∞
e−2πift g(f)

2πf df (3.3.5)

Note that the division by f means that spurious low-frequency modes are amplified
by the integration leading to the observed nonlinear drifts that we observe from naive
integration in the time domain. In order to eliminate these we pick a cut-off frequency
f0 and replace any fs in the denominators in Eq. (3.3.5) with max(f, f0). Typically, we
will integrate individual modes using this method so, in particular, we set

h+
ℓm = F−1

f

[
F [Reψℓm](f)

(2πmax(f, f0))2

]
, (3.3.6a)

h×
ℓm = −F−1

f

[
F [Imψℓm](f)

(2πmax(f, f0))2

]
. (3.3.6b)

Note that it is important that the real and imaginary parts are computed separately.
Given that we have discretely sampled data, in practice we calculate the Fourier transform
and its inverse via the discrete Fourier transform (DFT) computed using fast Fourier
transforms (FFT) provided by the FFTW3 library [154].

Of course we still have to choose a value for the parameter f0. In Ref. [153], it is
stipulated that this should be set “according to the lowest expected physical frequency for
the given wave mode”, however this is often not known a priori. In practice, we typically
experiment and fine-tune the value. If f0 is too low, then the nonlinear drifts are not

16We follow the conventions of Ref. [52] as it makes the translation to the discrete Fourier transform
for discretely sampled data easier.
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suppressed and if it is too high, then physical low-frequency modes are suppressed (for
example, during the early part of the inspiral phase for a waveform coming from a BH
binary inspiral).

3.3.3 Extrapolation of radiation to null infinity

For a given radiated quantity f (for example, Ψ4, Erad, h, etc.) computed at several
finite extraction radii, we extrapolate to infinity by fitting a polynomial in 1/R of the
form

f(u,R) ≃ f̂N(u,R) =
N∑

n=0

f̂n,N(u)
Rn

, (3.3.7)

where R is the coordinate radius and u = t − r∗ denotes the retarded time evaluated
with the tortoise coordinate

r∗ = R + 2M log
∣∣∣∣ R2M − 1

∣∣∣∣ . (3.3.8)

We compute the fit by resampling f from each extraction radius R = Rex onto a common
grid in u and then, at each discrete value of u, performing a linear least squares regression
for the coefficients of the 1/Rn using the GNU Scientific Library [155].

If we take f̂0,N (u) as our estimate of the extrapolated quantity, we then estimate the
error by computing the difference between it and f̂0,N+1(u). Alternatively, we estimate
the error of our result from finite radius R = Rex by computing the difference between it
and f̂0,1(u). Since we sometimes find that fitting for N > 1 results in spurious oscillations
or drift, we tend to either take N = 1 or use the result from finite extraction radius.

3.3.4 Converting between complex number representations

We will often want to convert a complex oscillating function of time f(t) from its Cartesian
representation f(t) = a(t) + ib(t) to modulus-argument (also known as amplitude-phase)
form f(t) = A(t) exp(iφ(t)). Although this conversion is something one typically learns
at school level and indeed there is nothing further to add about the calculation of the
amplitude (A =

√
a2 + b2), we will typically want to choose φ(t) such that it is monotonic.

Given that we have a discrete number of time points, we assume that ∆t is relatively small
compared to the inverse of the dominant frequency of f(t). Then, using the standard finite-
difference notation (2.5.6) (e.g. φn = φ(tn)), we choose φ0 = arg(a(t0) + ib(t0)) ∈ (−π, π]
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and
φn = arg(a(tn) + ib(tn)) + 2kπ, (3.3.9)

where k ∈ Z is chosen to minimise |φn − φn−1|. This procedure works well when the
phase is a smooth function of time (e.g. during the inspiral phase of a gravitational
waveform) but may lead to undesirable jumps when it is not (e.g. for the “junk radiation”
part of a waveform cf. Fig. 2.3).
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Appendix 3.A Spatial Derivative Stencils

We use the formulae in Ref. [156] for the fourth order stencils. Using the conventional
notation for finite differences where,

Fi = F |x=xi
, Fi,j = F |x=xi,y=yj

, (3.A.1)

and xi and yi are coordinates of the discrete points on a uniform grid, the centred stencils
are

∂xF = 1
12h (Fi−2 − 8Fi−1 + 8Fi+1 − Fi+2) , (3.A.2)

∂2
xF = 1

12h2 (−Fi−2 + 16Fi−1 − 30Fi + 16Fi+1 − Fi+2) , (3.A.3)

∂2
xyF = 1

144h2 (Fi−2,j−2 − 8Fi−2,j−1 + 8Fi−2,j+1 − Fi−2,j+2 − 8Fi−1,j−2 + 64Fi−1,j−1

− 64Fi−1,j+1 + 8Fi−1,j+2 + 8Fi+1,j−2 − 64Fi+1,j−1 + 64Fi+1,j+1 − 8Fi+1,j+2

− Fi+2,j−2 + 8Fi+2,j−1 − 8Fi+1,j+1 +Fi+1,j+2) ,
(3.A.4)

and, for the advection term, the lopsided stencils are

∂xF =


1

12h (−3Fi−1 − 10Fi + 18Fi+1 − 6Fi+2 + Fi+3) , if βx > 0,
1

12h (−Fi−3 + 6Fi−2 − 18Fi−1 + 10Fi + 3Fi+1) , if βx < 0.
(3.A.5)
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We follow Ref. [129] for the sixth order stencils. The centred stencils are

∂xF = 1
60h (−Fi−3 + 9Fi−2 − 45Fi−1 + 45Fi+1 − 9Fi+2 + Fi+3) , (3.A.6)

∂2
xF = 1

180h2 (2Fi−3 − 27Fi−2 + 270Fi−1 − 490Fi + 270Fi+1 − 27Fi+2 + 2Fi+3) ,

(3.A.7)

∂2
xyF = 1

3600h (Fi−3.j−3 − 9Fi−3,j−2 + 45Fi−3,j−1 − 45Fi−3.j+1 + 9Fi−3,j+2 − Fi−3,j+3

− 9Fi−2,j−3 + 81Fi−2,j−2 − 405Fi−2,j−1 + 405Fi−2,j+1 − 81Fi−2,j+2 + 9Fi−2,j+3

+ 45Fi−1,j−3 − 405Fi−1,j−2 + 2025Fi−1,j−1 − 2025Fi−1,j+1 + 405Fi−1,j+2 − 45Fi−1,j+3

− 45Fi+1,j−3 + 405Fi+1,j−2 − 2025Fi+1,j−1 + 2025Fi+1,j+1 − 405Fi+1,j+2 + 45Fi−1,j+3

+ 9Fi+2,j−3 − 81Fi+2,j−2 + 405Fi+2,j−1 − 405Fi+2,j+1 + 81Fi+2,j+2 − 9Fi+2,j+3

− Fi+3,j−3 + 9Fi+3,j−2 − 45Fi+3,j−1 +45Fi+3,j+1 − 9Fi+3,j+2 + Fi+3,j+3) ,
(3.A.8)

and, for the advection terms, the lopsided stencils are

∂xF =



1
60h

(2Fi−2 − 24Fi−1 − 35Fi + 80Fi+1

−30Fi+2 + 8Fi+3 − Fi+4) ,
if βx > 0,

1
60h

(Fi−4 − 8Fi−3 + 30Fi−2 − 80Fi−1

+35Fi + 24Fi+1 − 2Fi+2) ,
if βx < 0.

(3.A.9)



Chapter 4

Adaptive mesh refinement in
numerical relativity

In this chapter, we demonstrate the flexibility and utility of the Berger-Rigoutsos AMR
algorithm described in Sec. 3.1.4 for generating gravitational waveforms from binary BH
inspirals, and for studying other problems involving non-trivial matter configurations.
We show that GRChombo can produce high quality black-hole waveforms though a
code comparison with the established numerical relativity code Lean. We also discuss
some of the technical challenges involved in making use of full AMR (as opposed to, e.g.
moving box mesh refinement), including the numerical effects caused by using various
refinement criteria when regridding. We suggest several “rules of thumb” for when to use
different tagging criteria for simulating a variety of physical phenomena. We demonstrate
the use of these different criteria through example evolutions of a scalar field theory.

This chapter contains parts of the coauthored publication, Ref. [3]. I performed
and postprocessed the GRChombo BH binary inspiral simulations. Furthermore, I
implemented the modifications in the GRChombo code that were required in order
to test truncation error tagging for the axion star simulations. Finally, I conducted all
convergence analyses.

4.1 Introduction

In the numerical relativity (NR) community, many codes rely on the technique of so-called
“moving boxes” for mesh refinement, where a hierarchy of nested boxes with increasingly
fine meshes centred around specified points (also sometimes referred to as the “box-in-
box” approach). Within this framework, boxes move around either dynamically or along
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predetermined paths, in order to track objects’ trajectories1. This technique has proved
remarkably successful, particularly in the case of generating gravitational waveforms
from binaries of compact objects for the template banks for gravitational wave (GW)
detectors, such as LIGO-Virgo-KAGRA [167, 168, 169, 54, 170]. Moving box codes have
matured to allow exploration of a wide variety of physics with a plethora of diagnostic
tools [49, 50].

However, there are classes of problems for which the moving boxes technique becomes
impractical due to the topology of the system. Here, the use of “fully adaptive” mesh
refinement (AMR) is required where the mesh dynamically adjusts itself in response to
the underlying physical system being simulated, following user-specified mesh refinement
criteria. In general, there are two broad classes of AMR, depending on whether newly
refined meshes are added to the grid on a cell-by-cell “tree-structured” basis [171, 172,
173] or on a box-by-box “block-structured” basis. In this chapter, we will exclusively
discuss the latter.

In block-structured AMR, first described and implemented by Berger and Oliger
[174], the computational domain is built from a hierarchy of increasingly fine levels, with
each one containing a set of (not necessarily contiguous) boxes of meshes, with the only
condition being that a finer mesh must lie on top of one or possibly more meshes from the
next coarsest level. It is important to stress that this means it is allowed for a fine mesh
to straddle more than one coarse mesh—in other words the grid structure is level-centric
rather than box-centric. In contrast to the moving boxes approach, this approach allows
for highly flexible “many-boxes-in-many-boxes” mesh topologies, enabling the study of
dynamical systems where the spacetime dynamics are not driven by localized compact
systems e.g. in studying nonspherical collapse scenarios [175, 176], higher dimensional
black holes/black string evolution [177, 178, 179, 180, 181, 182], cosmic string evolution
[183, 184, 185], and the behaviour of strongly inhomogeneous cosmological spacetimes
[186, 187, 188, 189, 190, 191, 192, 193, 194].

Despite its advantages, AMR is a double-edged sword and its flexibility comes with a
cost—each coarse-fine transition may introduce unwanted interpolation and prolongation
errors whose magnitude depends on the order of the coarse-fine boundary operators,
in addition to introducing a “hard surface” which can generate spurious unphysical
reflections. We emphasize that AMR should not be treated as a “black box”, but requires

1In addition, boxes may be allowed to merge if they come close enough together. These codes include
those built upon the popular Cactus computational framework [157, 158, 136] such as the McLachlan
[159], LazEv [156], Maya [160], Lean [161, 162] and Canuda [163] codes, and the BAM code [164,
103, 165, 166].
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careful control and fine-tuning of refinement criteria, that often depend on the physics
being simulated, in order to work effectively. In particular, the creation/destruction of a
finer grid is determined by the tagging of cells for refinement, which in turn is controlled
by a tagging criterion. Although this ability to refine regions can be incredibly powerful,
in practice it can be difficult to manage the exact placement of refined grids. Furthermore,
we find that the management of coarse-fine boundaries in dynamically sensitive regions
of spacetime, such as near apparent horizons, is essential for producing accurate results.

In this chapter we explain some of the tagging criteria and numerical techniques we
have used to obtain convergent, reliable results when using block-structured AMR. We
will discuss these issues in the context of the AMR NR code GRChombo [1, 88]2, which
was first introduced in 2015 and uses the Chombo [127] library. While our methods apply
directly to GRChombo, we believe many of the lessons we have learned are general and
may be useful to researchers who work with other numerical relativity codes that make
use of block-structured AMR, in particular those which rely on the Berger-Rigoutsos
[133] style grid generation methods.

We demonstrate the utility of the techniques we have employed through a direct
comparison of gravitational waveforms generated by binary black-hole inspiral and
merger calculated by GRChombo and the more established Lean code which uses the
aforementioned “moving boxes” style mesh refinement, and show that GRChombo is
capable of achieving comparable production-level accuracy. We secondly apply AMR
techniques to the evolution of several scalar field models which exhibit dynamics on a
wide range of spatial and temporal scales, to demonstrate the relative advantages of
several tagging criteria implemented in GRChombo.

This chapter is organised as follows:

• In Sec. 4.2 we discuss considerations for tagging criteria in AMR grid generation.
2Adaptive mesh refinement is now being used in several other NR codes. For example, those based

on the PAMR/AMRD mesh refinement libraries [195, 196, 197], the Hahndol code [40], which uses
PARAMESH [198], the HAD code [199], and the pseudospectral codes, SpEC [200], bamps [201] and
SFINGE [202] in which the AMR implementation is somewhat different to finite difference codes like
GRChombo. More recently, CosmoGRaPH [203], and Simflowny [204] both based on the SAMRAI
library [205, 206, 207], GRAthena++ [208], Gmunu [209] and Dendro-GR [210], all based on oct-tree
AMR, and GRAMSES [173] have been introduced. Alternatives are problem-adapted coordinate systems,
e.g. NRPy+ [132] or discontinuous Galerkin methods as in SpECTRE [211, 212] (see also [213, 214]).
Furthermore, it should be noted that some code frameworks, such as those based on the Carpet mesh
refinement driver [136], are technically capable of performing block-structured AMR. However, it can
be cumbersome to use, and these codes typically rely on moving-box type methods (e.g. the codes
referenced in footnote 1). A brief overview of the history of NR codes can be found in [41].
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• In Secs. 4.3 and 4.4, we illustrate how these techniques are applied in practice to
simulations of BH binaries and spacetimes with a (self-interacting) scalar field.

Throughout this chapter we use geometric units c = G = 1. In the sections on black
holes we set the mass scales with respect to the ADM mass of the spacetime, whereas for
the section on scalar fields we set µ = mc/ℏ = 1, which then describes lengths relative to
the scalar Compton wavelength3.

4.2 Considerations for tagging criteria used for grid
generation

We have found that the choice of tagging criteria can greatly impact the stability and
accuracy of a given simulation. Here we mention several factors to consider when
designing tagging criteria for use in GRChombo and other codes with similar AMR
algorithms. We also provide some explicit examples of tagging criteria and discuss their
relative merits.

4.2.1 Buffer Regions

One of the problems of many tagging criteria we have tried is that they can often
introduce several refinement levels over a relatively small distance in space. This leads
to the boundaries of these refinement levels being particularly close to one another. Due
to the errors introduced by interpolation at these boundaries, they can add spurious
reflections or noise. This is exacerbated when other refinement boundaries are nearby,
allowing for this noise to be repeatedly reflected and even amplified before it has time
to dissipate (e.g. via Kreiss-Oliger dissipation – see Sec. 3.1.2). A particularly simple
way to mitigate this problem is to increase the buffer regions, i.e. the number of cells
nB between refinement levels. Since the regridding algorithm starts at the finest level
and works up the hierarchy to coarser levels (see Sec. 3.1.4), increasing this parameter
actually increases the size of the coarser levels rather than shrinking the finer levels in
order to enforce this buffer region restriction.

3If we are interpreting the results in terms of a physical particle mass, this is equivalent to setting
the value of ℏ in the code. Note that in general ℏ ̸= 1 in NR simulations (as this would imply that one
unit in the length scale is equal to the Planck length lPl).
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4.2.2 Considerations for black-hole spacetimes

Here we describe several techniques that we have used when creating tagging criteria
to evolve black-hole spacetimes. The major complication with evolving black holes is
that they have an event horizon. In practice, it is often challenging to find the true
event horizon, which would require tracing geodesics through the full evolution of the
spacetime. Therefore NR simulations typically consider the location of the apparent
horizon instead, which always lies inside the event horizon [145]. Mathematically, the
region within an apparent horizon is causally disconnected from its exterior. For a given
numerical approximation, however, artefacts from the discretization can propagate from
behind the horizon and contaminate the rest of the computational domain.

As a consequence of this superluminal propagation of numerical noise, we often
find that GRChombo simulations of BHs are particularly sensitive to the presence of
refinement boundaries. One should avoid adding refinement within the horizon (which in
any case is unobservable and not usually of interest), but problems are particularly severe
where a refinement boundary intersects the apparent horizon. In such cases we have
observed significant phase inaccuracies and drifts in the horizon area (some even violating
the second law of black hole mechanics). Similar problems may occur if a refinement
boundary is close to but does not intersect the horizon. In order to avoid these issues,
we typically enforce the tagging of all cells within the horizon plus a buffer radius up
to a maximum level lmax

BH (which need not necessarily be lmax and may differ for each
BH in the simulation). If rp is the coordinate distance from the puncture of a BH of
mass MBH in a spacetime with total mass M ∼ 2MBH, then, for η ∼ 1/M in the moving
puncture gauge (2.3.38-2.3.41), after the initial gauge adjustment the apparent horizon
is at approximately rp = MBH (see Fig. 4 in Ref. [103]). Guided by this approximation,
we can tag all cells with rp < MBH + b, where b is a prespecified parameter. Although
one might think choosing b ∝ MBH for each BH might be the most sensible choice for
unequal mass configurations, we have found larger BHs less sensitive to the presence of
refinement boundaries. Thus, choosing b ∝ M the same for each BH in a binary usually
works sufficiently well.

Increasing the size of the buffer regions between refinement boundaries by adjusting
nB as discussed in Sec. 4.2.1 can help to keep refinement boundaries sufficiently spaced
apart. However, we have also separately enforced the spacing out of refinement boundaries
by doubling the radius of the second and third-finest levels covering a BH. This leads to
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tagging cells on level l (to be refined on level l + 1) with

rp < (MBH + b)2min(lmax
BH −l−1,2) (4.2.1)

In spacetimes where BH horizons are dynamical (often the target of AMR simulations),
one can in principle use the locations of apparent horizons to define tagged regions.
However, rather than incorporating the output of a horizon finder into the tagging
criterion, a simpler and in most cases equally effective method can be obtained from
using contours of the conformal factor χ and tagging regions with χ < χ0, where χ0

is a prespecified threshold value which may vary on each refinement level. This gives
a reasonably robust and general method of identifying the approximate locations of
horizons. Further details on precise values and their dependence on the BH spin are
given in Appendix 4.A.

4.2.3 Asymmetric grids

The grid-generation algorithm (Sec. 3.1.4) is inherently asymmetric, for example, it picks
the “hole” with the largest index as the partition plane. This means that even if the
tagging has symmetries, the grids themselves may not obey the same or any symmetries.
For example, whilst one might expect that, for tagging cells with Eq. (4.2.1), the grids
would have reflective symmetry in all three coordinate directions, this is often not the
case, particularly for larger ϵFR. This asymmetry can lead to undesirable behaviour.
For example, when simulating the head-on collision of two BHs with no symmetry
assumptions (as described in Sec. 3.1.5) with the tagging of Eq. (4.2.1), the punctures
can deviate slightly from the collision axis. We can “fix” this asymmetry by replacing

rp → ϱ = max(|x− xp|, |y − yp|, |z − zp|) (4.2.2)

in Eq. (4.2.1) so that the tagged regions are boxes rather than spheres (this tagging
is similar to what is done in some moving-box style mesh refinement codes). Whilst
there is inevitably a loss of efficiency from this choice, this is typically outweighed by
the reductions in error achieved. Clearly, this approach pushes the AMR method in the
direction of a moving boxes approach; in practice, we therefore apply it predominantly
to BH simulations but not for more complex matter structures that require the full
flexibility of AMR.
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4.2.4 Using truncation error for tagging cells

Truncation error tagging was introduced by Berger and Oliger [174]. We have implemented
truncation error tagging in GRChombo by using a shadow hierarchy (e.g. Ref. [215]).
In this scheme, we estimate the truncation error on a grid at level l by comparing the
solution of a specially chosen variable f on that level to the coarser level directly “beneath”
it on the grid:

τl,f (i) = |fl(i) − fl−1(i)| . (4.2.3)

We note that the error (4.2.3) clearly must be computed before we average the finer grid
values onto the coarser grid. As Chombo uses a cell-centred scheme, in order to compare
the values of f on the two levels, we interpolate f from the coarser level onto the finer
level using fourth order interpolation. If we compute the truncation error of multiple
grid variables, we combine the error estimates for each variable at each point:

τl(i) =
√√√√∑

f

(τl,f (i))2

Lf

, (4.2.4)

where Lf is a normalizing factor for each variable f . We then set this as our tagging
criterion in Eq. (3.1.5): C(i) = τl(i). The free parameters in this scheme of tagging are
the choice of grid variables that one computes truncation error estimates for and the
normalization factors for each variable.

The main advantages of truncation error tagging are that it allows for a conceptually
straightforward way to implement convergence tests in AMR codes: as one increases
the base grid resolution, one should scale the truncation error tagging threshold for grid
generation with the expected convergence of the code. Additionally, truncation error
tagging is a “natural” tagging criterion as it refines regions that are most likely to be
under resolved.

