The “fetal microbiome” and pitfalls of low-biomass microbial studies

Katherine M. Kennedy*1,2, Marcus C. de Goffau*3,4, Maria Elisa Perez-Muñoz5, Marie-Claire Arrieta6, Fredrik Bäckhed7,8,9, Peer Bork10, Thorsten Braun11, Frederic D. Bushman12, Joel Dore13, Willem M. de Vos14,15, Ashlee M. Earl16, Jonathan A. Eisen17,18,19, Michal A. Elozut, MD20, Stephanie C. Ganal-Vonarburg21,22, Michael G. Gänzle5, Wendy S. Garrett23,24,25,26, Lindsay J. Hall27,28,29, Mathias W. Hornef30, Curtis Huttenhower23,26,31, Liza Konnikova32, Sarah Lebeer33, Andrew J. Macpherson22, Ruth C. Massey34,35, Alice Carolyn McHardy36,37,38, Omry Koren39, Trevor D. Lawley4, Ruth E. Ley40, Liam O’Mahony34,35,41, Paul W. O’Toole34,35, Eric G. Parner42, Julian Parkhill43, Jeroen Raes44,45, Thomas Rattei46, Anne Salonen14, Eran Segal47, Nicola Segata48,49, Fergus Shanahan34,41, Deborah M. Sloboda1,2,50, Gordon C.S. Smith51,52, Harry Sokol53,54,55, Tim D. Spector56, Michael G. Surette1,2,57, Gerald W. Tannock58, Alan W. Walker59, Moran Yassour60,61, and Jens Walter34,35,41

1. Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Hamilton, Canada
2. Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
3. Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
4. Wellcome Sanger Institute, Cambridge, UK
5. Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, AB, Canada
6. International Microbiome Center, University of Calgary
7. The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
8. Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
9. Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
10. European Molecular Biology Laboratory, EMBL, Meyerhofstr.1, 69117 Heidelberg
11. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Obstetrics and Experimental Obstetrics, Augustenburger Platz 1, 13353 Berlin, Germany
12. Department of Microbiology Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076
13. Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, 78350, Jouy-en-Josas, France
14. Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
15. Laboratory of Microbiology Wageningen University, The Netherlands
16. Infectious Disease & Microbiome Program, Broad Institute of MIT & Harvard, Boston, MA 02142
17. Department of Evolution and Ecology, University of California, Davis
18. Department of Medical Microbiology and Immunology, University of California, Davis
19. Genome Center, University of California, Davis
20. Maternal and Child Health Research Center, Department of Obstetrics & Gynecology, University of Pennsylvania Perelman School of Medicine
21. Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, University of Bern, Switzerland
22. Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
23. Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
24. Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
25. Department of Medicine and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
27. Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
28. Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
29. Chair of Intestinal Microbiome, ZIEL - Institute for Food & Health, School of Life Sciences, Technical University of Munich, Freising, Germany
30. Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
31. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
32. Departments of Pediatrics and Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
33. University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
34. APC Microbiome Ireland, University College Cork, Cork, Ireland
35. School of Microbiology, University College Cork, Cork, Ireland
36. Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
37. German Center for Infection Research (DZIF), Hannover Braunschweig site
38. Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
39. Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
40. Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
41. Department of Medicine, University College Cork, Cork, Ireland
42. Duchossois Family Institute, University of Chicago, Chicago, Illinois
43. Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
44. VIB Center for Microbiology, Herestraat 49, Leuven, Belgium
45. Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, Leuven, Belgium
46. Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
47. Weizmann Institute of Science, Israel
48. Department CIBIO, University of Trento, Trento, Italy
49. IEO, European Institute of Oncology IRCCS, Milan, Italy
50. Departments of Pediatrics, Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
51. Department of Obstetrics and Gynaecology, University of Cambridge, UK
52. NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
53. Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, F-75012 Paris, France
54. Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
Preface

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid, placenta) are stably colonized by microbes in a healthy pregnancy remains the subject of debate. Here, we...
evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbiology, bioinformatics, immunology, clinical microbiology, and gnotobiology, and assess possible mechanisms by which the fetus might interact with microbes. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples, DNA extraction, and DNA sequencing. Further, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology, and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and also illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a “fetal microbiome” serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls, also incorporating biological, ecological, and mechanistic concepts.

Introduction

Fetal immune development prepares the neonate for life in a microbial world and underpins lifelong health\(^1\text{-}^4\). Neonates born at term are not immunologically naïve and are specifically
adapted to cope with abrupt exposure to microbial, dietary, and environmental stimuli. Several research groups have characterized immune cell development in human fetal tissues. However, our mechanistic understanding of how and when immune priming by microbes occurs, and the factors that drive it, is incomplete. The long-held view that the prenatal intrauterine environment (placenta, amniotic fluid, fetus) is protected from live microbes has been challenged recently, leading to the hypothesis that fetal immune development may be driven by the presence of live microbes or even entire microbiomes at intrauterine sites. However, these results have been debated because several concurrent studies point to experimental contamination dominating low-microbial-biomass sequencing data as the source of microbial DNA apparently detected in the intrauterine environment. Since 2020, four studies have characterized the microbiology of the human fetus directly and resulted in opposing and irreconcilable conclusions. Two reports described viable low-density microbial populations in human fetal intestines and organs, and linked these microbes to fetal immune development. In contrast, two other research groups, that include several of the authors of this perspective, reported no detectable microbes in fetal meconium and intestines.