4.2.5 Tagging criteria based on grid variables and derived quan-
tities

Some physical problems lend themselves to other tagging criteria, and GRChombo
permits the user to easily specify refinement criteria based on any properties of the local
grid variables or derived expressions of them, for example, derivatives or curvature scalars.
We caution though that the tagging criteria we discuss below are not functions of geometric
scalars, so the performance of a given criterion will depend on the formulation and gauge
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conditions used. Nevertheless, for the Bona-Masso-type slicing (2.3.37) and gamma-driver
(2.3.41) conditions we have the most experience with, these gauge conditions have proven
to be reliable and robust.

First we discuss tagging criteria based on the conformal factor of the spatial metric χ.
Contours of χ can provide a good choice in dynamical BH cases as detailed in Sec. 4.2.2
and Appendix 4.A, to ensure that horizons are covered. Taking differences of χ across
a cell using locally evaluated derivatives, i.e. using C =

√
δij∂iχ∂jχ∆x, also provides

an efficient measure to refine key areas4. In particular, using the second derivative of χ,
i.e. C =

√
δij∂i∂jχ∆x, is efficient because usually it is the regions in which gradients are

changing most rapidly that require greater resolution, rather than steep linear gradients.
However, in practice any derivative can be used provided the thresholds are tuned
appropriately for the problem at hand.

Alternatively, we find empirically that the sum of the absolute value of the different
components of the Hamiltonian constraint proves to be an efficient tagging criteria in
dynamical matter spacetimes. The condition is

C = Habs = |R| + |ÃklÃkl| + 2
3K

2 + 16π|ρ| + 2|Λ|, (4.2.5)

where R = γijRij is the Ricci scalar. As we will see in Sec. 4.4.2, this quantity generally
remains constant in regions of spacetime where the individual metric and matter compo-
nents oscillate in a stable, time-invariant manner (as in the case of the stable axion star
we present later). Thus, using this measure reduces the amount of spurious regridding
that occurs, which in turn reduces errors introduced by that process. Where it starts to
grow in some region, this generally reflects a decrease in the local dynamical timescales
and thus physically motivates regridding.

A disadvantage of using these more arbitrary criteria over error tagging is that
convergence testing is more challenging - one must ensure that similar regions are refined
at the appropriate resolutions in the convergence runs, which necessitates tuning of
the threshold at each different base resolution. Depending on the regridding condition,
halving the threshold τR, for example, may not result in double the resolution being
applied. Nevertheless, if one ensures that the regions of most physical significance have
an appropriate increase in refinement, convergence can usually be demonstrated, as we
show below.

4Imposing simply that ∂iχ (without the factor of ∆x) is higher that some threshold results in
unlimited regridding, since one does not reduce the local gradient in a variable by refinement, only the
difference across the cell.
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In order to obtain convergent results and use resolution most efficiently in a physical
problem, it is often helpful to implement rules to enforce that given regions are refined for
a given amount of time at least to a given level. Whilst this may seem to go against the
spirit of AMR, it is easy to implement within that formalism as a secondary condition,
and is often required to avoid excessive or insufficient tagging in very dynamical cases.
For example, when one is not interested in resolving outgoing scalar radiation, one may
choose to suppress regridding above a particular level outside a particular radius. In
the opposite sense, we often enforce extra regridding over the extraction surfaces for
the Weyl scalars, to ensure that they have sufficient resolution and that noise is not
introduced from grid boundaries crossing the spheres.

Several examples of the application of these criteria to black-hole binary inspirals and
matter field evolutions are presented in the following, sections 4.3 and 4.4. These two
examples cover the main considerations when using AMR in NR codes. Spacetimes with
singularities have particular requirements related to the resolution of the horizons. Fur-
thermore, in dynamical matter spacetimes achieving an optimum frequency of regridding
can be crucial in obtaining convergence. In the matter case we focus on an isolated real
scalar (axion) star, which provides a very good test of AMR capabilities. In particular,
it tests the ability to resolve stably oscillating matter configurations without excessive
gridding and ungridding, and to follow the dynamical timescales of gravitational collapse,
which are the key challenges in many simulations of fundamental fields in NR, including
the modelling of cosmic strings, inflationary spacetimes and exotic compact objects. Fully
AMR techniques are also likely to create significant challenges for high-resolution shock
capturing, but we leave this topic for future investigations.

4.3 Binary black-hole simulations with adaptive mesh
refinement

In this section, we demonstrate the efficacy of some of the techniques discussed in Sec. 4.2
in the context of BH binaries. To do this, we select a representative sample of BH binary
configurations, analyse the accuracy of the resulting gravitational waveforms and compare
the results obtained with GRChombo to that obtained with a more conventional moving
boxes style mesh refinement code, Lean [161].
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Fig. 4.1 Schematic illustration of the parameters characterizing the BH binary config-
urations under consideration: the mass ratio q = M2/M1 > 1, the initial separation d,
the initial tangential linear momentum Pt, the initial inward radial linear momentum Pr,
the dimensionless spin of each black hole χi = |Si|/M2

i and the angle of the spin in the
orbital plane α relative to the outward radial direction of the initial BH positions.

Table 4.1 A list of the parameter values (cf. Fig. 4.1) for the BH binary configurations
simulated in this chapter. M = M1 + M2 denotes the total black hole mass of the
spacetime.

Label q d/M Pt/M Pr/M χi α Reference
q1-d12 1 12.21358 0.08417 5.10846 × 10−4 0 - [216]
q2-d10 2 10 0.08566 0 0 - [2]
q1-s09 1 11.01768 0.075 0 0.9 30◦ [217]

Before we present our results, we first provide details of the explicit tagging criteria
used in our GRChombo simulations and the methods we use to analyse and compare
our results.

4.3.1 Methods

We consider three different BH binary configurations with the parameters provided in
Table 4.1 and illustrated schematically in Fig. 4.1. All simulations include an inspiral,
merger and ringdown.

The first configuration consists of two equal-mass non-spinning BHs with a quasi-
circular inspiral lasting about 10 orbits; this configuration is labelled q1-d12 (for mass
ratio q = 1 and distance d ≈ 12). The parameters were computed in order to minimize
the initial eccentricity of the simulation using standard techniques [216].

The second configuration involves two BHs with mass ratio 2 : 1. The inspiral is
about 6 orbits and is approximately quasicircular. This is one of the configurations
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simulated in the lq1:2 sequence of Chapter 5. Here we label this configuration q2-d10
(for mass ratio q = 2 and distance d = 10).

The final configuration consists of a mildly eccentric inspiral of two equal-mass
highly-spinning BHs. The spins lie in the orbital plane as shown in Fig. 4.1, which
is the “superkick” configuration [218, 219, 220]. Here, the quantity we analyse is the
gravitational recoil of the remnant BH. This configuration is taken from the sequence
simulated in Ref. [217] and we label it q1-s09 (for mass ratio q = 1 and spin χ = 0.9).

4.3.1.1 GRChombo setup and tagging criteria

For the GRChombo simulations of the BH binary configurations in Table 4.1, we use
the CCZ4 equations (2.3.30) with the default damping parameters (2.3.34) (note that in
code units, M = 1). We use the moving puncture gauge (2.3.39, 2.3.41) with the default
lapse parameters (2.3.40) and the shift parameters b1 = 1, b2 = 3/4, Mη = 1 for q1-d12
and q1-s09 and b1 = 1, b2 = 3/4, Mη = 3/4 for q2-d10. For q1-d12 and q2-d10, we
use reflective BCs along one boundary to impose bitant symmetry (i.e. symmetry across
the equatorial plane) and Sommerfeld BCs for all other boundaries. Following sections
Secs. 4.2.2, 4.2.3 and 4.2.5, we use a tagging criterion of the following form

C = max (Cχ, Cpunc, Cex) , (4.3.1)

where the quantities on the right-hand side are defined below. Note that we use the
value +∞ to denote a large value that always exceeds the threshold τR.

(i) Cχ tags regions in which the derivatives of the conformal factor χ become steep. It
is the dominant criterion for the intermediate levels lmax

ex ≤ l < lmax − 3, where lmax
ex

is the maximum extraction level (see item (iii) below). It is given by

Cχ = ∆xl

√∑
i,j

(∂i∂jχ)2 , (4.3.2)

where ∆xl is the grid spacing on refinement level l.

(ii) Cpunc includes parts of the tagging criterion that use the location of the punctures.
It is the dominant criterion on the finest three levels and is comprised of two parts,
Cinsp and Cmerg that are used depending on the coordinate distance between the
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punctures sp = |xp,1 − xp,2| as follows:

Cpunc =


Cinsp, sp ≥ M + b

max(Cinsp, Cmerg), 10−3 ≤ sp < M + b

Cmerg, sp < 10−3,

(4.3.3)

where M = M1 +M2 is the sum of the individual BH masses, b is a buffer parameter
(cf. Sec. 4.2.2), and 10−3 is a choice in the cutoff for the distance between the
punctures sp which determines when the merger has completed. The inspiral
criterion is given by

Cinsp =


+∞,

if ϱ1 < (M1 + b)2min(lmax−l−1,2),

or ϱ2 < (M2 + b)2min(lmax−l−1,2),

0, otherwise,

(4.3.4)

where ϱi is the “max” or “infinity” norm (4.2.2) of the coordinate position vector
relative to puncture i. Similarly, the merger criterion is given by

Cmerg =

+∞, if ϱ < (M + b)2min(lmax−l−1,2),

0, otherwise,
(4.3.5)

where ϱ is the max-norm (4.2.2) of the coordinate position vector relative to the
centre of mass x = (M1xp,1 +M2xp,2)/M .

(iii) Cex ensures the Ψ4 extraction spheres are suitably well resolved. It is the dominant
tagging criterion for 0 ≤ l < lmax

ex and is given by Cex = maxi{Cex,i}, where i labels
the extraction spheres and

Cex,i =

+∞, if r < 1.2rex,i and l < lex,i,

0, otherwise,
(4.3.6)

where rex,i and lex,i are the radius and level of the ith extraction sphere and
lmax
ex = maxi lex,i. The factor of 1.2 is present to add a 20 % buffer radius around

the extraction spheres in order to reduce the effect of spurious reflections off the
refinement level boundaries.

A summary of the grid configuration parameters is given in Table 4.2.
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Table 4.2 GRChombo grid parameters for the simulation of configurations in Table 4.1
There are (lmax+1) refinement levels and the coarsest level has length (without symmetries
applied) L. The grid spacing on the finest level is ∆xlmax and the minimum number of
cells in the buffer regions between consecutive refinement level boundaries is nB. The
regrid threshold for the tagging criterion (4.3.1) is τR and the BH buffer parameter is b.

Configuration lmax L/M ∆xlmax/M nB τR b/M

q1-d12 low 9 1024 1/80 20 0.016 0.7
q1-d12 medium 9 1024 1/96 24 0.0133 0.7

q1-d12 high 9 1024 1/128 32 0.01 0.7
q2-d10 low 7 512 1/88 48 0.01 0.467

q2-d10 medium 7 512 1/104 52 0.00923 0.467
q2-d10 high 7 512 1/112 56 0.00857 0.467
q1-s09 low 7 512 1/64 16 0.02 0.7

q1-s09 medium 7 512 1/96 24 0.0133 0.7
q1-s09 high 7 512 1/112 28 0.0114 0.7

4.3.1.2 Comparison code: Lean

The Lean code [161] is based on the Cactus computational toolkit [157] and uses the
method of lines with fourth-order Runge-Kutta time stepping and sixth-order spatial
stencils. The Einstein equations are implemented in the form of the Baumgarte-Shapiro-
Shibata-Nakamura-Oohara-Kojima (BSSNOK) formulation [81, 82, 83] with the moving-
puncture gauge [39, 40] (cf. Eqs. (2.3.37) and (2.3.41)). The Carpet driver [136] provides
mesh refinement using the method of “moving boxes.” For the non-spinning binary
configurations q1-d12 and q2-d10, we use bitant symmetry to reduce computational
expense, whereas configuration q1-s09 is evolved without symmetries. The computational
domains used for these simulations are characterized by the parameters listed in Table 4.3.
The domain comprises a hierarchy of lmax + 1 refinement levels labelled from l =
0, . . . lF , . . . , lmax, with grid spacing given by Eq. (3.1.4). Before applying the symmetry,
for l ≤ lF each level consists of a single fixed cubic grid of half-length Rl = R0/2l, and for
lF < l ≤ lmax, each level consists of two cubic components of half-length Rl = 2lmax−lRlmax

centred around each BH puncture. We adopt this notation for consistency with that
used to describe GRChombo. This translates into the more conventional Lean grid
setup notation (cf. Ref. [161]) as

{
(R0, . . . , 2−lFR0) × (2lmax−lF −1Rlmax , . . . , Rlmax),∆xlmax

}
. (4.3.7)
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Table 4.3 Lean grid parameters for the simulation of configurations in Table 4.1. There
are (lmax + 1) levels of which the first (lF + 1) comprises a single box that covers both
BHs with the remaining levels consisting of two separate box components that cover each
BH separately. The half-width of the coarsest level is R0 and the half-width of a single
component on the finest level is Rlmax . The grid spacing on the finest level for the three
resolutions used in the convergence analysis is ∆xlmax .

Configuration lmax lF R0/M Rlmax/M ∆xlmax/M

q1-d12 9 5 512 1/2 1/64, 1/96, 1/128
q2-d10 8 4 256 1/3 1/84, 1/96, 1/108
q1-s09 8 3 256 1 1/80, 1/88, 1/96

A CFL factor of 1/2 is used in all simulations, and apparent horizons are computed
with AHFinderDirect [221, 222].

For all our BH evolutions, with Lean and GRChombo, the initial data are con-
structed with the TwoPunctures spectral solver [119].

4.3.1.3 Gravitational wave analysis

One of the most important diagnostics from our simulations is the GW signal which we
compute from the Weyl scalar Ψ4. For GRChombo, the calculation of Ψ4 is explained
in Sec. 2.4 and technical details of the extraction procedure can be found in Sec. 3.2.1.
For Lean, details can be found in Ref. [161]. Below, we describe further analysis we
have performed in order to compare the gravitational wave output from each code.

We start with the multipolar decomposition of the Weyl scalar,

Ψ4 =
∞∑

l=2

ℓ∑
m=−ℓ

−2Y
ℓmψℓm. (4.3.8)

Next, we translate to the gravitational-wave strain h according to

Ψ4 = ḧ = −ḧ+ + iḧ× (4.3.9)

which gives us the strain multipoles as ḧ+
ℓm = −Re(ψℓm) and ḧ×

ℓm = Im(ψℓm). To avoid
spurious drift resulting from numerical inaccuracies, we perform the necessary integrations
in time in the Fourier domain [153]. We then rewrite the strain modes in terms of their
amplitude and phase

−h+
ℓm + ih×

ℓm = hA
ℓm exp

(
ihϕ

ℓm

)
, (4.3.10)
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where multiples of 2π are added to hϕ
ℓm appropriately in order to minimize the difference

between consecutive data points.
The radiated quantities derived from Ψ4 are affected by two main error sources;

the discretization error due to finite resolution and an uncertainty arising from the
extraction at finite radii instead of null infinity. We determine the former by conducting
a convergence analysis of the quantities extracted at finite radius. In order to determine
the second error contribution, we compute a given radiated quantity f at several finite
extraction radii and extrapolate to infinity by fitting a polynomial in 1/r of the form

fN(u, r) =
N∑

n=0

fn,N(u)
rn

. (4.3.11)

Here, r is the coordinate radius and u = t− r∗ denotes the retarded time evaluated with
the tortoise coordinate

r∗ = r + 2M ln
∣∣∣∣ r2M − 1

∣∣∣∣ . (4.3.12)

We uniformly observe that time shifts in terms of r∗ result in slightly better alignment of
wave signals extracted at different coordinate radii r. If we take f0,N(u) as our estimate
of the extrapolated quantity, we then estimate the error ϵ in our result from r = rex by
computing

ϵf,rex,N = |f(u, rex) − f0,N(u)| . (4.3.13)

Typically, and unless stated otherwise, we set N = 1 and drop the N subscripts. Our total
error budget is then given by the sum of the discretization and extraction uncertainties.

We quantify the agreement between the two codes’ results in the context of GW
analysis by computing the overlap following the procedure of Refs. [223, 224]. In the
following, we restrict our analysis to the dominant (2,2) quadrupole part of the signal
and drop the subscript “ℓ = 2,m = 2”. Before computing the overlap, we extrapolate the
strain to infinity using the procedure explained above.

Given the power spectral density Sn(f) of a detector’s strain noise as a function of
frequency f , the inner product of two signals g, h on the space of waveforms is given by5

⟨g|h⟩ := 4 Re
{∫ ∞

0

g̃∗(f)h̃(f)
Sn(f) df

}
, (4.3.14)

5We use in our calculation one-sided, as opposed to two-sided, spectral power densities, i.e. we only
consider non-negative frequencies, hence the factor 4 in Eq. (4.3.14).
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where the Fourier transform is defined by

g̃(f) :=
∫ ∞

−∞
g(t)e−2πift dt. (4.3.15)

We next define the overlap of the two signals as the normalized inner product maximized
over shifts ∆t, ∆hϕ in time and phase,

ρ(g, h) := max
∆hϕ,∆t

⟨g|h⟩√
⟨g|g⟩⟨h|h⟩

. (4.3.16)

The quantity 1 − ρ(g, h) then provides a measure for the discrepancy between the
two waveforms, analogous to the mismatch introduced as a measure for signal-to-noise
reduction due to model imperfections in GW data analysis [225, 226].

For q1-s09, we instead analyse the convergence of the linear momentum radiated
in GWs in the form of the BH recoil velocity or kick. First we compute the radiated
momentum Prad using Eq. (2.4.80) and then compute the recoil velocity–which must lie
in the z-direction by symmetry–using v = −P rad

z /Mfin. Since the radiated momentum
can be written in terms of a sum, with each term involving several multipolar amplitudes
ψℓm (Eq. (40) in [97]), analysing this quantity has the benefit of additionally indirectly
comparing the agreement of higher order multipoles (i.e. ℓ > 2) between the codes.

4.3.2 Results

For each configuration in Table 4.1, we have performed three simulations at different
resolutions with both GRChombo and Lean in order to calibrate their accuracy which
we discuss below. The respective grid configurations are given in Tables 4.2 and 4.3.

For the first configuration q1-d12 of an equal-mass binary, we show the convergence
analysis in Fig. 4.2 with the analysis for GRChombo on the left and for Lean on the
right. For Lean, we observe convergence of about fourth order in the amplitude and
between fifth and sixth order in the phase of the quadrupole mode h22 of the strain
(4.3.10). For GRChombo we observe convergence of about second order in the amplitude
and about fourth order in the phase of the same mode. We note that, as mentioned
in Sec. 5.A, higher resolutions were required with GRChombo in order to enter the
convergent regime.

By comparison with a Richardson extrapolation, we estimate the discretization errors
in the amplitude and phase of the finest resolution simulations from both codes as
follows. Excluding the early parts of the signal dominated by “junk” radiation and the
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Fig. 4.2 Convergence of the quadrupole mode of the strain h22 = −h+
22 + ih×

22 calculated
from the values of Ψ4 extracted for configuration q1-d12 at rex = 120M for both
GRChombo with finest grid resolutions ∆xlmax = M/80, M/96 and M/128 (a) and
Lean with finest grid resolutions ∆xlmax = M/64, M/96 and M/128 (b). Top panels:
Convergence of the amplitude hA

22 = |h22|. The difference between the higher resolution
results is rescaled according to fourth and fifth order convergence for Lean and according
to second and third-order convergence for GRChombo. In each case, the inset shows
an interval around the peak amplitude. Middle panels: Convergence of the phase
hϕ

22 = Arg(h22). The difference between the higher resolution results is rescaled according
to fifth and sixth order convergence for Lean and third and fourth order convergence for
GRChombo. Bottom panels: For reference we plot the amplitude hA

22 and the phase hϕ
22

of the highest resolution waveform on the same time axis. For the two lower resolution
waveforms from each code, we have time-shifted each of them in order to maximize the
overlap (cf. Eq. (4.3.16)) with the highest resolution waveform. ∆t = 0 corresponds to
the maximum in hA

22 for the highest resolution waveform.

late part of the ringdown which is dominated by noise, we obtain a discretization error
of ∆hA

22/h
A
22 ≲ 1 % in the amplitude assuming fourth order convergence for Lean and

second order convergence for GRChombo. Up to the late ringdown where the phase
becomes inaccurate, we estimate the phase error is ∆hϕ

22 ≤ 0.15 assuming sixth order
convergence for Lean and fourth order convergence for GRChombo.
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Fig. 4.3 The relative and absolute difference between the GRChombo and Lean outputs
for the amplitude and phase of h22 respectively from the simulation of configuration
q1-d12. In both cases, the data comes from the simulations with finest grid spacing
∆xlmax = M/128 with Ψ4 extracted at rex = 120M . As for the convergence plots in
Fig. 4.2, the time has been shifted in order to maximize the overlap (cf. Eq. (4.3.16))
between the two waveforms and ∆t = 0 at the peak in hA,Lean

22 .

Following the procedure in Sec. 4.3.1.3, we estimate the error in the phase, due to
finite-radius extraction, is ϵhϕ

22,120M ≲ 0.4, and, in the amplitude is ϵhA
22,120M/h

A
22 ≲ 8 %

(although this steadily decreases towards ≲ 2% near merger) for both codes. Here we
have ignored the early part of the signal where the amplitude is dominated by the “junk”
radiation up to u = 300M .

We next directly compare the results of the two codes by computing the relative
difference in the amplitude hA

22 and the absolute difference in the phase hϕ
22 which is

shown in Fig. 4.3. Again, ignoring the early part of the signal and the late ringdown,
the relative difference in the amplitudes is ≲ 1 %, consistent with the individual error
estimates from the two codes. The discrepancy in phase remains O(10−3) or smaller
throughout the inspiral, merger and early ringdown–well within the error estimates of
each code.

For the first asymmetric BH binary configuration, q2-d10, we proceed in the same way.
We study the convergence in analogy to figure 4.2. Ignoring again the contamination
at early times, we obtain third-order convergence in the amplitude and fifth-order
convergence in the phase for Lean. For GRChombo, we obtain fourth order convergence
in the amplitude and mild overconvergence of about eighth order in the phase6. This

6We assume fourth order convergence for our GRChombo phase error.
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Fig. 4.4 The discrepancy 1 − ρ between the (ℓ,m) = (2, 2) mode of the gravitational
wave signal from the q1-d12 (10 orbits, non-spinning, equal mass) and q2-d10 (6 orbits,
non-spinning, 2 : 1 mass ratio) BH binary configurations simulated with Lean and
GRChombo. For q1-d12, we use the simulation with resolution ∆xlmax = M/128 for
both codes and for q2-d10, we use the simulation with resolution ∆xlmax = M/96 for
both codes. For each configuration, we show the difference computed with the updated
Advanced LIGO sensitivity design curve (aLIGODesign.txt in Ref. [227]) and the zero
detuned, high power noise curve from the Advanced LIGO anticipated sensitivity curves
(ZERO_DET_high_P.txt in Ref. [228]).

leads to uncertainty estimates of ∆hA
22/h

A
22 ≲ 2.5 % in the amplitude and ∆hϕ

22 ≲ 0.25 in
the phase for both codes.

The error due to finite-radius extraction in the amplitudes is ϵhA
22,86.7M/h

A
22 ≲ 10 %

in the early inspiral decreasing down to ≲ 2 % in the late inspiral, and in the phase is
ϵhϕ

22,86.7M ∼ 0.5 for both codes.
In Fig. 4.4, we display as a function of the total mass M the discrepancy 1 − ρ (where

ρ is the overlap given by Eq. (4.3.16)) between the GRChombo and Lean waveforms for
both q1-d12 and q2-d10, with the spectral noise density Sn(f) given by (i) the updated
Advanced LIGO sensitivity design curve (aLIGODesign.txt in Ref. [227]) and (ii) the zero
detuned, high power noise curve from the Advanced LIGO anticipated sensitivity curves
(ZERO_DET_high_P.txt in Ref. [228]). For q1-d12, the figure demonstrates excellent
agreement of the two waveforms for the entire range M = 10 . . . 200M⊙ with a discrepancy
1 − ρ ≈ 0.03 % or less, whereas for q2-d10, the agreement is not quite as strong but
nevertheless demonstrates very good consistency with a discrepancy 1 − ρ ≈ 0.7 % or less.
The larger difference for q2-d10 compared to q1-d12 may be attributed to the slightly
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Fig. 4.5 Convergence plots for the accumulated linear momentum radiated from configu-
ration q1-s09 for GRChombo with finest grid resolutions ∆xlmax = M/64, M/96 and
M/112 (a) and for Lean with finest grid resolutions ∆xlmax = M/80, M/88 and M/96 (b).
This is shown in the form of the BH recoil velocity in the bottom panels. For both codes,
the radiated linear momentum is calculated from the extracted Ψ4 values at rex = 90M ,
and the extrapolated curve corresponds to a Richardson extrapolation assuming fourth
order convergence. In the top panels, we show the difference between the results from
different resolutions with rescalings according to third and fourth order convergence for
Lean and according to fourth and fifth order convergence for GRChombo.

lower resolutions employed for this configuration, especially near the smaller BH. To put
these numbers into context, Lindblom, Owen, and Brown [226] estimate that a mismatch
of 3.5 % would result in a reduction in the GW event detection rate by about 10 %.

Our final BH binary features asymmetry in the form of non-zero spins. This time, we
focus on the BH recoil velocity v calculated from the linear momentum radiated in GWs,
and the analysis is shown in Fig. 4.5. From the plots, we can see that Lean exhibits
convergence between third and fourth order, whilst GRChombo exhibits convergence
between fourth and fifth order. We illustrate our estimate of the total error for each
code in Fig. 4.6. Here, the error bands—around the curve from the highest resolution
simulation in each case—correspond to the difference with the Richardson extrapolated
curve assuming fourth-order convergence plus the estimated error due to finite-radius
extraction (about 1.5 % + 2 % for Lean and 0.5 % + 3 % for GRChombo). This total
error is about 3.5 % for both codes.
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Fig. 4.6 The accumulated radiated linear momentum at the end of the highest resolution
simulations of configuration q1-s09 from each code. The linear momentum is shown in
the form of the BH recoil velocity and the error bands show our estimate of the total
error coming from both discretization and finite-radius effects.

4.4 Comparing tagging criteria using axion stars

In order to demonstrate the application of our techniques to problems with matter fields
and dynamically varying length scales, we consider the evolution of a single axion star—a
compact object composed of a real scalar bosonic field. We analyse the evolution of
a star that is stable on the timescale of the simulation, as well as one in which the
self-interaction is increased in order to trigger gravitational collapse to a BH. As discussed
previously, this simple example tests many of the key requirements in using AMR to
evolve fundamental fields coupled to gravity, in particular, the ability to follow stable
oscillations and to adapt to changing dynamical timescales. Similar considerations apply,
for example, to cosmological spacetimes, cosmic strings and collisions of exotic compact
objects.

We demonstrate the use of two effective tagging criteria; first, tagging by the magnitude
of terms in the Hamiltonian constraint (4.2.5), and second, by the numerical truncation
error between refinement levels (4.2.4).

4.4.1 Methods

4.4.1.1 Setup

We consider the evolution of two different axion star configurations. Axion stars are
quasi-equilibrium configurations of a self-gravitating real scalar field ϕ [229] that is subject
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Table 4.4 GRChombo grid parameters for axion star configurations using different
tagging criteria. There are (lmax + 1) refinement levels and the coarsest level has length
(without symmetries applied) L. The grid spacing on the coarsest level is ∆x0 and the
minimum number of cells in the buffer regions between consecutive refinement level
boundaries is nB. The regrid thresholds for the different tagging criteria are given by τR.
We consider two cases; a stable axion star (fa = 1) and an unstable collapse to a BH
(fa = 0.05), with µ = mac/ℏ = 1 in code units.

fa Tagging lmax µL µ∆x0 nB τR

1.0 Ham 3 512 4 8 0.1
1.0 Ham 3 512 2 16 0.05
1.0 Ham 3 512 1 32 0.025
1.0 Trunc 3 512 4 8 0.0625
1.0 Trunc 3 512 2 16 3.91 x 10−3

1.0 Trunc 3 512 1 32 2.44 x 10−4

0.05 Ham 8 1024 4 8 0.1
0.05 Ham 8 1024 2.67 12 0.067
0.05 Trunc 8 1024 4 8 0.001
0.05 Trunc 8 1024 2.67 12 2.96 x 10−4

to a periodic self-interaction potential V (ϕ). A canonical potential is

V (ϕ) = µ2f 2
a [1 − cos (ϕ/fa)] , (4.4.1)

where this form arises as a result of the spontaneously broken U(1) Peccei-Quinn symmetry
and subsequent “tilting” of the potential due to instanton effects [230, 231]. The decay
constant fa quantifies the symmetry breaking scale and determines the strength of the
scalar field self-interactions (their strength for a given central amplitude is inversely
related to fa) and µ = mac/ℏ is an inverse length scale related to the scalar mass7 ma.
Axion stars on the main stability branch are characterized by their central amplitude ϕ0

or equivalently their ADM mass MADM ∼ µ−1. They have a physical size R (defined as
the radius containing 99 % of the total mass) that is approximately inversely related to
their ADM mass, and thus a useful descriptor is their compactness C = MADM/R. Axion
stars with C ∼ 1/2 are highly relativistic and may form BHs if they collapse or collide.
For ma ∼ 10−14 eV, they are of a mass and size comparable to solar mass BHs, and thus
potentially of astrophysical interest. Further details related to the setup used here can
be found in [232, 140], and a useful general review of axion physics is provided in [233].

7In Planck units one can write µ = ma/M
2
Pl, where MPl is the Planck mass.
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The equation of motion for the scalar field ϕ is given by the Klein-Gordon equation
for a real scalar field minimally coupled to gravity

∇µ∇µϕ− dV

dϕ
= 0 , (4.4.2)

and the system is completed with the Z4 equations (2.1.43a) for the metric components.
To construct localised, quasi-equilibrium oscillatory (axion star) solutions, we solve the
Einstein-Klein-Gordon (EKG) system of equations with a harmonic field ansatz and
appropriate boundary conditions [234, 229].

Unlike the case of complex scalar boson stars, for axion star solutions the metric
components gµν also oscillate in time, with energy being transferred between the matter
and curvature terms in the Hamiltonian constraint [140]. This makes them challenging
targets for dynamical refinement; simple criteria based solely on matter field gradients
will fail to achieve a stable grid structure, as the gradients change over time even in the
quasi-stable case. If the gradients are close in value to a tagging threshold, frequent
regridding will occur, which introduces errors.

The stability of the axion star solution comes from the balance of its tendency to
disperse due to gradient pressure from spatial field derivatives, with the tendency to
collapse due to its energy density and attractive self interactions. The relative strengths
of these effects determines whether the axion star remains stable, disperses through scalar
radiation or collapses to a black hole when perturbed. In particular, if the self-interaction
scale fa is too low, this can cause the axion star to collapse to a BH [235]. In the last
case, a key AMR challenge is determining tagging criteria that progressively track the
axion star collapse without triggering too frequent regridding from the more rapid field
oscillations.

We consider two cases, both with central amplitude ϕ0 = 0.020 and µMADM = 0.4131:

(i) An axion star with weak self-interactions (fa = 1)8, where the scalar field and
metric oscillate over time in a localized configuration that is stable over time periods
much longer than that of the simulation. We would ideally like the refinement to
remain constant, despite the oscillations of the fields.

(ii) An unstable configuration where we increase the attractive self interaction by reduc-
ing the self interaction scale to fa = 0.05, such that the axion star is destabilized

8The decay constant fa is dimensionless in geometric units as used here; to obtain its value in Planck
units one simply multiplies by the Planck mass MPl.
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and undergoes collapse to a BH. We need the mesh refinement to follow this process
sufficiently rapidly, but without excessive regridding.

To evolve this system in GRChombo, the EKG equation (4.4.2) is decomposed into
two first order equations in the 3+1 formulation,

∂tϕ = βi∂iϕ+ αΠ, (4.4.3)

∂tΠ = βi∂iΠ + αγij(∂i∂jϕ+ ∂iϕ∂jα) + α

(
KΠ − γijΓk

ij∂kϕ− dV

dϕ

)
, (4.4.4)

and added to the CCZ4 evolution scheme (2.3.30). The initial data are set up as in
the previous study [235] using the numerically obtained oscillaton profile for an m2ϕ2

potential [229, 234, 236]. We choose the initial hypersurface such that ϕ = 0 and hence
V (ϕ) = 0 everywhere. The Hamiltonian constraint is thereby satisfied for both the
V = m2ϕ2 and the axion potential (4.4.1) cases. Furthermore, if we impose the extrinsic
curvature Kij = 0, the momentum constraint is trivially satisfied and all the dynamical
information is encoded in the kinetic term of the field Π. The system is evolved in
the moving puncture gauge using the default 1+log parameters (2.3.40) for the lapse
evolution equation (2.3.39) with the exception of a1 = 0; and b1 = 0, b2 = 3/4 and η = µ

for the shift evolution (2.3.41).

4.4.1.2 Tagging criteria

We demonstrate the suitability of two different tagging methods for tracking the axion
star evolution in both the stable and unstable cases. In the case of collapse to a BH, for
both tagging methods, the threshold τR must be chosen such that the apparent horizon
is covered entirely by the finest refinement level, as discussed in Sec. 4.2.2. In our case,
we choose a maximum refinement level lmax = 8, which covers up to µr ≥ 0.5 > µMADM.

The first tagging criterion we consider is based on physical quantities in the simulation,
as outlined in Sec. 4.2.5. We choose the absolute sum of the terms in the Hamiltonian
constraint Habs (4.2.5), setting the criterion

C(i) ≡ Habs (4.4.5)

in the tagging indicator function (3.1.5).
We also show the efficacy of truncation error tagging, outlined in Sec. 4.2.4. We

choose the variables f as defined in Eq. (4.2.3) to be χ,K, ϕ and π, as these capture
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the information in the Hamiltonian constraint H. We use the tagging criterion (4.2.4),
explicitly

C(i) =
√

(τl,χ(i))2 + (τl,K(i))2 + (τl,ϕ(i))2 + (τl,π(i))2 , (4.4.6)

where τl,f (i) is defined by Eq. (4.2.3) and we have set the normalizing factor Lf = 1 for
all f .

4.4.1.3 Diagnostics and convergence testing

We perform convergence tests using several key physical quantities from the evolution.
The first quantity is the L2 norm of the Hamiltonian constraint violations (2.1.36) ||H||2
over a coordinate volume V

||H||2 =
√∫

V
d3xH2 . (4.4.7)

For the case of a stable axion star, in order to exclude the constraint violation at the
outer boundaries, we choose V to be the volume enclosed by a sphere of fixed coordinate
radius rout, Brout , with a centre that coincides with that of the star:

V = Brout . (4.4.8)

In the case of an unstable axion star that collapses to a BH, we furthermore excise the
volume enclosed by a smaller sphere of fixed coordinate radius rin < rout with the same
centre in order to exclude the constraint violations near the puncture that arises after
the collapse. The radius rin is chosen such that the sphere will lie within the apparent
horizon once it is formed. This means that

V = Brout \Brin . (4.4.9)

For the stable axion star, we also test convergence using the total mass of the matter
content Mmat within the same volume

Mmat = −
∫

V
d3x

√
γ T 0

0 =
∫

V
d3x

√
γ
(
αρ− βkj

k
)
, (4.4.10)

where ρ and ji are defined by Eqs. (2.1.32) and (2.1.33), γ = det (γij) and α and βi are
the lapse and shift as defined by Eqs. (2.1.4) and (2.1.9). Further details can be found in
Ref. [140].
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4.4.2 Results

We have performed simulations of axion stars at different resolutions for each configuration
in Table 4.4. We evolve with GRChombo and investigate two different tagging criteria:
refinement using (i) the Hamiltonian constraint Habs (4.4.5) and (ii) the truncation error
of the variables χ, K, ϕ and π as defined by (4.4.6).

As outlined in Sec. 4.2.5, for the stable axion star configuration (fa = 1.0), we expect
Hamiltonian constraint tagging to generate stable refinement levels. We set τR such that
we obtain an appropriate initial grid structure, which we choose to have a maximum
refinement level lmax = 3 with refinement concentrated on the axion star.

The middle panel of Fig. 4.7 shows Mmat for the finest grid configuration for a stable
axion star in table 4.4, where Mmat is calculated as defined in Eq. (4.4.10) for a coordinate
sphere with radius µrout = 25. We observe some initial gauge evolution of Mmat due
to the transition from the initial polar-areal gauge to puncture gauge, with subsequent
regular oscillations over time, which are physical. Given that Mmat includes only matter
contributions and the ADM mass of an axion star is approximately constant (i.e. the
total flux out of the outer spherical surface is zero), these oscillations indicate the transfer
of energy between curvature and matter terms as discussed in Sec. 4.4.1.1.

The upper panel of Fig. 4.7 shows the difference in mass ∆Mmat for the simulations
in table 4.4. This demonstrates convergence between third and fourth order in Mmat

at late times, but second order near the beginning of the simulation. This agrees with
expectations; the initial data used is accurate to second order, and this error dominates
at early times, with the fourth order convergence related to the evolution scheme only
being recovered at later times. Some error is also introduced by the interpolation of the
initial conditions onto the grid, which is first order (but with a high spatial resolution
in the numerical solution so this is subdominant). By comparing the highest resolution
simulation with a Richardson extrapolation, we obtain a discretization error estimate of
∆Mmat/Mmat ≲ 4 × 10−5 at late times (using third order extrapolation).

The lower panel of Fig. 4.7 shows the L2 norm of the Hamiltonian constraint violations
||H||2 for the same simulations. Again, we measure between third and fourth order
convergence at late times, and between first and second order initially. We obtain an
error measure at late times of

√
MADM ∆||H||2/16π ≲ 8×10−8, where we have normalized

with the ADM mass to create a dimensionless measure of the spurious energy density.
We perform the same analysis of Mmat and ||H||2 for the stable axion star using

truncation error tagging with the parameters in table Table 4.4. We obtain a very similar
grid structure and evolution behaviour to Hamiltonian tagging, with the same convergence
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Fig. 4.7 Convergence plots for the stable axion star configuration (fa = 1.0) with
Hamiltonian constraint tagging (4.4.5) and grid configurations given in table 4.4. The
top panel shows the difference in the calculated matter mass Mmat (4.4.10) within a
sphere of radius µrout = 25 between the resolutions with rescalings according to second,
third and fourth order convergence. For reference, in the middle panel, we show Mmat
for the highest resolution simulation (with µ∆x0 = 1). In the bottom panel, we plot
the L2 norm of the Hamiltonian constraint ||H||2 (4.4.7) for the two lower resolution
simulations (µ∆x0 = 4, 2) in addition to rescalings according to second, third and fourth
order convergence. We omit the corresponding plots for the simulations with truncation
error tagging (4.4.6) as they are qualitatively very similar.

and error estimates, demonstrating that both methods can achieve equivalent, accurate
results.

For the unstable axion star configuration (fa = 0.05), we perform convergence testing
on ||H||2 within the spatial volume with 0.5 < µr < 25, excising the region µr < 0.5
where a BH is formed. We use the parameters given in Table 4.4. We do not perform
a convergence test of Mmat, as the quantity oscillates with a high frequency about a
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Fig. 4.8 Convergence plots of the L2 norm of the Hamiltonian constraint (4.4.7) contained
between spheres of radius µrin = 0.5 and µrout = 25 for the unstable axion star config-
uration (fa = 0.05) with both Hamiltonian constraint tagging (4.4.5) (top panel) and
truncation error tagging (4.4.6) (bottom panel). The grid configurations are provided in
Table 4.4 and we additionally plot rescalings according to second, third and fourth order
convergence.

mean value that rapidly decreases to zero around the collapse, making such an analysis
impractical.

The top panel of Fig. 4.8 shows the convergence analysis of ||H||2 with Hamiltonian
constraint tagging. We observe approximately third order convergence prior to collapse to
a BH, then approximately fourth order convergence at late time. We obtain a maximum
error measure on the finer grid of

√
MADM∆||H||2/16π ≲ 0.021, with this value occurring

approximately at the collapse.
For the same configuration with truncation error tagging in the lower panel of Fig. 4.8,

we obtain similar convergence prior to the collapse with a maximum error measure√
MADM∆||H||2/16π ≲ 0.015. The convergence after the collapse is lower: between first

and third order. In general, we see that the rapid regridding that occurs during a collapse
(often triggered at different times at the different resolutions) introduces errors which
can reduce the convergence order. This illustrates one of the main challenges of AMR,
which is to obtain good convergence in highly dynamical regimes.
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4.5 Conclusion

In this chapter, we have presented a detailed discussion of the use of fully adaptive mesh
refinement (AMR) in numerical relativity simulations with the GRChombo code. To
avoid confusion, we first summarize how the term “fully adaptive” is meant to distinguish
AMR from the common (and often highly successful) box-in-a-box approach. This
distinction consists in two main features. First, we use the term AMR in the sense that
it allows for refined regions of essentially arbitrary shape. Second, it identifies regions
for refinement based on a point-by-point interpretation of one or more user-specifiable
functions of grid variables. Of course, a region of arbitrary shape will inevitably be
approximated by a large number of boxes on Cartesian grids; the distinction from a
box-in-a-box approach therefore consists in the large number of boxes used in AMR.
Likewise, every box-in-a-box approach will ultimately base its dynamic regridding on
some function of the evolved grid variables, as the apparent horizon. The key feature of
AMR is the pointwise evaluation of grid variables or their derived quantities.

The advantages of AMR based simulations over the simpler box-in-a-box structure
evidently arise from its capability to flexibly adapt to essentially any changes in the shape
or structure of the physical system under consideration. These advantages, however,
do not come without new challenges; the identification of these challenges and the
development of tools to overcome them are the main result of this chapter.

The first and most elementary result of our study is the (hardly surprising) observation
that there exist no “one size fits all” criterion for refinement that automatically handles all
possible physical systems. Many of the challenges, however, can be effectively addressed
with a combination of a small number of criteria for tagging and refining regions of the
domain. We summarize these challenges and techniques as follows.

(i) With AMR, it is more difficult to test for (and obtain) convergence, because of the
loss of direct control over the resolution in a given region of spacetime. While the
refinement in AMR is every bit as deterministic as it is in a box-in-a-box approach,
the complexity of the underlying algorithm makes it practically impossible for
a user to predict when, if and where refinement will take place. Consider for
example the convergence analysis of a simulation using the truncation-error based
tagging criterion of (4.2.3); in some regions of the spacetime a low resolution run
may encounter a sufficiently large truncation error to trigger refinement whereas
a higher-resolution run will not. To counteract this effect, one may adjust the
tagging threshold in anticipation of the reduction in the truncation error, but some
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experimentation is often necessary because different ingredients of the code have
different orders of accuracy. Additionally, one may enforce refinement using a priori
knowledge, as for example, through enforced tagging around the spheres of wave
extraction. An alternative approach would be to record the grid structure over
time for one simulation (e.g. the lowest resolution run) and then “replay” this grid
structure (or as close as possible to it) for simulations at different resolutions as is
done for the Had code [237].

(ii) A further challenge arises from the use of too many refinement regions/boundaries
over a small volume in spacetime. The interpolation at refinement boundaries
is prone to generating small levels of high-frequency numerical noise that may
bounce off neighbouring boundaries if these are too close in space (or time). An
effective way to handle this problem is the use of buffer zones in space and to avoid
unnecessarily frequent regridding.

(iii) In the case of BH simulations, we often observe a degradation of numerical accuracy
when refinement levels cross or even exist close to the apparent horizon. This
typically manifests itself as an unphysical drift in the horizon area and, in the case
of binaries, a loss of phase accuracy and/or a drift in the BH trajectory. These
problems can be cured by enforced tagging of all grid points inside the apparent
horizon. In practice, we add an additional buffer zone to ensure all refinement
boundaries are sufficiently far away from the apparent horizon(s).

(iv) The Berger-Rigoutsos algorithm detailed in Sec. 3.1.4 does not treat the x, y
and z direction on exactly equal footing; the partitioning algorithm (cf. Fig. 3.3)
inevitably handles the coordinate directions in a specific order. This can lead to
asymmetries in the refined grids even when the underlying spacetime region is
symmetric. In some simulations of BHs, we noticed this to cause a loss in accuracy.
A simple way to overcome this problem is to enforce a boxlike structure around
BHs.

(v) A single tagging variable (or one of its spatial derivatives) may not always be
suitable to achieve appropriate refinement throughout the course of an entire
simulation; for example, this may be due to gauge dependence or dramatic changes
in the dynamics of the physical evolution. GRChombo allows for tagging regions
based on arbitrary functions of multiple variables and their derivatives to overcome
problems of this kind.
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In order to avoid the difficulties listed here, we often combine two or more tagging criteria.
The efficacy of this approach is demonstrated in Secs. 4.3 and 4.4 where we present
in detail AMR simulations of inspiralling BH binaries and stable as well as collapsing
oscillatons. By comparing the BH simulations with those from the box-in-a-box based
Lean code, we demonstrate that with an appropriate choice of tagging criteria, AMR
simulations reach the same accuracy and convergence as state-of-the-art BH binary
codes using Cartesian grids. While AMR does not directly bestow major benefits on the
modelling of vacuum BH binaries, it offers greater flexibility in generalizing these to BH
spacetimes with scalar or vector fields, other forms of matter, or BHs of nearly fractal
shape that can form in higher-dimensional collisions [179]. The simulations of rapidly
oscillating or gravitationally collapsing scalar fields demonstrate GRChombo’s capacity
to evolve highly compact and dynamic matter configurations of this type.

Finally, we note the potential of AMR for hydrodynamic simulations. However,
high-resolution shock capturing methods present qualitatively new challenges for AMR,
and we leave the investigation of this topic for future work.
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Fig. 4.9 Plots illustrating the dependence of the value of the conformal factor χ on the
apparent horizon surface H in the moving puncture gauge (2.3.39, 2.3.41) for different
values of the dimensionless spin j. For all plots, we use the quasi-isotropic Kerr initial
data [238] and the default values of the lapse parameters (2.3.40) along with the shift
parameters b1 = 0, b2 = 3/4 and Mη = 1. Although we would expect the plots to vary
for different gauge parameters (in particular, as η is varied), these plots provide a rough
rule-of-thumb. The left panel shows the mean value of χ as a function of time with the
error bands around each curve corresponding to the maximum and minimum on H. The
right panel shows the mean value of χ over the interval t/M ∈ [40, 100] for each j with
the error bars corresponding to the minimum and maximum values of χ over the same
interval. Furthermore, we show a fit of the mean value of χ against j which takes the
form ⟨χ⟩|H ≃ 0.2666

√
1 − j2.

Appendix 4.A Approximate horizon locations as a
tagging criteria

As noted in Sec. 4.2, the use of the horizon location can be an essential part of an adaptive
mesh scheme for refinement. In particular, one does not usually want to put additional
refinement within a horizon (where effects are unobservable anyway), and should take
care to avoid grid boundaries overlapping the horizon, since this can lead to instabilities
that strongly affect the physical results. Whilst using an apparent horizon finder for this
is a possibility, often a more “quick and dirty” scheme using contours of the conformal
factor can be just as effective, and significantly easier to implement. Whilst in principle
there is a dependence on simulation and gauge parameters (in particular η [103]), in
general the approximate values are quite robust.
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The key dependence is on the [dimensionless] spin of the black hole j, as illustrated
in Fig. 4.9, with a good fit obtained from the relation

⟨χ⟩|H = 0.2666
√

1 − j2. (4.A.1)

One key advantage is that one does not need to know a priori the mass of the BH
spacetime which forms, and it can be seen that simply using the j = 0 values will give a
conservative coverage of the horizon. These types of criteria were used extensively in the
higher dimensional black ring spacetimes studies in Refs. [179, 180, 181, 182] and for the
investigation into gravitational collapse in a modified gravity theory in Ref. [178].





Chapter 5

Gravitational recoil from eccentric
binary black-hole mergers

The radiation of linear momentum imparts a recoil (or “kick”) to the centre of mass of
a merging black-hole binary system. In this chapter we present an investigation of the
impact of nonzero eccentricity on the kick magnitude and gravitational-wave emission of
nonspinning, unequal-mass black hole binaries. This work also demonstrates application
of the methods discussed in Chapter 4.

This chapter is based on the coauthored publication Ref. [2] in collaboration with
U. Sperhake, E. Berti and R. Croft. I performed the vast majority of the GRChombo
simulations presented in this chapter as well as their analysis. I also implemented the
calculation of the radiated momentum from the sums of overlaps of multipolar amplitude
for all simulations.

5.1 Introduction

Gravitational waves (GWs) carry energy, angular momentum and linear momentum
away from the source with potentially observable consequences. The radiated energy
corresponds to an often enormous mass deficit in the source; for example the first ever
detected black-hole (BH) binary merger, GW150914 [28], radiated ∆M ≈ 3M⊙, or
about 4.6 % of the total mass of the source. A tiny fraction of this energy is deposited
into GW interferometers, thus enabling us to detect and characterise the signal [19].
The angular momentum radiated in GWs reduces the rotation rate of possible merger
remnants and—at least in four spacetime dimensions—plays a critical role in avoiding
the formation of naked singularities in the form of BHs spinning above the Kerr limit;
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see e.g. Refs. [239, 240]. Therefore, GW emission is a necessary ingredient of the theory
of general relativity, in the sense that it avoids the formation of spacetime singularities
and preserves its predictive power.

In this chapter, we focus on the radiated linear momentum, which imparts a recoil
(commonly referred to as a kick) on the centre of mass of the emitting system [241, 242,
243].

Whereas GWs inevitably carry energy and angular momentum—provided their sources
do—the radiation of linear momentum requires some degree of asymmetry, as realised
in nonspherical supernova explosions or unequal-mass ratios and/or spin misalignments
in binary BH mergers. The inspiral of two equal-mass, nonspinning BHs, for example,
radiates energy and angular momentum, whereas the emitted linear momentum is zero
by symmetry. By turning these considerations around, we may also regard the study
of recoiling GW emitters as a guided search for characteristic (in some loose sense
“asymmetric”) features in their orbital dynamics which, in turn, might help us to better
understand astrophysical sources through GW observations. A recoiling postmerger BH,
for example, can induce a blue (or red) shift in parts of its GW signal that may be
exploited in future GW observations to directly measure BH kicks [244, 245, 246], and the
effect of kicks should be taken into account in future ringdown tests of general relativity
with third-generation GW detectors to avoid systematic biases [247]. The asymmetric
emission of GWs is not the only mechanism that can contribute to recoils; if there is an
accretion disk or some other astrophysical background, this can also impart a kick on
the remnant BH that can be O(100) km/s [248].

For binary BH mergers, early estimates of the recoil speeds of the remnant BH
relied on a variety of approximations, including post-Newtonian (PN) theory [249, 250],
BH perturbation theory [251], the effective-one-body formalism [252], the close-limit
approximation [253, 254], and combinations thereof [255]. Not long afterwards, during
the numerical relativity (NR) gold rush, several groups obtained more accurate results
for the kick velocity from the merger of nonspinning BHs along quasicircular orbits [256,
257, 160]. These calculations were followed by the discovery that the merger of spinning
BHs can lead to kick velocities of ∼ 3000 km/s when the spins lie in the orbital plane
and point in opposite directions (“superkick” configurations [218, 219, 220]), and to even
larger kicks of order ∼ 5000 km/s when the spins are partially aligned with the orbital
angular momentum (“hang-up kick” configurations [258]). The probability of such large
recoils occurring in nature depends therefore on spin alignment, and this has been studied
by several authors (see, e.g., Refs. [259, 260, 261, 262, 263, 262]).
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The possible occurrence of superkicks has important consequences for astrophysical
BHs and their environments [264, 265, 266, 267]. It is pertinent to compare the recoil
velocities obtained from NR simulations with the escape velocities of various astrophys-
ical environments [268]. For example, stellar-mass BH binaries are believed to form
dynamically in globular clusters [269]. In this case the escape velocities are generally
O(10) km/s, smaller than the O(100) km/s kicks predicted for quasicircular, nonspinning
binaries [257]. Then relativistic recoils can affect the proportion of BH merger remnants
that are retained by globular clusters even if the BHs are nonspinning [270]. At the
other end of the scale, the recoil velocities of supermassive BHs can be used to constrain
theories of their growth at the centre of dark matter halos [271]. Kicked remnants in the
accretion disk of an active galactic nucleus may also lead to detectable electromagnetic
counterparts for stellar-origin BH mergers [272, 273].

As mentioned above, a net gravitational recoil requires some asymmetry in the system,
so that the GW emission is anisotropic. A natural way to accentuate the asymmetry
is through the addition of orbital eccentricity. Early calculations in the close-limit
approximation [254] predicted a kick proportional to 1 + e for small eccentricities, e ≲ 0.1.
More recently, numerical relativity calculations led to the conclusion that eccentricity
can lead to an approximate 25% increase in recoil velocities for superkick configurations
with moderate eccentricities [217].

The main goal of this study is to investigate the impact of nonzero eccentricity on the
kick magnitude and the corresponding GW emission of nonspinning, unequal-mass BH
binaries. As we shall see, the eccentricity has a subtle but significant effect on the kick
magnitude, which manifests itself in corresponding patterns in the GW signal, especially
in subdominant multipoles.

For isolated binary systems with large initial separations, the emission of GWs acts
to circularise the orbit by the time the signal enters the frequency band of ground-based
detectors. However, viable dynamical formation channels of stellar-origin BH binaries
could result in a non-negligible population of merging BHs that still retain moderate
eccentricities at frequencies relevant for ground-based GW detection (see, for example,
Refs. [274, 275, 276, 277, 278, 279]). Furthermore, the presence of astrophysical media
such as accretion disks may increase the eccentricity during the inspiral [280]. Most of
the events observed by the LIGO/Virgo Collaboration show no evidence of significant
eccentricities [281] but the extraordinary GW190521 event [282] is potentially consistent
with an eccentricity as high as e ≈ 0.7 [283, 284].
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Orbital eccentricity is expected to be a distinguishing feature of stellar-origin BH
binaries that form dynamically, but a nonzero eccentricity is more likely at the low
frequencies accessible by LISA, where gravitational radiation reaction has less time to
circularise the binary [285, 286, 287]. If confirmed, a nonzero eccentricity would hint at a
possible dynamical origin for this event [283].

Eccentricity is expected to play an even more prominent role for massive BH binaries:
the dynamics of these binaries in stellar and gaseous environments is expected to lead to
distinct (but generically nonzero) orbital eccentricities by the time the binaries enter the
LISA sensitivity window (see Ref. [288] and references therein). Even larger eccentricities
are possible if BH binary coalescence occurs through the interaction with a third BH [289].

Our work is an exploration of the effect of large eccentricities near merger, and it
differs in several ways from the catalogue of eccentric, unequal-mass simulations presented
in Ref. [290]. While their study considered a larger range of mass ratios (in our notation,
1/10 ≤ q ≤ 1), they carried out fewer simulations for each value of q. The binaries in their
simulations have initial eccentricities smaller than e0 = 0.18 15 cycles before merger, and
since they start at larger orbital separations, their eccentricity will have further decreased
by the time of merger. As we will see below, the larger initial eccentricities in our
simulations allow us to highlight interesting periodicities in the emission of gravitational
radiation and the behaviour of the recoil velocity.

The remainder of this chapter is organised as follows. In Sec. 5.2 we discuss our
two numerical codes (GRChombo and Lean), the computational framework, and the
catalogue of simulations we produced for this study. In Sec. 5.3 we present the main
results of our simulations. In Sec. 5.4 we summarise these results and point out possible
directions for future work. In Appendix 5.A we detail our tests for numerical accuracy
and verify that our two codes give comparable results. Finally, in Appendix 5.B we
discuss the tagging criterion used in GRChombo. Throughout this chapter we use
geometrical units (G = c = 1).

5.2 Computational framework and set of simulations

5.2.1 Numerical methods

The simulations reported in this work have been performed with the GRChombo (see
Chapter 3) and Lean [161] codes. We estimate the error budget of our simulations
from both codes to be up to 3.5 %. Details of our convergence analyses are provided in
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Appendix 5.A. Though different codes were used for each sequence of configurations, we
undertook comparison tests in order to ensure consistent results, and these can also be
found in Appendix 5.A.

5.2.1.1 GRChombo setup

For all GRChombo simulations we use sixth-order spatial stencils in order to improve
phase accuracy (see Fig. 3.2). We evolve using the CCZ4 formulation (see Sec. 2.3.3) and
the moving-puncture gauge (see Sec. 2.3.4) with the replacement κ1 → κ1/α (2.3.33), in
order to stably evolve BHs and maintain spatial covariance. After this replacement, we
use the constraint damping parameters κ1 = 0.1, κ2 = 0 and κ3 = 1 in all simulations.
The regridding is controlled by the tagging of cells for refinement in the Berger-Rigoutsos
algorithm (see Sec. 3.1.4), with cells being tagged if the tagging criterion C exceeds
a specified threshold value τR. Details of the tagging criterion used in this work are
provided in Appendix 5.B. We take a CFL factor of 1/4 in all simulations. Due to the
inherent symmetry of the configurations considered, we employ bitant symmetry in order
to reduce the computational expense.

5.2.1.2 Lean setup

The Lean code [161] is based on the Cactus computational toolkit [157] and uses the
method of lines with fourth-order Runge-Kutta time stepping and sixth-order spatial
stencils for improved phase accuracy [129]. The Einstein equations are implemented in
the form of the BSSNOK formulation (see Sec. 2.3.2) with the moving-puncture gauge
(see Sec. 2.3.4). The Carpet driver [136] provides AMR using the technique of “moving
boxes.” We use bitant symmetry to exploit the symmetry of the simulations and reduce
computational expense. The computational domain comprises a hierarchy of lmax + 1
refinement levels labelled from l = 0, . . . lF , . . . , lmax, each with grid spacing hl = h0/2l.
Before applying the symmetry, for l ≤ lF each level consists of a single fixed cubic
grid of half-length1 Rl = R0/2l, and for lF < l ≤ lmax, each level consists of two cubic
components of half-length Rl = 2lmax−lRlmax centred around each BH. We adopt this
notation for consistency with that used to describe GRChombo. This translates into
the more conventional Lean grid setup notation (cf. Ref. [161]) as

{
(R0, . . . , 2−lFR0) × (2lmax−lF −1Rlmax , . . . , Rlmax), hlmax

}
. (5.2.1)

1In one departure from this rule, we enhance R2 by a factor of 4/3 for the simulations of sequence
lq1:2 of Table 5.1.
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A CFL factor of 1/2 is used in all simulations, and apparent horizons are computed with
AHFinderDirect [221, 222].

5.2.1.3 Initial data

For both codes, we use puncture data of Bowen-York type (see Sec. 2.2.3) provided by
the spectral solver of Ref. [119] in the form of the Cactus thorn TwoPunctures for
Lean, and a standalone version integrated into GRChombo (see Sec. 3.2.3). In the
latter case, we take advantage of the improvements made in Ref. [291] to use spectral
interpolation.

5.2.2 Black-hole binary configurations

We follow the construction of sequences of BH binary configurations and the notation
of Ref. [292]. In particular, we denote by M1 and M2 the initial BH masses. Without
loss of generality, since we are only considering unequal masses (M1 ̸= M2), we take
M2 > M1 and denote their sum by M = M1 +M2. The reduced mass is µ = M1M2/M

and to quantify the mass ratio, we use either

q = M1

M2
(5.2.2)

or the symmetric mass ratio η = µ/M . Finally, the total Arnowitt-Deser-Misner (ADM)
mass is denoted by MADM (see Appendix A).

In order to construct a sequence for a fixed mass ratio, we first determine an initial
quasicircular configuration. We specify the initial coordinate separation D/M along
the x axis, and the scale in the codes is fixed by choosing M1 = 0.5. Next, Eq. (65) in
Ref. [103] is used to calculate the initial tangential momentum of each BH, p = (0,±p, 0)
(as shown in Fig. 5.1). We use a Newton-Raphson method to iteratively solve for the
Bowen-York bare mass parameters that give the desired BH masses. The binding energy
of this quasicircular configuration is then computed using

Eb = MADM −M. (5.2.3)

The rest of the sequence with increasing orbital eccentricity is constructed by fixing
the binding energy and gradually reducing the initial linear momentum parameter p.
We decide to reduce the linear momentum rather than, for example, alter its direction,
so that the x axis is fixed as the initial apoapsis for all configurations. For a given
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Fig. 5.1 Schematic diagram of the initial BH binary setup for an arbitrary configuration
in one of the sequences.

configuration with fixed p, we iteratively solve for the separation D and bare masses
that give the required binding energy and BH masses. The choice to keep the binding
energy constant as the momentum parameter (and thus the initial kinetic energy) is
reduced means that the initial separation increases along the sequence. This ensures an
inspiral phase of comparable duration as the eccentricity increases. The initial orbital
angular momentum of the system is given by L = Dp (2.2.27). Even though D increases
as p decreases, the initial angular momentum of the system monotonically decreases as p
decreases for all but the least one or two eccentric configurations in a sequence.

We have parametrised the configurations within a sequence by their initial tangential
momentum p, but we would like to measure the eccentricity of these configurations.
Unfortunately, there is no gauge-invariant measure of eccentricity [293] and the ambiguity
in any definition is particularly pronounced in the late stages of inspiral from which
our simulations start. Following Ref. [292], we use the formalism in Ref. [294] to obtain
a PN estimate for the eccentricity. Note that this formalism has three eccentricity
parameters—et, er and eϕ—and employs two different types of coordinates: ADM-like
and harmonic. The choice of which parameter and coordinate type to use is somewhat
arbitrary. We mostly focus on the eccentricity parameter et in harmonic coordinates2 as
in Ref. [217]. This estimate should be taken with a pinch of salt due to the relatively
small initial binary separations D in our simulations. Furthermore, et has an infinite
gradient as a function of the initial orbital angular momentum in the quasicircular limit
(see Fig. 1 in Ref. [292]), such that values of et ≲ 0.1 are difficult to realise in practice,

2The ADM-like estimate of Ref. [294] differs by only a few percent for et ≲ 0.8, and would not
significantly alter our results.
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Table 5.1 Sequences of binary BH configurations studied in this chapter with their mass
ratio, binding energy Eb/M , and the GW extraction radius rex. For reference, we also
list for each sequence the kick velocities vc in the quasicircular limit. These values agree,
within the numerical uncertainties, with the results of Ref. [257].

Sequence Code q Eb/M rex/M vc (km/s)
sq2:3 GRChombo 2/3 −0.0113386 88 102
sq1:2 Lean 1/2 −0.0106964 80 149
lq1:2 Lean 1/2 −0.0090858 80 150
sq1:3 GRChombo 1/3 −0.0093684 65 178

unless the BHs start from large initial distance. In the head-on limit et diverges, and a
Keplerian/Newtonian interpretation ceases to be valid. Despite these shortcomings, this
estimate provides us with a helpful approximation of the eccentricity and a criterion to
quantify deviations away from quasicircularity.

The sequences considered in this work are given in Table 5.1. Note that there are
two sequences corresponding to the mass ratio q = 1/2. The sequence lq1:2 has a
longer inspiral phase compared to the other sequences. For the nearly quasicircular
configurations, the binary completes about six orbits before merger in the lq1:2 sequence,
and about three orbits in all other sequences. The longer sequence of simulations was
conducted in order to identify any possible artefacts in the shorter sequences due to
the exclusion of the earlier inspiral phase. In addition to the labelling of sequences in
Table 5.1, we refer to individual simulations within a sequence by appending “-p” to
the sequence label followed by a four digit integer which is given by 103p/M truncated
appropriately; for example, sq1:2-p0100 denotes the simulation in sequence sq1:2 with
initial tangential momentum p = 0.1M .

5.2.3 Diagnostics

For all simulations, we have extracted values of the Weyl scalar Ψ4 on spheres of finite
coordinate radius given in Table 5.1 for each sequence. We also computed the dominant
terms in the multipolar decomposition (2.4.70).

Our main diagnostics are the energy, linear momentum and angular momentum
radiated in GWs, which are computed directly using standard methods (see Secs. 2.4.7
and 3.3.1).

Additionally, we compute the radiated linear momentum from the multipolar ampli-
tudes ψℓ,m in Eq. (2.4.70) using the formulae of Ref. [97]. From the symmetry of our
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configurations, the z component vanishes identically: P rad
z = 0. For the components in

the orbital plane, we write P rad
+ = P rad

x + iP rad
y . Then,

P rad
+ (t) =

∞∑
ℓ̃=2

ℓ̃∑
m̃=−ℓ̃

P ℓ̃,m̃
+ , (5.2.4)

where

P ℓ̃,m̃
+ (t) = lim

r→∞

r2

8π

∫ t

t0
dt′
{(∫ t′

−∞
dt′′ ψℓ̃,m̃

) (∫ t′

−∞

[
aℓ̃,m̃ψ̄ℓ̃,m̃+1 + bℓ̃,−m̃ψ̄ℓ̃−1,m̃+1

−bℓ̃+1,m̃+1ψ̄ℓ̃+1,m̃+1

]
dt′′

)}
, (5.2.5)

and the coefficients aℓ,m and bℓ,m are given by

aℓ,m =

√
(ℓ−m) (ℓ+m+ 1)

ℓ (ℓ+ 1) , (5.2.6a)

bℓ,m = 1
2ℓ

√√√√(ℓ− 2) (ℓ+ 2) (ℓ+m) (ℓ+m− 1)
(2ℓ− 1) (ℓ+ 1) . (5.2.6b)

We will find it helpful to define the partial sums,

P ℓ̃
+ =

ℓ̃∑
m̃=−ℓ̃

P ℓ̃,m̃
+ , (5.2.7a)

P≤ℓ̃
+ =

ℓ̃∑
ℓ̃′=2

P ℓ̃′

+ . (5.2.7b)

In practice, we do not evaluate the limit in Eqs. (2.4.79), (2.4.80), (2.4.82) and (5.2.5),
but rather just evaluate them at the finite extraction radius r = rex, as given in Table 5.1.
A discussion of the error this introduces is given in Appendix 5.B.

In order to exclude the spurious radiation inherent in Bowen-York initial data, we
start the integration in Eqs. (2.4.79), (2.4.80), (2.4.82), and (5.2.5) at t0 = 50M + rex.
The recoil velocity is computed from the radiated momentum according to

v = −Prad

Mfin
, (5.2.8)
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where Mfin is the mass of the BH merger remnant. The quantity Mfin can be computed
using energy balance:

Mfin = MADM − Ẽrad , (5.2.9)

where Ẽrad denotes the radiated energy including the spurious radiation. We similarly
compute the spin of the final BH χfin (which, by symmetry, must be in the z direction)
using the radiated angular momentum:

χfin = L− J rad
z

M2
fin

, (5.2.10)

where the initial angular momentum is L = pD. For Lean simulations, we have compared
Mfin and χfin with the corresponding values derived from the apparent horizon properties,
and find agreement to within ≤ 0.1 %.

5.3 Results

Using the framework summarised in the previous section, we have simulated four sequences
of nonspinning BH binaries, characterised by their mass ratio (5.2.2) and binding energy
(5.2.3). The parameters of these sequences are listed in Table 5.1. We have selected our
mass ratios such that they cover the regime of maximum recoil, realised for η = 0.195
or q = 1/2.77 (cf. Fig. 5.3). Recall that sequences sq2:3, sq1:2 and sq1:3 complete
about three orbits and sequence lq1:2 completes about six orbits, respectively, in the
quasicircular limit.

Our main results are displayed in Fig. 5.2, where we plot for all sequences the
total recoil speed vtot, various truncations of the multipolar contributions to the total
recoil according to Eqs. (5.2.4)–(5.2.7b), the total radiated GW energy Erad and the
dimensionless spin χfin of the BH resulting from the merger.

Let us first focus on the total recoil vtot, displayed in each of the figure’s top panels
as the blue solid line. For each mass ratio, the global maximum of the kick velocity
is realised for moderate eccentricities et ≈ 0.5. We also illustrate this kick variation
in Fig. 5.3, where the solid blue curve shows the quasicircular kick as a function of
the symmetric mass ratio η according to Fit 3 in Table V of Ref. [295]. The velocity
ranges obtained for our eccentric binaries are overlaid as the vertical bars for each of
our sequences. The bar for each constant-η sequence is obtained by starting at the
quasicircular limit on the right of each panel in Fig. 5.2 and identifying the minimum
and maximum of v(p), excluding the plunge regime to the left of the global maximum.
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Fig. 5.2 For each sequence of simulations in Table 5.1: Top panel: the recoil velocity v is
plotted as a function of the initial tangential momentum p/M . The individual curves
represent the total kick vtot (blue, solid), the contribution to the kick from ℓ = 2 modes
of Ψ4, ψ2,m, only in Eqs. (5.2.4)–(5.2.5) vℓ=2 (red, dashed), and the contributions to the
kick from P≤ℓ̃′

+ defined in Eq. (5.2.7b) vℓ̃≤ℓ̃′ for ℓ̃′ = 2 (orange, dotted), ℓ̃′ = 3 (green,
dot-dashed) and ℓ̃′ = 4 (purple, long dot-dashed). Our estimate of the eccentricity (see
Sec. 5.2.2) is provided on the upper horizontal axis. Bottom panel: The final BH spin
χfin (black, solid) and the energy radiated in GWs Erad (gold, dashed) are also plotted as
functions of p/M . For both curves, the individual simulations performed for this analysis
are shown by × symbols.

For our sequences sq2:3, sq1:2 and lq1:2, the magnification of the kick through
moderate values of the orbital eccentricity is similar to the enhancement by up to 25 %
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Fig. 5.3 The range of recoil velocities obtained for each sequence is plotted against the
symmetric mass ratio η. Note that for each sequence we exclude the configurations with
p < pmax (i.e. the head-on limit), where p = pmax is the tangential momentum that
maximises the kick. The three short sequences are marked in gold and the long sequence
is marked in red (dashed). A fitted formula for the quasicircular kick as a function of η
from Ref. [295] is also shown in blue for comparison.

reported in Ref. [217] for the so-called superkick configurations [218, 219]. For sq1:3 the
effect is milder, with a ∼ 12 % amplification, but still well above the uncertainty estimates
of our simulations. On the other hand, as evidenced by the oscillatory pattern of the
function v(p) in Fig. 5.2, appropriate nonzero values of the eccentricity can also lead to a
reduction of the maximum kick at a given mass ratio by ∼ 10 %. This overall modification
of the gravitational recoil in the merger of eccentric, nonspinning BH binaries is the first
main result of our study.

Besides the global maximum, we also note a number of local minima and maxima in the
kick velocity as we vary the eccentricity in Fig. 5.2. For all mass ratios (q = 2/3, 1/2, 1/3)
we see about five local extrema in v(p) in our three short sequences, corresponding to the
two upper panels and the bottom-left panel. We notice a similar, albeit less pronounced,
oscillatory pattern in the functions Erad(p) and χfin(p) for the radiated energy and final
spin in the lower subpanels in Fig. 5.2. Our results display no systematic correlation,
however, between the extrema of the respective quantities; neither global nor local
extrema in v, Erad or χfin coincide in magnitude or their eccentricity values. We believe
this diversity is due to the qualitatively different dependence of the radiated quantities on
the GW multipoles: overlaps of different multipoles for the kick, a sum of terms ∝ ψ2

lm
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for the energy, and the interaction of first and second time integrals for the angular
momentum in Eq. (2.4.82).

We added to our study the q = 1/2 sequence of longer BH binary inspirals to
investigate whether these anomalies in v = v(p) might merely result from ignoring in our
simulations the earlier inspiral phase. The remarkable outcome of this test, however, is
that the oscillatory behaviour in the kick as a function of eccentricity is more pronounced
in the long sequence. The solid blue curve in the bottom-right panel of Fig. 5.2 displays
significantly more rapid oscillations in the eccentricity regime 0.2 ≲ et ≲ 0.4 as compared
to the shorter inspiral sequences. This oscillatory behaviour, and the apparent increase in
the number of oscillations as we increase the initial separation of the BHs, is the second
of our results.

We next attempt to gain insight into the origin of this behaviour. For this purpose,
we have computed the multipolar contributions to the total kick according to Eqs. (5.2.5)–
(5.2.7b). The resulting velocities are displayed in Fig. 5.2 by the additional dashed,
dotted and dash-dotted curves. Here, the curves labelled vℓ=2 have been computed
from the ℓ = 2 modes of Ψ4 (ψ2,m only) in Eqs. (5.2.4)-(5.2.5). We computed this
additional contribution (red dashed curves in the figure) to determine whether the
oscillatory behaviour is also present in the pure quadrupole signal. The answer is yes:
the oscillations are clearly perceptible in vℓ=2, even though they are a bit milder than
in the total kick vtot. Considering all (cumulative) multipolar contributions shown in
Fig. 5.2, we notice the following behaviour:

(1) The oscillatory dependence of the kick on eccentricity is present at any level of
truncating the multipolar contributions in the cumulative sum (5.2.7b).

(2) The partial sum of the kick up to ℓ̃ = 4 barely differs from the total kick, indicating
that higher-order overlap terms do not significantly contribute to the kick.

(3) The higher-order contributions ℓ̃ > 2 to the cumulative kick (5.2.7b) systematically
decrease the kick, counteracting the pure quadrupole contribution vℓ=2.

In short, we have not identified any specific multipoles dominating the variation in the
kick function v = vtot(p).

In our search for an explanation, we turn next to the infall direction of the BH binary
just before merger. A well-known feature of the superkicks generated in the inspiral
of BHs with opposite spins S1 = −S2 pointing in the orbital plane is the sinusoidal
variation with the initial azimuthal angle of the spin vectors; cf. Fig. 4 in Ref. [296].
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Fig. 5.4 Plots involving the angle of the kick ϑ for all sequences. In the left panel we plot
the BH recoil velocity v against ϑ. In the right panel we plot the location of the local
extrema ϑextrema of the left panel against the index of the extrema k counting rightwards
from the global maximum on the left.
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Fig. 5.5 Reproduced from Fig. 3 in Ref. [297].
Schematic diagram showing the excess beam-
ing of the GWs in the direction of the smaller
and faster BH in unequal-mass binaries.

The initial orientation of the spins can, al-
ternatively, be interpreted as a measure for
the angle between the in-plane spin compo-
nents and the BH binary’s infall direction
at merger [298]. The superkick is therefore
commonly determined by simulating other-
wise identical BH binary configurations for
different values of this angle and fitting the
resulting data with a cosine function; see,
e.g., Sec. III A in Ref. [217]. For the eccen-
tric, nonspinning BH binaries considered
in this chapter, it is the initial apsis (either
a periapsis or an apoapsis) that defines a
reference direction. Unfortunately, neither
the apsis nor a “binary infall direction” are
rigorously defined quantities in the strong-
field regime of general relativity, and we
consider instead the orientation of the final
kick relative to the x axis, defined by

ϑ̃ = arg(vx + ivy) . (5.3.1)
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For convenience, we define
ϑ = ϑ̃+ 2nπ, (5.3.2)

where n ≥ 0 is chosen minimally for each configuration in order to obtain ϑ as a monotonic
function of the initial tangential momentum p for each sequence. We will interchangeably
refer to ϑ and ϑ̃ as the angle of the kick. Since all of our simulations start with the BHs
located on the x axis with purely tangential initial momentum p = (0,±p, 0) (Fig. 5.1),
the x direction can be regarded as the initial direction of the apoapsis. If we furthermore
interpret the gravitational recoil to be predominantly generated by the excess beaming
of the GWs in the direction of the smaller and faster BH (see Fig. 5.5) during the short
merger phase, the kick direction can serve as an approximate measure for the infall
direction of the binary.

We can test this prediction by computing the kick magnitude as a function of the
angle ϑ; if correct, we would expect a periodic variation with a period close to 2π. We do
not expect an exact 2π periodicity because the relevant periapsis (or apoapsis) direction
should be the last one before merger, and will shift away from the x axis during the
inspiral due to apsidal precession—the BH analogue of Mercury’s perihelion precession
around the Sun. More specifically, we would expect deviations from a 2π periodicity
to be more pronounced for longer inspirals, i.e., lower eccentricity and/or larger initial
separations, but only mildly dependent on the mass ratio q. Quite remarkably, all of
these features are borne out by the functions v = v(ϑ) displayed for our four sequences
in the left panel of Fig. 5.4 and the location of the extrema in this plot shown in the
right panel of Fig. 5.4. For all sequences we observe the same approximate 2π periodicity,
with deviations from this value increasing at larger ϑ, i.e. for longer inspirals. Note also
that ϑ = −π in the head-on limit, as expected for our initial configurations, that start
with the heavier BH located on the positive x axis.

While short of a rigorous proof, this result provides considerable evidence in favour of
interpreting the oscillatory dependence of the kick on the eccentricity as a consequence
of the corresponding variation in the infall direction as measured relative to the last
apoapsis (or periapsis) of the eccentric binary. This interpretation also explains why the
longer sequence lq1:2 exhibits more oscillations than the shorter sequences sq1:3, sq1:2
and sq2:3. Let us consider for this purpose two binary configurations that only differ
by a tiny amount of eccentricity δe. The longer the inspiral phase, the more time these
two binaries have to build up a considerable phase difference and, hence, a different kick
and merger GW signal. Note the potentially dramatic consequences of this behaviour
for the GW emission from eccentric binaries over astrophysical time scales. For long
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astrophysical inspirals retaining some eccentricity near merger, the kick and GW merger
signal should exhibit critical dependence on the eccentricity. In terms of our Fig. 5.2, the
function v = v(et) would display a huge number of oscillations rather than the handful
observed in our case, and the resulting curve would look like a “band” rather than a
single line. Within the band, a very small change δet in eccentricity can produce a finite
change in the kick and merger waveform.

As indicated by our analysis of the multipolar contributions to the total recoil, the
variations in the GW signal are of a complex nature. We defer a more comprehensive
analysis of the GW pattern to future work, but merely illustrate with an example
the type of variations that are encountered. For this purpose, we show in Fig. 5.6 the
(ℓ,m) = (2, 2) and (3, 3) multipoles of the GW signal around merger for the configurations
lq1:2-p0537 and lq1:2-p0567, corresponding to a local minimum and maximum in
the kick, respectively; cf. the bottom-right panel of Fig. 5.2. In Fig. 5.6, the time has
been shifted such that ∆t = 0 corresponds to the first occurrence of a common apparent
horizon. The main difference perceptible in the figure is the relative phase shift of the
(3,3) mode relative to the dominant quadrupole (2,2). For the case p = 0.567M with
maximal kick, the global peaks of both multipoles are aligned, whereas for p = 0.537M
with minimal kick, the global peak of the (2, 2) mode coincides with a minimum in
(ℓ,m) = (3, 3). We have made similar observations for other pairs of modes such as (2, 2)
and (2, 1), and find these pairs to dominate the oscillatory variation in the multipolar
series expansion (5.2.7b).

5.4 Conclusion

In this chapter we have studied the gravitational recoil and GW emission of sequences
of nonspinning BH binaries with mass ratios q = 2/3, 1/2 and 1/3, and eccentricity
varying from the quasicircular to the head-on limit. For this purpose we have evolved
274 configurations with the GRChombo and Lean codes. Both codes yield convergent
results for the recoil with a total error budget of 3-4 % and exhibit excellent agreement,
well within this uncertainty estimate, for a verification configuration simulated with both
codes. In order to estimate the impact of variations in the overall length of the inspirals,
we have evolved two sequences for the case q = 1/2 which complete about three and six
orbits, respectively, in the quasicircular limit.

The findings of our study are summarised as follows.
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Fig. 5.6 The real parts of the (ℓ,m) = (2, 2) and (3, 3) modes of Ψ4 are shown as functions
of time for the two binaries of sequence lq1:2 with p/M = 0.537 and p/M = 0.567,
resulting in kick velocities of v = 128 and 173 km/s, respectively.

(i) For all sequences, the total recoil reaches a global maximum for moderate eccentric-
ities e ∼ 0.5. As in the case of the enhancement of superkicks studied in Ref. [217],
the maximum kick is enhanced by up to about 25 % relative to the value obtained
for quasicircular configurations.

(ii) Besides this global maximum, we observe an oscillatory dependence of the kick
v as a function of eccentricity, with several local minima and maxima in the
function v = v(e). Appropriate nonzero values of the eccentricity can lead to a
reduction of the kick by ∼ 10 % relative to the quasicircular value instead of an
increase. By splitting the kick into separate multipolar contributions, we notice
that this oscillatory dependence is already present, albeit in a slightly weaker form,
when we consider only quadrupole terms in the series expansion (5.2.4). Further
contributions involving ℓ ≥ 2 multipoles tend to decrease the overall kick and
mildly enhance the oscillatory variation; see Fig. 5.2.

(iii) We interpret this oscillatory variation in the kick as a consequence of changes in
the angle between the infall direction at merger and the apoapsis (or periapsis)
direction. In the absence of rigorous definitions for either of these directions, we
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approximate this angular variation by considering the direction of the final kick
and the x axis, assuming that the former is related via relativistic GW beaming to
the infall direction and by taking into account that our BHs start on the x axis
with zero radial momentum. Displayed as a function of this angle, the kick displays
the expected periodic behaviour with a period close to but mildly deviating from
2π, presumably due to periapsis precession.

(iv) We have explored the dependence of this oscillatory behaviour of the recoil by
simulating an additional sequence of eccentric binaries with mass ratio q = 1/2, but
less negative binding energy, corresponding to about six orbits in the quasicircular
limit. We find the oscillations in v = v(e) to be more pronounced and numerous
than in the shorter sequence. We attribute this feature to the longer available time
window during which otherwise identical binaries with tiny differences in the initial
eccentricity build up a phase difference prior to merger. This observation raises the
intriguing possibility that the total recoil depends highly sensitively on the initial
eccentricity.

(v) The variations in the kick velocity are accompanied by relative time shifts in the
peak amplitudes of subdominant multipoles relative to the peaks of the (2,2) mode;
cf. Fig. 5.6. For configurations with a large (small) kick, the peak amplitude of
subdominant multipoles tends to be aligned (misaligned) with the quadrupole peak.

Our findings point to a variety of future investigations. While our simulations indicate
an increased sensitivity of the GW merger signal to the initial eccentricity for larger
initial separations (i.e. longer inspirals), it is not clear how this will be affected by the
circularizing nature of GW emission. In this context, it will also be important to analyse
in more quantitative terms the differences in the GW signals and possible implications
for parameter inference in GW observations. A thorough investigation of long eccentric
inspirals on astrophysical time scales will likely require PN methods and may benefit
greatly from a multi-time-scale analysis in phase space, as applied to spin-precessing BH
binaries in Refs. [299, 300] or to the dynamics of binary systems in external gravitational
background potentials in Refs. [301, 302]. If there is a single conclusion to draw from
the results of this work, it is the surprisingly rich phenomenology of the GW signals of
eccentric compact binaries—even in the absence of spins—which merits as much as it
requires further investigation.
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Fig. 5.7 For each code, we show convergence plots for the accumulated linear momentum
radiated from sq1:2-p0100 by plotting the BH recoil velocity in the bottom panels. The
Richardson extrapolated curve, vRich4, assuming fourth-order convergence, is also shown
in the bottom panel. The grid configurations are given in Table 5.2 for GRChombo and
in Table 5.3 for Lean. The top panel shows the difference between the configurations
along with rescalings corresponding to fourth- and fifth-order convergence. The inset
shows a magnification of the right side of the plot: the final value of the recoil velocity is
what we show in Fig. 5.2.

Appendix 5.A Numerical accuracy

As in Ref. [217], the uncertainty in our numerical results for the recoil velocities has two
predominant contributions: the discretization error and the finite extraction radii for the
Weyl scalar Ψ4.

To estimate the uncertainty arising from the latter, we have selected a representative
sample of the simulations from each sequence and extrapolated the cumulative radiated
momentum to infinity from about six extraction radii in the range rex/2 ≤ rex using the
procedure explained in Sec. 3.3.3. We report the results from the finite extraction radii
given in Table 5.1 and estimate the error by comparing with the linear-order extrapolation.
For both codes, we estimate that the contribution from this error is about 2% for all
sequences.

In order to estimate the error contribution from finite differencing and verify that
our codes give consistent results, we have performed simulations of sq1:2-p0100 (the



154 Gravitational recoil from eccentric binary black-hole mergers

Table 5.2 Grid configurations used for GRChombo simulations. As explained in
Sec. 5.2.1.1 and Appendix 5.B, the total number of refinement levels is lmax + 1, the
number of cells along each dimension on the coarsest level is N , τR is the regridding
threshold value, b is the BH tagging buffer parameter that we set proportional to the
mass Mi (i = 1, 2) of the nearest BH for all configurations except R4, and h denotes the
grid spacing on the finest level.

Label lmax N τR b h/M1 tagging
R1 7 320 0.012 0.5Mi 3/80 Spherical
R2 7 368 0.01043 0.5Mi 3/92 Spherical
R3 7 416 0.00923 0.5Mi 3/104 Spherical
R4 7 352 0.01091 0.7 3/88 Box

binary in sequence sq1:2 with p/M = 0.1) with both codes. We discuss the analyses of
the convergence of each code separately before comparing.

5.A.1 GRChombo convergence

For GRChombo, we have performed the simulations of sq1:2-p0100 with finest resolu-
tions h = 3M1/80, 3M1/92 and 3M1/104, and we refer to the configurations corresponding
to these resolutions as R1, R2 and R3, respectively. The full grid configurations are
given in Table 5.2 and the results of this analysis are shown in the left panel of Fig. 5.7.
Around merger, at (t− rex)/M ∼ 420, our results exhibit mild overconvergence in the
top-left panel of Fig. 5.7. The important results for our analysis in Fig. 5.2, however, are
the final kick values after the merged BH has settled down. As can be seen from the
inset, the convergence here is close to fifth order. From our convergence analysis, the
difference between the result obtained from the R1 simulation and the more conservative
fourth-order Richardson-extrapolated result leads to an estimate of the discretization
error of about 1%. A similar error estimate is also obtained for the radiated energy, Erad.
From experience, we have found smaller values for the mass ratio q < 1 more challenging
to accurately simulate than larger values, and we therefore feel justified in using this
error estimate (for a q = 1/2 configuration) as a conservative estimate for the error in
the sq2:3 sequence simulations (q = 2/3). We therefore used the R1 grid configuration
for this sequence with lmax

1 = lmax
2 = lmax = 7 (both BHs are covered by the finest level;

see Appendix 5.B for details).
For the sq1:3 simulations, we used the R4 grid configuration (see Table 5.2) with

lmax
1 = lmax = 7 and lmax

2 = lmax − 1 = 6 (the larger BH is not covered by the finest level:
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Table 5.3 Grid configurations used for Lean simulations. As explained in Sec. 5.2.1.2,
the total number of refinement levels is lmax + 1, the number of fixed refinement levels
is lF + 1, R0 is the half-length of the outer grid, Rlmax is the half-length of one cubic
component of the innermost grid, and h is the grid spacing on the finest level.

Label lmax lF R0 Rlmax h/M1

S1 7 4 384 1 1/20
S2 7 4 384 1 1/24
S3 7 4 384 1 1/32
S4 7 4 384 1 1/28

see Appendix 5.B for details). This corresponds to a resolution of h = 3M1/88. We
performed a separate convergence analysis of sq1:3-p0089, which led to an estimated
1% discretization error.

Combining both the finite extraction radius and discretization errors, our estimate
for the total error budget of the GRChombo simulations is about 3%.

5.A.2 Lean convergence

With Lean, we have simulated sq1:2-p0100 with finest resolutions h = M1/20, M1/24
and M1/32. We refer to these grid configurations as S1, S2 and S3, respectively (cf.
Table 5.3). The right panel of Fig. 5.7 shows convergence between fourth and fifth order.
For simulations in sq1:2, we used the S2 grid configuration. From the convergence
analysis, the difference between the result obtained from the S2 simulation and the
fourth-order Richardson extrapolation leads to an estimate of the discretization error of
about 1.5%.

For the lq1:2 simulations, we have undertaken a separate convergence analysis of
lq1:2-p0086 using the same grid setup as in Table 5.3, but using higher resolutions
h/M1 = 1/24, 1/28 and 1/32. We observe convergence close to fourth order and obtain
an error estimate of 1 % from the Richardson-extrapolated kick for the medium resolution
h/M1 = 1/28.

In summary, the Lean simulations of sequence sq1:2 are performed with resolution
grid S2 of Table 5.3 and an error budget of 3.5 %, and those of sequence lq1:2 with grid
S4 of Table 5.3 and an error budget of 3 %.
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Fig. 5.8 Comparison between GRChombo and Lean for the accumulated linear mo-
mentum radiated in GWs in simulations of sq1:2-p0100 with et = 0.10. We compare
the BH recoil velocity (top panel) and the corresponding plus-polarized ℓ = m = 2 strain
amplitude (bottom panel).

5.A.3 Comparison between GRChombo and Lean

A comparison of the recoil velocity computed from GRChombo and Lean simulations
of sq1:2-p0100 with the grid configurations R1 and S2 (used for the sq2:3 and sq1:2
runs) respectively, is shown in the top panel of Fig. 5.8. The eccentricity estimate for
this system is et = 0.10. We have chosen this configuration for two reasons. First, to
determine appropriate resolutions, we had to calibrate our codes’ accuracy at the start
of our exploration, which we began in the regime of mild eccentricities to acquire an
intuitive understanding of their behaviour. Second, configurations with mild eccentricity
have a longer inspiral phase than highly eccentric ones, and therefore impose a stronger
requirement on phase accuracy. A mildly eccentric binary is therefore ideally suited to
obtain a conservative estimate of the numerical accuracy, which is representative across
the targeted parameter space.
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The final recoil velocities obtained for this configuration with our two codes differ
by about 2%, which is well within the error budget of each code. We also show the
quadrupole contribution h+

22 to the ‘+’ polarization strain defined by Eq. (2.4.73) in the
bottom panel of the figure, to better illustrate the agreement between the codes for these
grid configurations.

In Fig. 5.7 the differences between the results of different resolutions with Lean are
greater than that of GRChombo. However, we found that Lean entered the convergent
regime at lower resolutions than GRChombo. This is compatible with the observations
of Ref. [84] that higher resolutions were required for convergence with CCZ4 compared
to BSSNOK.
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Appendix 5.B GRChombo tagging criterion

As explained in Sec. 3.1.4, the regridding is controlled by the tagging of cells for refinement
in the Berger-Rigoutsos algorithm [133], with cells being tagged if the tagging criterion
C exceeds the specified threshold value τR as given in Table 5.2. For this work, we use
the tagging criterion

C =

0, if l ≥ lmax
BH and rBH < (MBH + b),

max(Cχ, Cpunc, Cex), otherwise,
(5.B.1)

where lmax
BH is a specifiable maximum level parameter for each BH (so that it is not

unnecessarily over resolved), rBH is the coordinate distance to the puncture, MBH is the
mass of the corresponding BH, b is a buffer parameter, and Cχ, Cpunc, and Cex are given
as follows:

(i) Cχ tags regions in which the gradients of the conformal factor χ become steep. It
is given by

Cχ = hl

√∑
i,j

(∂i∂jχ)2 , (5.B.2)

where hl is the grid spacing on refinement level l.

(ii) Cpunc tags within spheres around each puncture in order to ensure the horizon is
suitably well resolved. It is given by

Cpunc =

100, if rBH < (MBH + b)2max(lmax
BH −l−1,2),

0, otherwise.
(5.B.3)

(iii) Cex ensures each sphere on which we extract the Weyl scalar Ψ4 is suitably well
resolved. It is given by

Cex =

100, if r < 1.2rex and l < lex,

0, otherwise,
(5.B.4)

where r is the coordinate distance to the centre of mass, r = rex gives the location
of the extraction sphere, and lex is a specifiable extraction level parameter for each
sphere.
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We also used this tagging criterion with the replacement rBH → max(xBH, yBH, zBH),
where, e.g. xBH is the distance to the puncture in the x direction. We refer to this as
“box” tagging and the original as “spherical” tagging. Naively, one might hope that Cχ is
sufficient to ensure suitable refinement around the BHs, since the gradients of χ become
increasingly steep close to the punctures. However, we found empirically that, without
Cpunc, the horizons are perturbed significantly by the refinement boundaries, leading to
lower accuracy.





Chapter 6

Numerical investigations of boson
stars

The content presented in this chapter contains material that appears in the co-authored
publication Ref. [4] with T. Helfer, U. Sperhake, R. Croft, B. Ge and E. Lim. In particular,
the simulations presented in Sec. 6.4.4 were conducted and analysed by co-authors and
are presented here with interpretation in my own words and in an abbreviated form for
coherence. The rest of the work in this chapter is either entirely my own or that fully
reproduced by me and given in my own words.

6.1 Introduction

The origins of boson stars (BS) can be traced back to the 1950s, when Wheeler [303] sought
to find spatially localised configurations (“gravitational atoms”) of electromagnetic fields
in GR, which he termed geons. By switching from real to complex-valued fundamental
fields, it is even possible to obtain configurations that are genuinely stationary solutions to
the Einstein equation. First established for spin-0 (scalar) fields [304, 305, 306], this idea
has more recently been extended to spin-1 (vector) fields [307] (commonly referred to as
Proca stars) in addition to systems with multiple scalar fields [308]. In comparison to the
relatively simple nature of black holes, the existence of these equilibrium configurations
relies on an elaborate balance between the intrinsically dispersive character of these
fundamental fields and their self-gravitation.

The first BS models computed in the 1960s comprised a massive free (i.e. non-
interacting) complex scalar field φ. The resulting equilibrium states of interest, commonly
referred to as mini boson stars, form a one parameter family of ground-state solutions
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characterised by the central scalar-field amplitude φ0. These solutions exhibit a stability
structure analogous to that of Tolman-Oppenheimer-Volkoff [309, 310] stars with a stable
and unstable branch separated by the configuration with maximal mass [311, 312, 313,
314]. For each value of φ0, there also exists a countable hierarchy of excited states with
n > 0 nodes in the scalar profile [315, 316], but numerical evolutions show that these
states are unstable [317]. Intriguingly, their decay to either ground state BSs or BHs
occurs through a cascade of intermediate states similar to atomic transitions–in keeping
with the “gravitational atom” description.

The addition of self-interaction terms for the scalar field can provide further repulsion
against gravity which enables the existence of objects far more compact than mini boson
stars and even neutron stars (NS) [318, 319, 320, 321]. For plausible scalar field masses,
these models can have more astrophysically relevant masses. This raises the question
whether such stars may be able to act as black hole mimickers in binary coalescences or
if their GW emissions might be distinguishable from that of BHs or NSs [322]. Recent
studies conclude that this may be feasible with next-generation GW detectors and, in
certain situations, even with advanced LIGO [323, 324, 325]. Beyond the potential GW
phenomenology interest in BSs, they have also been suggested as a potential model of
dark matter halos that could explain the flat rotation curve observed for most galaxies
[326].

For BS binaries, the simplest case is a head-on collision and this is investigated in
Refs. [327, 328, 89] with the effect of shifts in the phase and differences in the sign of the
frequency (BS-anti-BS) considered. The final state of these mergers depends significantly
on these differences with the possibilities being either a BH, a BS, two BSs that fail to
merge (in the case of a phase offset close to π) or near annihilation of the scalar field (in
the case of opposite frequencies). The inclusion of orbital angular momentum resulting
in inspirals is considered in Refs. [329, 330]. The GW signals from such binaries are
qualitatively similar to those of BH binaries but display more complex structure around
merger.

Even if boson stars are not realised in nature, their relative simplicity means they
can act as a proxy for other types of horizonless compact objects in General Relativity.
Unlike fluid matter, there is no need to deal with the complications of shocks and flux
conservation. Furthermore, whereas neutron stars have sharp boundaries which often
require workarounds such as artificial atmospheres in order to perform stable numerical
evolutions (see, for example, Refs. [331, 332]), the smooth profile of boson stars dispenses
with the need for such measures.
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This chapter is organised as follows. In Sec. 6.2, we introduce the Einstein-Klein-
Gordon system and the 3+1 evolution formalism. Next, in Sec. 6.3, we detail how to
construct some single boson star models and show some of their properties. Then in
Sec. 6.4, we consider the construction of binary initial data, describe some of the issues
that arise with existing methods and explain how these issues can be ameliorated.

In this chapter, we set ℏ = 1 but restore factors of Newton’s constant G.

6.2 The Einstein-Klein-Gordon system

6.2.1 Action and covariant equations

The action for a complex scalar field φ minimally coupled to gravity is

S = SEH + SM, where (6.2.1a)

SEH = 1
16πG

∫
M

d4x
√−g(4)R, (6.2.1b)

SM = −1
2

∫
M

d4x
√−g

[
gαβ∇αφ̄∇βφ+ V

(
|φ|2

)]
, (6.2.1c)

where V is the scalar potential1. The choice of this potential determines the character of
the resulting BS models, and we shall discuss the relevant choices we make later on.

Variation of the action (6.2.1) with respect to the spacetime metric and scalar field
yields the Einstein-Klein-Gordon (EKG) system2,

(4)Rµν − 1
2

(4)Rgµν = 8πGTµν , (6.2.2a)

gαβ∇α∇βφ = V ′
(
|φ|2

)
φ, (6.2.2b)

where the energy-momentum (EM) tensor is given by

Tµν = − 2√−g
δSM

δgµν
= ∇(µφ̄∇ν)φ− 1

2gµν

[
gρσ∇ρφ̄∇σφ+ V

(
|φ|2

)]
. (6.2.3)

1Note the slightly unusual convention of V being multiplied by −1/2.
2Note that since we specified the potential V as a function of |φ|2, we use V ′(|φ|2) to denote

differentiation with respect to |φ|2 which leads to an additional factor of φ from the variation in
Eq. (6.2.2b).
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An important quantity arises from the U(1) invariance of the action (6.2.1). Noether’s
theorem [333] gives the conserved current

Jµ = i
2g

µα (φ̄∇αφ− φ∇αφ̄) , (6.2.4)

such that ∇µJ
µ = 0. The corresponding Noether charge is

N = −
∫

Σ
d3x

√
γnαJ

α, (6.2.5)

for a spatial slice Σ with unit normal nµ and induced metric determinant γ. This quantity
can be interpreted as the total number of bosonic particles [306]. Given that we work
on a finite computational domain, of course we may not be able to fully realise the
conservation of N if scalar matter is radiated outwards. Nevertheless, it can be shown
that a local conservation law holds over a closed volume V ⊂ Σ which remains fixed in
coordinate space [140]. Writing the current (6.2.4) in terms of its normal and spatial
projections (cf. Eq. (2.1.8)),

N = −nαJ
α, J µ = − ⊥µ

α J
α, (6.2.6)

as Jµ = Nnµ + J µ, we find

∂

∂t

∫
V

d3x
√
γN =

∫
∂V

d2x
√
hsm(βmN − αJ m), (6.2.7)

where h is the determinant of the metric induced on ∂V , si is the outward pointing unit
normal to ∂V in Σ, βi is the shift vector and α is the lapse function.

6.2.2 Evolution equations

We use the CCZ4 system (2.3.30) to evolve the spacetime variables but we still need
an evolution system for the scalar field. In order to reduce the Klein-Gordon equation
(6.2.2b) to a first-order[-in-time] system of evolution equations, we introduce the auxiliary
variable

Π = −Lnφ = −nα∇αφ = − 1
α

(∂t − βk∂k)φ. (6.2.8)

The choice of the temporal first-order reduction variable Π is arbitrary so long as the
resultant formulation is sufficiently well-posed. We choose Π as above for consistency
with the other variables in the CCZ4 formulation and with the rest of the literature (e.g.
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Refs. [89, 334]). Since we are reducing to first-order derivatives in time, we could also
reduce to first-order in space. However, we choose to not do so in order to minimise the
memory required during numerical simulations and also for consistency with elsewhere
in the literature. Rewriting the Klein-Gordon equation in terms of the CCZ4 variables
(2.3.29) yields the following evolution system for our matter variables {φ,Π},

∂tφ = βk∂kφ− αΠ, (6.2.9a)

∂tΠ = βk∂kΠ − χγ̃kl∂kα∂lφ+ α
[
χΓ̃k∂kφ+ 1

2 γ̃
kl∂kχ∂lφ

−χγ̃kl∂k∂lφ+ ΠK + V ′
(
|φ|2

)
φ
]
.

(6.2.9b)

The projections of the EM tensor (see Sec. 2.1.6) in terms of the CCZ4 and matter
variables are

ρ = 1
2
[
Π2

R + Π2
I + χγ̃ij (∂iφR∂jφR + ∂iφI∂jφI) + V

(
φ2

R + φ2
I

)]
, (6.2.10a)

ji = 1
2[Π∂iφ̄+ Π̄∂iφ], (6.2.10b)

Sij = ∂(iφ̄∂j)φ− 1
2χγ̃ij

[
χγ̃kl∂kφ̄∂lφ− |Π|2 + V

(
|φ|2

)]
. (6.2.10c)

6.3 Single boson star models

6.3.1 Static, spherically symmetric models

We now restrict to the case of spherical symmetry and seek a solution with a static metric
in polar-areal coordinates3 of the form

ds2 = −e2a(r) dt2 + e2b(r) dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
. (6.3.1)

It turns out that, in order to minimise the energy, the scalar field must have a harmonic
dependence on time [335],

φ(r, t) = φ̃(r)eiωt. (6.3.2)

Fortunately, this time dependence does not break the staticity of the spacetime, since
the energy momentum tensor (6.2.3) only depends on φ through |φ|2 and ∇µφ̄∇νφ.

3This is, of course, an arbitrary choice but, since the degrees of freedom only appear in two metric
components, it helps to simplify the equations.
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Introducing the auxiliary variable

Φ(r) = φ̃′(r), (6.3.3)

the EKG system (6.2.2) reduces to a set of four coupled first-order ordinary differential
equations for the variables

{φ̃,Φ, a, b} (6.3.4)

with the unknown “eigenvalue” ω. To close the system, we need to specify some boundary
conditions. Since it is an eigenvalue problem, we require five such conditions which are

φ̃(0) = φ0, (6.3.5a)
Φ(0) = 0, (6.3.5b)
b(0) = 0, (6.3.5c)

lim
r→∞

φ̃(r) = 0, (6.3.5d)

lim
r→∞

[a(r) + b(r)] = 0. (6.3.5e)

The first condition (6.3.5a) is just the amplitude of the scalar field at the centre of the
star, φ0 and, for a fixed potential, we will use it to parametrise the space of solutions.
The second (6.3.5b) ensures φ is regular at r = 0, the third (6.3.5c) prevents a conical
singularity at the origin, the fourth (6.3.5d) imposes spatial locality of the scalar field
and the final condition (6.3.5e) ensures that we recover the Minkowski metric at spatial
infinity.

6.3.2 Choice of potential

We next need to choose the specific potential that, as alluded to in the previous section,
determines the character of our boson star models.

The first potential we consider, and arguably one of the simplest examples with a
self-interaction term, is a quartic potential of the form

V
(
|φ|2

)
= Vquar

(
|φ|2

)
:= m2|φ|2 + λ

2 |φ|4, (6.3.6)
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where m is the bosonic mass and λ is a mass-dimensionless coupling constant first
considered in Ref. [318] for boson star models. We also consider the potential

V
(
|φ|2

)
= Vsol

(
|φ|2

)
:= m2|φ|2

(
1 − 2 |φ|2

σ2
0

)2

, (6.3.7)

where σ0 is a dimensionful coupling constant. This form of potential arises in particle
physics as an example with false vacua (corresponding to |φ| = σ0/

√
2) that can lead to

spontaneous symmetry breaking. More importantly for us, this potential can give rise to
highly compact boson star configurations [319, 315].

Following Ref. [326], we rescale the variables in order to remove constants as

r̂ = mr, t̂ = ωt, f(r̂) = a(r) − log(ω/m), g(r̂) = b(r), (6.3.8a)

ψ(r̂) =
√

4πGφ̃(r), Ψ(r̂) =
√

4πG
m

Φ(r). (6.3.8b)

The boundary conditions for the rescaled variables are

ψ(0) = ψ0, (6.3.9a)
Ψ(0) = 0, (6.3.9b)
g(0) = 0, (6.3.9c)

lim
r̂→∞

ψ(r̂) = 0, (6.3.9d)

lim
r̂→∞

[f(r̂) + g(r̂)] = log(m/ω), (6.3.9e)

where ψ0 is the rescaled central scalar field amplitude. Note that the rescaling has recast
the eigenvalue problem as a boundary value problem with the oscillation frequency ω
recoverable from Eq. (6.3.9e). For the quartic potential, we additionally rescale the
coupling constant as

Λ = λ

4πGm2 , (6.3.10)
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so the system of equations to solve becomes

f ′(r̂) = 1
2

{
r̂

[
e2g(r̂)ψ(r̂)2

(
e−2f(r̂) − 1 − Λ

2 ψ(r̂)2
)

+ Ψ(r̂)2
]

+ e2g(r̂) − 1
r̂

}
, (6.3.11a)

g′(r̂) = 1
2

{
r̂

[
e2g(r̂)ψ(r̂)2

(
e−2f(r̂) + 1 + Λ

2 ψ(r̂)2
)

+ Ψ(r̂)2
]

− e2g(r̂) − 1
r̂

}
, (6.3.11b)

ψ′(r̂) = Ψ(r̂), (6.3.11c)

Ψ′(r̂) =
[
e2g(r̂)r̂ψ(r̂)2

(
1 + Λ

2 ψ(r̂)2
)

− e2g(r̂) + 1
r̂

]
Ψ(r̂)+

e2g(r̂)
(
1 + Λψ(r̂)2 − e−2f(r̂)

)
ψ(r̂).

(6.3.11d)

Similarly, for the solitonic potential, we rescale the coupling constant as

Σ =
√

4πGσ0, (6.3.12)

so the system of equations to solve becomes

f ′(r̂) = 1
2

r̂
e2g(r̂)ψ(r̂)2

e−2f(r̂) −
(

1 − 2ψ(r̂)2

Σ2

)2
+ Ψ(r̂)2

+ e2g(r̂) − 1
r̂

 ,
(6.3.13a)

g′(r̂) = 1
2

r̂
e2g(r̂)ψ(r̂)2

e−2f(r̂) +
(

1 − 2ψ(r̂)2

Σ2

)2
+ Ψ(r̂)2

− e2g(r̂) − 1
r̂

 ,
(6.3.13b)

ψ′(r̂) = Ψ(r̂), (6.3.13c)

Ψ′(r̂) =
e2g(r̂)r̂ψ(r̂)2

(
1 − 2ψ(r̂)2

Σ2

)2

− e2g(r̂) + 1
r̂

Ψ(r̂)+

e2g(r̂)
[
1 − 8ψ(r̂)2

Σ2 + 12ψ(r̂)4

Σ4 − e−2f(r̂)
]
ψ(r̂).

(6.3.13d)

6.3.3 Shooting for the ground state

For a fixed central scalar field amplitude ψ0, there is a sequence of eigenvalues

ω = ω(n), ω(n+1) > ω(n), n = 0, 1, 2, . . . (6.3.14)
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It turns out that n corresponds to the number of nodes (roots) in ψ [315, 316] with
ω = ω(0) being the ground state and ω = ω(n) being the nth excited state.

Since excited states turn out to be unstable [317], hereafter we shall focus only on
the ground state and drop the (0) superscript.

To find the ground state, a standard shooting algorithm with a binary search is used
which we describe below.

1. Fix the values of ψ(0), Ψ(0) and g(0) using Eq. (6.3.9) and choose a value of
f(0) < 0 (corresponding to the lapse α < 1 at the centre of the star) as an initial
guess.

2. Integrate outwards. As r̂ → ∞, it can be shown that for both Eqs. (6.3.11)
and (6.3.13), the solutions asymptotically satisfy a linear equation with two solutions
of the form

ψ ∼ 1
r̂

exp
±r̂

√
1 − ω2

m2

 . (6.3.15)

We therefore expect any solutions of Eqs. (6.3.11) and (6.3.13) to asymptote to a
linear superposition of the ± solutions in Eq. (6.3.15). Since the + solutions are
exponentially growing and finite precision numerics imply that there will always
be some contribution from this solution, at some radius we expect this growing
solution to dominate and ψ to stop decaying.

3. If there are no roots, take this initial f(0) as an upper bound for the ground state
f(0). Otherwise, keep increasing f(0) < 0 until there are no roots and ψ blows up
to +∞ (in practice the integration is stopped once |ψ| > ψ0 or Ψ is larger than
some threshold).

4. Obtain a lower bound for the ground state f(0) by gradually decreasing f(0) until
there is exactly 1 root and ψ blows up to −∞. The change in the number of roots
from 0 to many might occur suddenly (particularly for solitonic stars) so it may be
necessary to perform a binary search (interval bisection) until there is exactly 1
root.

5. Perform a binary search to find the value of f(0) that makes ψ decay to the largest
radius. Because of finite precision, inevitably the solution will blow up at some
finite radius but it is often the case that the precision is high enough such that
the “bad” growing part of the solution can simply be replaced with the expected
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decaying asymptotic behaviour (6.3.15) at some large radius (in practice we choose
r̂∗ where ψ′(r̂∗) = Ψ(r̂∗) = 0).

Because we can not fully eliminate the growing mode (6.3.15) with finite-precision
numerics, the ADM mass which is given by the limit of the mass aspect function

M̂ (r̂) = r̂

2
(
1 − e−2g(r̂)

)
, (6.3.16)

as r̂ → ∞, that is
M̂ADM = lim

r̂→∞
M̂(r̂), (6.3.17)

is typically just calculated by evaluating M̂ADM ≃ M̂(r̂∗). Similarly, the frequency ω is
computed using

ω

m
= lim

r̂→∞
exp [−f(r̂)] ≃ exp [−f(r̂∗)] , (6.3.18)

and the Noether charge (6.2.5) is computed using

N = 1
Gm2

∫ ∞

0
r̂2eg(r̂)−f(r̂) [ψ(r̂)]2 dr̂ ≃ 1

Gm2

∫ r̂∗

0
r̂2eg(r̂)−f(r̂) [ψ(r̂)]2 dr̂ (6.3.19)

In addition to the mass and oscillation frequency, we would also like to determine
some notion of “radius” for our stars. Unlike fluid stars, boson stars do not have a sharp
boundary; the matter fields do not vanish outside a bounded region but rather just decay
exponentially (6.3.15). This means that there does not exist a well-defined “radius” of
the star. There are several ways as to how one might get around this. One conventional
option is to define the radius rp (or rescaled radius r̂p = mrp) which contains a fraction
p of the mass according to the mass aspect function, where p is just smaller than unity
(typically 0.99 or 0.95), that is

M̂(r̂p) = pM̂ADM. (6.3.20)

Another option is to to choose the radius where ψ is (1 − p)ψ0. For the compactness
parameter, C = MADM/r < 1/2, if using rp, a convenient choice is

Cp = pMADM

rp

, (6.3.21)

but an alternative is simply

Cmax = max
r̂

M̂(r̂)
r̂

. (6.3.22)
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Both options are empirically found to give similar numbers.

6.3.4 Properties of boson star solutions

For a fixed potential, the ground-state solutions form a one-parameter family characterised
by the central scalar field amplitude Ψ0. The mass-radius plots for two such families (one
for mini boson stars and another for solitonic stars) (6.3.7) are shown in Fig. 6.1. For
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Fig. 6.1 Mass-radius plots for the one-parameter family of mini boson stars (blue solid)
and a family of solitonic stars (red dashed). Both families arise from the solitonic potential
(6.3.7) with the rescaled coupling constant (6.3.12) Σ = ∞ and

√
4π/5 respectively. The

properties of the two models highlighted by dots are given in Table 6.1.

Table 6.1 Properties of the two boson star models used for the simulations presented
in Sec. 6.4.4. Both stars arise from the solitonic potential (6.3.7). The rescaled central
amplitude is ψ0 (6.3.8), the rescaled coupling constant is Σ (6.3.12), the Noether charge is
N (6.3.19), the rescaled ADM mass is M̂ADM, the oscillation frequency is ω, the rescaled
99 % stellar radius (i.e. the radius containing 99 % of the mass) is r̂0.99 (6.3.20), the 99 %
measure of the compactness is C0.99 (6.3.21) and the max measure of the compactness is
Cmax (6.3.22).

Model ψ0 Σ NGm2 M̂ADM ω/m r̂0.99 C0.99 Cmax

mini 0.0440 ∞ 0.399 0.395 0.971 22.31 0.0175 0.0249
solitonic 0.603

√
4π/5 1.05 0.713 0.439 3.97 0.180 0.222

each family, a specific model is highlighted by a point that we will discuss in Sec. 6.4.4.
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These models have been selected as representative examples of a relatively compact star
and a more squishy one. Note that both models lie to the right of the maximum mass in
the plot and are thus stable [311, 312, 313, 314]. Their properties are shown in Table 6.1.

6.3.5 Conversion to isotropic coordinates

Before we can evolve the boson star models constructed by solving Eqs. (6.3.9) and (6.3.13),
in order to minimise gauge adjustment during the evolution, we first transform the solution
to isotropic coordinates {t, R, θ, ϕ} where the metric takes the form

ds2 = −α2 dt2 + χ−1
[
dR2 +R2

(
dθ2 + sin2 θ dϕ2

)]
. (6.3.23)

Comparison of the polar-areal metric (6.3.1) with the above yields

dR
dr = eb(r)R

r
= eg(mr)R

r
, χ = R2

r2 , (6.3.24)

where we have implicitly chosen R → +∞ as r → +∞. Assuming that both metrics are
asymptotically Schwarzschild as R, r → ∞, that is

χ ∼
(

1 + MADM

2R

)−4
, e−2b(r) ∼ 1 − 2MADM

r
, (6.3.25)

then we expect, as r → ∞,
R ∼ r

4
(
1 + e−g(mr)

)2
. (6.3.26)

In practice, since we are working on a finite [non-compactified] grid, we solve Eq. (6.3.23)
by applying Eq. (6.3.26) at a large finite radius r = rmax and integrating inwards. The
solution in this case is

R(r) = rmax

4
(
e−g(mrmax) + 1

)2
exp

[
−
∫ rmax

r

eg(mr′)

r′ dr′
]
. (6.3.27)

6.4 Binary initial data

6.4.1 Boosting spacetimes

Before we superpose the initial data for two single boson stars in order to construct
binary initial data, we first consider how to Lorentz boost an individual star. Applying
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appropriate boosts enables us to perform head-on collisions in a reasonable simulation
time and further allows the possibility of adding orbital angular momentum for inspirals.

6.4.1.1 Lorentz boosts

Consider an observer Õ with Cartesian coordinates x̃µ̃ moving at velocity4 −vi with
respect to another observer O with coordinates xµ. Then, their coordinates are related
by (assuming, without loss of generality, that their origins coincide)

x̃µ̃ = Λµ̃
αx

α, (6.4.1a)
xµ =

(
Λ−1

)µ

α̃
x̃α̃, (6.4.1b)

where, (
Λµ̃

ν

)
=
 γ γvj

γv ĩ δ ĩ
j + (γ − 1)vĩvj

|v|2

 , (6.4.2)

vi = δij̃v
j̃, and, as is conventional5, γ = (1 − |v|2)−1/2. Similarly, the expression for

(Λ−1)µ
ν̃ is given by replacing v → −v in the right-hand side of Eq. (6.4.2) (the inverse of

a boost is simply a boost in the opposite direction with the same magnitude). Hereafter,
we shall refer to O’s frame as the rest frame and Õ’s frame as the boosted frame.

6.4.1.2 Boosting the spacetime variables

Suppose that we have expressions for the components of the spacetime metric, gµν and its
first partial derivatives, ∂ρgµν , in the rest frame as functions of the rest frame coordinates
xµ. Since we will want to evolve in the boosted frame, the coordinates on the numerical
grid will be the boosted ones, x̃µ̃ rather than the rest frame ones xµ, so the first step is
to convert back to the rest frame coordinates using Eq. (6.4.1b).

Next, we transform the components of the metric and first derivatives using

g̃µ̃ν̃ =
(
Λ−1

)α

µ̃

(
Λ−1

)β

ν̃
gαβ (6.4.3a)

∂̃ρ̃g̃µ̃ν̃ =
(
Λ−1

)δ

ρ̃

(
Λ−1

)α

µ̃

(
Λ−1

)β

ν̃
∂δgαβ. (6.4.3b)

4We take a minus sign here so that in Õ’s frame, objects that are stationary in O’s frame appear to
be moving with velocity vi

5There is potential for confusion between the Lorentz factor and the spatial metric (2.1.5) which
share the same symbol, but it should be possible to disambiguate from context.
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Comparing with the 3+1 form of the metric in adapted coordinates (2.1.14) (which also
applies in the boosted frame with {α, βi, γij} replaced by {α̃, β̃ ĩ, γ̃ĩj̃}), we find

α̃ =
√

−g̃t̃t̃ + β̃k̃β̃
k̃, (6.4.4a)

β̃ĩ = g̃t̃̃i, (6.4.4b)
γ̃ĩj̃ = g̃ĩj̃, (6.4.4c)

where the shift vector, β̃ ĩ, is obtained by first inverting γ̃ĩj̃ to obtain γ̃ ĩj̃ and then
computing

β̃ ĩ = γ̃ ĩj̃β̃j̃.. (6.4.5)

We can then use Eqs. (6.4.4b) and (6.4.5) to compute the right-hand side of Eq. (6.4.4a).
Finally, we wish to compute the extrinsic curvature in the boosted frame K̃ĩj̃. Often,

in the rest frame of a stationary spacetime, one chooses a foliation (typically constant t
slices) which results in a trivially vanishing extrinsic curvature. Naively, one might think
the extrinsic curvature transforms similar to Eq. (6.4.3a) which would mean it would also
vanish in the boosted frame. Unfortunately, this is not true as the extrinsic curvature is
defined by the foliation (cf. Sec. 2.1.4). Since we will be considering slices of constant
t̃ = γ(t+ vjx

j) instead of slices of constant t, the foliation is manifestly different. Instead,
we use the expression for the extrinsic curvature that arises from rearranging the γij

evolution equation (2.1.38) (in the boosted frame),

K̃ĩj̃ = − 1
2α̃

(
∂̃t̃γ̃ĩj̃ − 2D̃(̃iβ̃j̃)

)
, (6.4.6)

where D̃ is the covariant derivative associated to γ̃ĩj̃ which can be computed in the usual
way.

6.4.1.3 Boosting the scalar field

A scalar field φ transforms trivially under a Lorentz transformation so the only thing
to do is evaluate it at the rest frame coordinates obtained from the boosted ones using
Eq. (6.4.1a). Since the boson stars we consider have a harmonic time dependence ∝ eiωt

(6.3.2), an easy trap to fall into6 is substituting t = 0 when one actually needs to
6The author is guilty of having fallen into this trap.
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substitute t in terms of x̃µ̃ at t̃ = 0 (the initial slice), which from Eq. (6.4.1a) is given by

t|t̃=0 = −γvjx̃
j. (6.4.7)

In order to compute the auxiliary variable Π in the boosted frame, we first note that the
first partial derivative of the scalar field transform as

∂̃µ̃φ̃ =
(
Λ−1

)α

µ̃
∂αφ, (6.4.8)

and using this, we can evaluate

Π̃ = − 1
α̃

(
∂̃t̃φ̃− β̃ ĩ∂̃ĩφ̃

)
. (6.4.9)

6.4.2 Superposition of two boson stars

Suppose we have two boson star solutions with centres at x = x(A), A = 1, 2 described
by the quantities

{
γ

(A)
ij

(
x; x(A)

)
, K

(A)
ij

(
x; x(A)

)
, φ(A)

(
x; x(A)

)
,Π(A)

(
x; x(A)

)}
, A = 1, 2. (6.4.10)

Then, the superposition of these two stars is given by the spacetime specified by the
variables {γij, Kij, φ,Π}, where, pointwise,

γij = γ
(1)
ij + γ

(2)
ij − δij + δγij, (6.4.11a)

Kij = γk(i
[
K

(1)
j)l γ

(1)lk +K
(2)
j)l γ

(2)lk
]

+ δKij, (6.4.11b)

φ = φ(1) + φ(2), (6.4.11c)
Π = Π(1) + Π(2), (6.4.11d)

and the specified centres of the two constituent solutions, as given explicitly in Eq. (6.4.10),
are understood. The correction term, δγij and δKij, are included in order to solve the
constraint equations (2.1.36-2.1.37). One could similarly construct a lapse and shift by
superposing the lapses and shifts that arise from the boosted single-star solutions (6.4.4a)
but since they do not affect the physical dynamics of the resultant spacetime, we instead
take α = √

χ and βi = 0. The choice to raise an index on the constituent extrinsic
curvature tensors before adding (6.4.11b) is somewhat arbitrary but follows what is done
for superposed Kerr-Schild (BH) data in Refs. [336, 337, 161].
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6.4.2.1 Simple superposition

For simple or naive superposition, we make the approximation

δγij = 0 = δKij. (6.4.12)

Of course, this is not generally constraint-satisfying, so there is no reason, a priori, for
this approach to work. Nevertheless, such an approximation has been used in numerous
studies involving BH binaries [338, 339, 340] and also BS binaries [327, 329, 89, 204].
For BH spacetimes and higher dimensional ones in particular, this approach has proved
remarkably successful. In some cases such as infinite initial separation, Brill-Lindquist
data7 (see Sec. 2.2.2) or Aichelburg-Sexl shockwaves (head-on BH collisions at the speed
of light) [341], simple superposition is even exact. One hopes that, if the initial separation
is sufficiently large, then the correction terms will be small enough so as to make the
simple superposition approximation valid. Unfortunately, it turns out that there can be
unintended consequences. Helfer, Lim, Garcia, and Amin [342] find that (see appendix A
therein), in the case of binary oscillatons (real-scalar-field counterparts of our complex
BSs), simple superposition results in spurious low-frequency amplitude modulations
during the evolution (see Fig. 7 in Ref. [342]). As we will see in Sec. 6.4.4, these problems
also occur for BSs. We believe that these horizonless compact objects may be more
vulnerable to these superposition artefacts compared to the BHs due to the lack of a
horizon with its accompanying causal barrier.

These problems arise because, for simple superposition, the metric at the centre of
star 1 differs from that of the isolated star case by

∆γij(0,x(1)) = γ
(2)
ij (0,x(1); x(2)) − δij, (6.4.13)

(and similarly for star 2) which only vanishes in the limit of infinite separation. This
perturbation can be interpreted as a distortion of the volume element √

γ at the centre
of each star. For realistic separations of O(100M)8 we have found deviations in the
volume element at the centre of each star by O(1)% though this should be caveated
by noting that it strongly depends on the individual BS models comprising the binary.
The corresponding deviation in the energy density ρ is significantly smaller due to the

7Note that in this case the superposition is in the conformal factor ψ rather than in the ψ4 that
appears in the metric

8Unfortunately, since the effect scales with
√

|x(1) − x(2)|, it is impractical to mitigate it by just
increasing the initial separation.
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exponential fall-off in the scalar field (6.3.15). Since the distortion in the volume element
seems to be the dominant cause of our issues, in what follows, we will focus only on
modifying δγij and continue to make the approximation δKij = 0. In principle, one
might be able to consider modifications to δKij that improve the superposition further,
but we believe that any benefit is likely to be very minor for the configurations of interest
(with relatively small boosts). These efforts are arguably better spent in attempting to
solve the constraints fully.

Finally, it is worth reiterating the point made in Sec. 2.3.3 in the context of CCZ4
constraint damping that minimising the constraints is necessary but not sufficient to find
the “desired” physical solution. It is entirely possible to have well-controlled constraint
violations (i.e. close to the constraint hypersurface in solution space) but not be close
to the intended solution (i.e. far away from the intended physical configuration along
the constraint hypersurface). In the current context, we have found that the significant
undesired excitations we observe are retained even after applying CCZ4 constraint
damping.

6.4.2.2 Improved superposition for identical binaries

In the case of identical binaries with individual boosts satisfying

v
(1)
i v

(1)
j = v

(2)
i v

(2)
j (6.4.14)

(cf. Eq. (6.4.2)), Eq. (6.4.13) provides us with a method to resolve the problems identified
above, namely choosing

δγij(0,x) = δij − γ
(2)
ij (0,x(1); x(2)) = δij − γ

(1)
ij (0,x(2); x(1)). (6.4.15)

Note that this correction term is constant on the initial hypersurface and the second
equality follows from the symmetry in our binary (and our condition on the boosts
(6.4.14)). This choice means that the deviation of the metric at each star centre from
the isolated star values now vanishes.

A consequence of the above choice is that the value of the superposed solution at
spatial infinity is no longer δij but rather

2δij − γ
(2)
ij (0,x(1); x(2)). (6.4.16)
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This entails a slight modification to the asymptotic value in the Sommerfeld boundary
condition (2.5.39).

6.4.2.3 Alternative improved superposition for stationary binaries

In the case of no boosts (but not necessarily identical stars), the extrinsic curvature
vanishes identically, and the metric is conformally flat, so the only non-trivial non-matter
variable to superpose is the conformal factor χ, that is, simple superposition reduces to

χ =
[

1
χ(1)(R(1)) + 1

χ(2)(R(2)) − 1
]−1

, (6.4.17)

where R(A) = |x − x(A)|.
Recall, from Sec. 6.3.5 that it is only the boundary condition of matching with

standard isotropic Schwarzschild that fixes the scaling of the isotropic radius R. Let’s
drop this requirement and apply it later to the superposed binary.

For simplicity, assume we start with R computed as in Sec. 6.3.5 and write Ř = κR,
where Ř is the rescaled isotropic radius and κ is the rescaling factor. In what follows,
quantities with a ˇ, are rescaled and those without are not. In the new coordinates, the
conformal factor becomes

χ̌ = κ2χ. (6.4.18)

By choosing

κ = Ř0

R(Ř0/
√
χ̌0)

, (6.4.19)

where R = R(r) is the isotropic coordinate determined as in (6.3.27) as a function of
area-radius, we can set χ̌ = χ̌0 at Ř = Ř0 (which corresponds to area-radius r = Ř0/

√
χ̌0).

We now set our binary conformal factor to

χ =
[

1
χ̌(1)(Ř1)

+ 1
χ̌(2)(Ř2)

− s

]−1

=
[

1
κ2

1χ
(1)(κ1Ř1)

+ 1
κ2

2χ
(2)(κ2Ř2)

− s

]−1

, (6.4.20)

where κ1, κ2 and s are chosen such that

1
κ2

1
+ 1
κ2

2
− s = 1, s = 1

χ̌(1)(Ř(1,2))
= 1
χ̌(2)(Ř(1,2))

, (6.4.21)

for fixed Ř(1,2) = |x(1) − x(2)|. These conditions are chosen so that the conformal factor
at the centre of each star is the same as in the single isolated star case and χ = 1 at
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spatial infinity. They can be rewritten as

(
R(1)(

√
sŘ(1,2))

Ř(1,2)

)2

+
(
R(2)(

√
sŘ(1,2))

Ř(1,2)

)2

− s = 1, (6.4.22a)

κ1 = Ř(1,2)

R(1)(
√
sŘ(1,2))

, (6.4.22b)

κ2 = Ř(1,2)

R(2)(
√
sŘ(1,2))

. (6.4.22c)

Equation (6.4.22a) can be solved numerically to find the required value of s and then
this can be substituted back into Eq. (6.4.22b) and Eq. (6.4.22c) to find the values of κ1

and κ2.

6.4.2.4 More general improved superposition

The previous two improved superposition methods both required some restriction on the
configuration (identical stars with specific boosts and stationarity respectively) which
begs the question as to how one can extend these methods to the more general case of
non-identical stars and arbitrary boosts. One way to generalise is to introduce weight
functions w(A)(x), A = 1, 2 such that the metric correction term takes the form

δγij = w(1)(x)
(
δij − γ

(2)
ij (0,x(1); x(2))

)
+ w(2)(x)

(
δij − γ

(1)
ij (0,x(2); x(1))

)
. (6.4.23)

These weight functions are included in order to ‘correct’ the value of the metric at the
centre of each star as in Eq. (6.4.15). Furthermore, we require the weight functions to
vanish at spatial infinity so that the metric asymptotes to δij (this fixes the problem
mentioned in the final paragraph of Sec. 6.4.2.2). These requirements mean that the
weight functions must satisfy

1. w(1)(x(1)) = 1 = w(2)(x(2)).

2. w(1)(x(2)) = 0 = w(2)(x(1)).

3. w(A)(x) → ∞, A = 1, 2 as r → ∞.

Such weight functions can be constructed from bump functions (which are smooth and
compactly supported real-valued functions on Rn). One example is given by ζ : R3 → R
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where

ζ(r) =

exp(−1/(1 − r2)), r < 1,

0, r ≥ 1.
(6.4.24)

6.4.3 Mixed boson-star black-hole binary initial data

For simple superposition of an isotropic Schwarzschild BH (2.2.18) with a BS solution in
isotropic coordinates, the BS is found to suffer from similar problems as in the BS-BS
case (see Sec. 6.4.4). Even in the case of using this construction as an initial guess for
solving the York-Lichnerowicz Hamiltonian constraint equation (2.2.14) in an elliptic
solver, these issues can persist after relaxation. Furthermore, the uniqueness issues with
matter mentioned in Sec. 2.2.4 mean that it is vital that initial guesses are close to the
desired solution in order for the elliptic solver to converge to it.

Here we briefly explain the procedure to solve for mixed Bowen-York boson-star initial
data including how the alternative improved superposition described in Sec. 6.4.2.3 can
be adapted for the choice of initial guess in the elliptic solver alleviating some of the
concerns mentioned in the previous paragraph.

We start with the York-Lichnerowicz decomposition of the constraints (2.2.13) but
with the additional assumptions that the trace of the extrinsic curvature K vanishes and
that the conformal metric is flat. The constraint equations become9

8∇̆2ψ̄ + ψ̄−7ĀklĀ
kl + 16πGψ̄5ρ = 0, (6.4.25a)

∇̆jĀ
ij − 8πGψ̄10ji = 0, (6.4.25b)

where ∇̆ is the flat-space derivative. We set the conformal, trace-free extrinsic curvature
to the Bowen-York solution (2.2.24) that describes a BH with initial momentum P and
spin S centred at x = xBH,

Āij = (BY)Āij(x; xBH,P,S). (6.4.26)

Furthermore, we set the EM tensor to that of a single stationary (i.e. unboosted) BS
centred at x = xBS. Since the BS is stationary, there is no contribution to the extrinsic
curvature from it and the two terms in Eq. (6.4.25b) decouple. The first term vanishes

9Note that here the overbars are denoting the York-Lichenerowicz conformal decomposition as in
Sec. 2.2.1 and not complex conjugation.
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since the Bowen-York solution satisfies

∇̆k
(BY)Āik = 0, (6.4.27)

and the second term vanishes since a single stationary BS has vanishing momentum
density. It remains only to solve the Hamiltonian constraint (6.4.25a) as for Bowen-York
data (but with some extra terms coming from the energy density).

For the Hamiltonian constraint, we use the puncture method described in Sec. 2.2.3,
and write

ψ̄ = u+ ψ̄BL, (6.4.28)

where the Brill-Lindquist part is

ψ̄BL = MBH

2|x − xBH| . (6.4.29)

Since we’re using the conformal factor ψ̄ rather than χ = ψ̄−4, we choose as our initial
guess for u,

u0 =
[
χ̌(BS)(Ř(BS))

]−1/4
+ s, (6.4.30)

where the constant s and rescaling factor κ (6.4.19) are to be determined. If Rsep =
|xBS − xBH| is the coordinate separation between the centres of the boson star and black
hole, then, in order for the value of ψ̄0 = u0 + ψ̄BL to be the same at the centre of the
star as for the isolated star case, we must choose

s = −MBH

2Rsep
. (6.4.31)

Then, in order for ψ̄ → 1 as R → ∞ (asymptotic flatness), it follows that the rescaling
constant must be

κ =
(

1 + MBH

2Rsep

)−2

. (6.4.32)

One should note that even though we have assumed the boson star is stationary in
order to solve the constraints, once we have solved the constraints, we can then apply an
arbitrary boost to the whole spacetime using the formulae in Sec. 6.4.1. By choosing
the Bowen-York parameter P and this final boost appropriately, it is then possible in
principle to construct a spacetime where both the BH and the BS have arbitrary boosts.
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6.4.4 Comparison between simple and improved superposition
for binary boson-star initial data

We now show some results which illustrate the differences between simple superposition
and improved superposition described in Sec. 6.4.2.2 for boson-star binaries. For this
purpose, we consider the head-on collision of two identical boson stars. We use the two
models highlighted in Fig. 6.1 and Table 6.1 (one relatively squishy mini boson star and
one more compact solitonic boson star). These simulations were performed with the
Lean code (cf. Sec. 4.3.1.2).

For all simulations, we fix the initial boost of each star to v(1) = −v(2) = v = 0.1
along the collision axis. The simulations are then characterised by the boson star model,
the type of superposition and the initial separation of the two stars d. We label the
boson star model as mini or soli and prepend a + to denote improved superposition
with its absence indicating simple superposition. The configurations of our simulations
are provided in Table 6.2. We vary the initial separation in order to investigate the

Table 6.2 The simulated binary BS configurations. The constituent BSs are either the
mini or solitonic models described in Table 6.1, and they are boosted towards each
other at initial velocity v. The initial data is constructed using superposition (6.4.11) of
the simple (6.4.12) or improved (6.4.15) kind. The initial separations of the simulated
configurations is d and the extraction radius for GWs is rex which we both provide in
units of the total ADM mass M .

Label Star 1 Star 2 v Superposition d/M rex/M

mini mini mini 0.1 simple 75.5, 101, 126, 151, 176 300
+mini mini mini 0.1 improved 75.5, 101, 126, 151, 176 300
soli solitonic solitonic 0.1 simple 16.7, 22.3, 27.9, 33.5, 39.1 84

+soli solitonic solitonic 0.1 improved 16.7, 22.3, 27.9, 33.5, 39.1 84

dependence of our results on d.

6.4.4.1 Radiated gravitational-wave energy

We start by comparing the energy radiated in GWs Erad (2.4.79) and illustrate its
dependence on the initial separation d of the binary in Fig. 6.2. As in, Sec. 5.2.3, we
evaluate Eq. (2.4.79) at finite extraction radius r = rex, where rex = 300M for the mini
BS binaries and rex = 84M for the solitonic binaries. Similarly, in order to exclude the
contribution from any spurious radiation in the initial data, we start the integration at
t0 = rex + 40M . A full convergence analysis for a simulation in each sequence has been
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Fig. 6.2 The energy radiated in GWs Erad (2.4.79) in units of the ADM mass M from
the head-on collision of two boson stars for the configurations provided in Table 6.2.

performed and is reported more comprehensively in Ref. [4] but we briefly summarise
the estimated uncertainties here. As in Appendix 5.A, the total uncertainty is comprised
of the discretization error and the error due to finite-radius extraction. For the former
we conservatively estimate an error of about 1 %, and, for the latter, we find the error
is up to 3 % for all of our simulations. We therefore estimate the uncertainty of our
simulations at around 4 %.

As the initial separation is increased, the [negative] binding energy of the binary
becomes smaller in magnitude with a corresponding increase of the collision velocity
around merger. However, since the binding energy vanishes in the large d limit, this effect
becomes negligible. We would therefore expect Erad to increase with d and then level off.
Given the relatively large initial separations we use, we would expect any increase to be
small.

The results from the mini configurations shown as ◦ in the top panel of Fig. 6.2
exhibit a rather different behaviour: the radiated energy rapidly decreases with d and
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levels off only for d ≳ 150M . We have verified that this excess energy for smaller d is
not due to extra spurious radiation. Even if the contribution from “junk” radiation were
included in Fig. 6.2 (by starting the time-integration earlier), we find that this leads
to differences in the radiated energy of well below 0.1 % of the total. In contrast to
this behaviour, the radiated energy from the +mini configurations (△ in the top panel
of Fig. 6.2) is approximately constant at the level of the numerical uncertainties. For
d ≳ 150M , both types of initial data yield compatible results. The main improvement
afforded by the adjusted superposition is that reliable results are obtained at significantly
smaller initial separations which are more suitable for starting BS inspirals.

In the case of solitonic configurations (bottom panel of Fig. 6.2), the difference in the
behaviour of the radiated energy as d varies between the two sequences is less pronounced
with both yielding approximately constant Erad. However, the discrepancy between the
calculated amounts is significant when compared to the numerical uncertainties. This
discrepancy is accompanied by drastic differences in the dynamics of the collision which
we explain further below.

6.4.4.2 Scalar field dynamics and gravitational collapse

The improved superposition modification in Sec. 6.4.2.2 was originally developed in
Ref. [342] in order to ameliorate spurious long-wavelength oscillations in the [real] scalar
field. In our case, with a complex scalar field, this effect can be readily observed in the
scalar-field amplitude (or modulus) |φ| and its consequences most dramatically affect
the collision of our solitonic BSs. Recall, from Fig. 6.1 that our constituent solitonic
BS model, whilst stable, is close to the instability threshold (the local maxima on the
curve). It is therefore not surprising that such a star might be rather sensitive to spurious
disturbances such as Eq. (6.4.13). Indeed, this is precisely what we observe with our
soli simulations of simply-superposed initial data. In the top panel of Fig. 6.3, we show
the evolution of |φ| at the centre10 of one of the constituent stars for the simulations
of the soli and +soli configurations with initial separation d = 22.3M . We also show
the trajectories of the stellar centres in both cases along the x-axis in the bottom panel.
Consider the soli configuration displayed with the solid blue curves. The scalar-field
amplitude initially increases up to a maximum around t ≃ 30M and then rapidly decays.
At around the maximum, an apparent horizon is first found with horizon mass (3.2.15)

10Note that the centre of each star is tracked by locally fitting an inverted Gaussian to the conformal
factor χ and approximating the centre as the minimum of this fitted curve. We choose χ instead of |φ|
so that the tracking is robust to stellar collapse. Around merger, this procedure becomes inaccurate so
should be interpreted as a qualitative guide only here.
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Fig. 6.3 The central scalar-field amplitude |φctr| is plotted as a function of time for one
of the constituent stars in the head-on collisions of solitonic boson stars from Table 6.2
with initial separation d = 22.3M . The same quantity is also shown for a single isolated
solitonic BS with the same boost and another single isolated solitonic BS that is disturbed
according to Eq. (6.4.13). Each dotted vertical line denotes the time an apparent horizon
is first found for the simulation with the corresponding colour (note that no horizon
forms for the undisturbed single BS). The bottom panel shows the coordinate trajectories
of the BS centres10 in the binary cases.

MH ≃ 0.5M ; this time is marked by the vertical dotted blue line. Looking at the
solid blue curve in the bottom panel, we see that the BSs are still too far away to have
merged (r̂0.99 = 2.78M) which means that the individual BSs have collapsed to BHs. We
interpret this early gravitational collapse as an artificial consequence of the use of simple
superposition.

For comparison, we plot the evolution of the central scalar-field amplitude for a
single isolated solitonic BS boosted at the same velocity v = 0.1 displayed as the dark
green dot-dashed curve in Fig. 6.3. As expected, it remains constant to relatively high
precision—within O(10−5/

√
G).

In contrast to the behaviour for simply superposed initial data, the evolution of the
improved initial data (+soli) exhibits significantly different behaviour shown by the
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dashed red curves in the figure. For most of the infall, |φctr| remains constant at the same
value as the single isolated BS, and only increases mildly just after the BSs merge (when
the trajectories meet at x = 0) before collapsing to zero. An apparent horizon of mass
MH = 0.99M is first found at t ≃ 79.5M (dotted vertical red line); this approximately
coincides with the maxima in the amplitude.

To further test our interpretation, we consider again the evolution of a single isolated
boosted solitonic BS but, this time, disturbed by exactly the same term as for simple
superposition (6.4.13). The resulting central scalar-field amplitude is shown in Fig. 6.3
as the dotted orange curve. Remarkably, this curve almost overlaps that of the soli
binary and the time of first apparent horizon formation is almost coincident (shown
by the dotted vertical orange line). This behaviour is clearly unphysical and strongly
suggests that it is this disturbance (6.4.13) that is responsible for the same unphysical
behaviour in the binary case. This analysis has been repeated for the other configurations
in the soli sequence (i.e. with different d in Table 6.2) with very similar results: the
constituent BSs always collapse to distinct BHs approximately ∆t ≈ 50M before merger.

Finally, we note that the trajectories shown in the bottom panel of Fig. 6.3 show that
the soli binary merges a little earlier than the +soli case. This is indeed a systematic
effect that we observe for all initial separations. Whilst, we do not have a definitive
explanation for this effect, note that the two trajectories start diverging at approximately
the time of spurious collapse in the soli case. One explanation is that some energy in
BS collisions is converted into deformation energy rather than just the kinetic energy
of the stars’ centres of mass resulting in a slower infall compared to the BH case. An
alternative may come as a result of the repulsive nature of the scalar fields—a property
which supports it against gravitational collapse and allows BSs to exist—which may slow
down the infall for BSs when compared to BHs. Whatever the true explanation is, the
key takeaway is that even mild disturbances in the initial data can dramatically change
the ensuing dynamics.

6.5 Conclusion

In this chapter, we have presented an introduction to the numerical study of boson stars
including the construction of single star models and binary initial data. Our main results
at the end of the previous section concern the construction and validity of BS binary
initial data. In particular, for the case of head-on collisions of identical non-spinning BSs,
we have compared the commonly-used method of simple superposition (6.4.12) with one
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of our improved methods, namely Eq. (6.4.15), that has first been used in Ref. [342] for
oscillatons.

Our results demonstrate that the improved procedure yields significant benefits in
the time evolutions of these initial data. Conversely, we find that the use of simple
superposition may not only lead to incorrect quantitative results but also qualitatively
different behaviour such as premature gravitational collapse. Although this improved
method is remarkably effective at ameliorating some of the most severe problems with
simple superposition, given its simplicity, it does have its own shortcomings. In particular,
it only applies to a restricted class of configurations11 and there still exist some residual
constraint violations. We therefore believe that these adjustments should be thought
of as a first step rather than the whole solution. These weaknesses immediately point
towards the need to generalise the adjustments so that the symmetry restrictions can be
relaxed using, for example, the procedure described in Sec. 6.4.2.4. The ultimate goal is
to fully solve the constraints where these methods can be used to provide an improved
initial guess.

In addition to the many possible avenues for exploration involving BS binaries using
accurate initial data, there are yet more opportunities for investigations with mixed
BS-BH binaries. However, we believe similar caveats with respect to the quality of
rudimentary initial data may apply here, hence the brief discussion in Sec. 6.4.3. We
defer the investigation of this mixed initial data to future work.

11The alternative improved method proposed in Sec. 6.4.2.3 yields similar results (not presented here)
but is also only applicable to a highly restricted set of configurations, albeit a different one.





Chapter 7

Conclusions and outlook

In this thesis, we have looked at various aspects of gravitational-wave (GW) source
modelling using numerical relativity (NR). Firstly, we have presented the current state of
the GRChombo NR code and described recent enhancements including some specifically
relevant to the modelling of GW sources. Next, we have discussed the use of adaptive
mesh refinement (AMR) in GRChombo and the experiences we have gained from our
investigations. These improvements to GRChombo and techniques for AMR have then
been used to study the effect of black-hole (BH) binary eccentricity on the remnant BH
recoil in unequal-mass mergers. Finally, we have considered a more exotic type of GW
source in the form of boson stars (BSs) with a particular focus on the construction of
binary initial data.

Over the past several years, GRChombo has matured into a capable code that
achieves good performance on a wide variety of CPU architectures and can tackle a
wide variety of NR problem. However, HPC systems are becoming more heterogeneous
with accelerators such as Graphics Processing Units (GPUs) increasingly being relied
on to provide most of the floating point performance. Until a few years ago, the NR
community had largely not made the transition to GPU-accelerated codes, in part because
of the complexity of the equations that we solve (2.3.30); it is challenging to obtain
good performance with these on GPUs. However, if we are to continue pushing the
boundary on the types of problems we can solve, there is a growing need to exploit
these computational resources. The next generation of GW detectors will be able to
observe currently inaccessible frequency bands that will allow observations of GWs from
sources that have not yet been modelled accurately with NR (for example, compact
binary mergers with more unequal mass ratios). To that end, we are currently in the
process of porting GRChombo from the Chombo libraries to the AMReX library [343]



190 Conclusions and outlook

which supports GPU acceleration on all major vendor platforms. Given the large number
of diagnostic tools and analysis pipelines for GRChombo that have been developed for
by users, it is important that we make this transition carefully so as to make porting
these tools as simple as possible. Thankfully, AMReX shares a common origin with
Chombo which should make this goal more straightforward.

In addition to the transition towards GPU acceleration within the NR community,
the prevalence of fully AMR codes has also grown since the origins of GRChombo. As
we have remarked several times, taming the complexity of AMR is crucial to obtaining
efficient and accurate simulations. Though moving-box style refinement has proved very
robust for conventional astrophysical compact binaries, AMR can be particularly useful
for the modelling of GW sources that reside outside this paradigm (for example, cosmic
strings [183, 185]). Again, the arrival of next generation GW detectors in the decades to
come stands to only increase the need to model these kinds of sources accurately.

Eccentricity is expected to play a greater role when it comes to analysis of GWs from
compact binary sources that will be observed by next generation detectors. In particular,
if we are to further our [currently rather limited] understanding on how black hole binaries
are formed, inference of the eccentricity can provide vital insight. As a result, in the last
few years, there has been renewed interest in modelling eccentric binaries [344, 345] as
well as on methods of inferring eccentricity from gravitational waveforms [346, 347]. Our
work in Chapter 5 provides a small taste of the richness that eccentricity adds to BH
binary phenomenology. However, there is without a doubt, much more yet to uncover in
this area.

Finally, BSs have a long history of providing manifestations of new physics such as
extensions to the standard model of particle physics as well as possible resolutions to
unexplained phenomena such as dark matter. The modelling of GWs from BSs is still in
its relative infancy, especially when compared to BHs and NSs. Even when restricting to
modelling of BSs using NR, there are many unexplored avenues left to pursue; these may
be necessary to deduce constraints from future GW observations. Furthermore, other
experiments, from those that study the very small such as the Large Hadron Collider
(LHC) to the very big such as the James Webb Space Telescope (JWST) are expected
to place further bounds on the role of new scalar fields in our universe. Even if, as we
expect, these ground-breaking experiments place further bounds on the existence of BSs,
there will always be regimes that are not reached by them where the idea of boson stars
will continue to thrive.
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Although the work contained in this thesis may only provide a small contribution to
the long journey of understanding our universe, it is nevertheless one step further along
that path.
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Appendix A

ADM mass and momentum

In numerical simulations, it is often useful to measure the total mass and momentum
contained in the spacetime. Unfortunately, it is not sufficient to integrate the matter
energy density ρ and momentum density ji over a volume since these do not include
any contributions from the curvature of the spacetime (a vacuum black-hole spacetime
can contain mass but no matter). Instead, for spacetimes with asymptotically flat ends,
we typically use the Arnowitt-Deser-Misner (ADM) integrals [348] which we provide
expressions for below.

The ADM mass is given by

MADM = 1
16π lim

r→∞

∮
S2

r

δklsm [∂kγlm − ∂mγkl] dA, (A.0.1)

where sm is the outward pointing unit normal to S2
r , the 2-sphere of radius r, γij is the

spatial metric and dA is area element of S2
r . The ADM linear momentum is similarly

P i
ADM = 1

8π lim
r→∞

∮
S2

r

sm

[
Kim − δimK

]
dA. (A.0.2)

Finally, the ADM angular momentum is defined by

J i
ADM = 1

8π lim
r→∞

∮
S2

r

ϵklmxls
n [Kmn − δmnK] dA. (A.0.3)

It is important to note that these expressions are only valid in Cartesian-like coordinates.
Furthermore, the convergence of the ADM angular momentum in the limit requires faster
decay than what is typically required for an asymptotically flat end.
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Since the ADM integrals are defined at spatial infinity i0, they are unaffected by
gravitational radiation as these carry energy and momentum to future null infinity I +.
Therefore, one might expect the ADM mass, linear momentum and angular momentum to
remain constant during a numerical simulation. However, in practice we use a finite non-
compactified computational domain, and calculate the limits in Eqs. (A.0.1) to (A.0.3) by
extrapolating the integrals evaluated at finite radii so this conservation does not appear
to hold.
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