Such disagreement over a fundamental aspect of human biology poses a challenge for scientific progress. The notion of a fetal microbiome, if proven correct, has implications for clinical medicine and would call for a comprehensive reappraisal of previous concepts and research. It would require radical revision of our understanding of the development of the immune and other systems in early life and the anatomical and immunological mechanisms mediating host-microbe interactions within fetal tissues. Failure to resolve this issue has a potential risk of diverting finite resources into research that results in no advancement for fetal and maternal health, and misguided attempts to therapeutically modify a non-existent fetal microbiome. The dilemma has further relevance to the characterization of microbiota in all low-biomass samples. Therefore, we
assembled a trans-disciplinary group of scientists and clinician-scientists to clarify how and when
the fetus becomes prepared for life with microbes, to identify research pitfalls and mitigation
strategies, and to propose specific directions for future research. Diverse research perspectives
were included: (i) reproductive biology and obstetrics; (ii) microbiology and microbial ecology; (iii),
bioinformatics and data science; (iv) immunology; (v) clinical microbiology; and (vi) gnotobiology
and the derivation of germ-free mammals.

Claims and counterclaims

Although the disagreement on the presence of microbes in prenatal intrauterine locations
(placenta and amniotic fluid) spans dozens of studies with contradictory findings, we focused our analysis on four recent studies since they provide a direct assessment of the fetus itself. Collection of human fetal samples is difficult and restricted to either
following pregnancy termination, or immediately prior to birth by C-section. Three of the studies
used samples collected after vaginally delivered, elective, second trimester pregnancy
terminations, and one collected samples from breech C-section deliveries immediately at

Rackaityte et al. reported 18 bacterial taxa as enriched in intestinal contents of vaginally
delivered fetuses from 2nd trimester terminations compared to negative controls using 16S rRNA
gene amplicon sequencing (V4 region). To account for contamination, the authors removed
Operational Taxonomic Units (OTUs) detected in >50% of procedural controls and then identified
remaining contaminants in silico (using the decontam R package). They found that most fetal
samples were microbiologically similar to negative controls (labelled as “other meconium”, n=25),
but that some samples, dominated by Lactobacillus (6 samples) or Micrococcaceae (9 samples),
had distinct bacterial profiles. The authors further detected low amounts of total bacteria by qPCR,
Fluorescent in situ hybridization (FISH), Scanning Electron Microscopy (SEM), and culture (as discussed below).

Several of the study’s conclusions have been challenged by de Goffau et al.44, who re-analyzed the publicly available data and found no evidence for a distinct bacterial profile in the subset of samples with matched procedural controls, and concluded that the positive findings were caused by a sequencing batch effect (indicative of contamination) and further contamination during culture44. In addition, the authors’ suggestion that particles detected in SEM micrographs constitute micrococci38 was disputed as their size exceeded that of known Micrococcaceae44. Furthermore, the 16S rRNA gene sequence of the Micrococcus luteus cultured from the fetal samples differed from that detected by sequencing, further supporting contamination during culture (Micrococcus luteus is a common contaminant of clean rooms and surgical instruments45,46).

Mishra et al.39 detected a low but consistent microbial signal across tissues of vaginally delivered fetuses from 2nd trimester terminations by 16S rRNA gene amplicon sequencing (V4-V5 region), with 7 genera enriched in fetal samples (Lactobacillus, Staphylococcus, Pseudomonas, Flavobacterium, Afipia, Bradyrhizobium, and Brevundimonas). The 16S rRNA gene sequencing data were accompanied by SEM, RNA-in situ hybridization (RNA-ISH), and culture. In recognition of the high risk of contamination, all samples were processed in isolation with negative controls collected during sample processing. In contrast to Rackaityte et al., Mishra et al. found Micrococcus to be enriched in phosphate buffered saline (PBS) reagent controls and reported it as a contaminant, with the M. luteus cells detected by culture being consistent with the size and morphology of the coccoid structures found by SEM39.
Both Rackaityte et al. and Mishra et al. included assays of fetal immune development and concluded that the microbes detected would contribute to immune maturation. Rackaityte et al. based this conclusion on differences in patterns of T cell composition and epithelial transcription between fetal intestines determined by whether Micrococcaceae were or were not the dominant species and suggested that bacterial antigens may contribute to T cell activation and immunological memory in utero. Mishra et al. employed flow cytometry to expand on previous findings of effector (TNF-α /IFN-γ producing) memory (CD45RO+) T cells in fetal tissues, including gut tissue and mesenteric lymph nodes. Bacterial isolates cultured from the fetal samples, including *Staphylococcus* and *Lactobacillus* strains, induced in vitro activation of memory T cells isolated from fetal mesenteric lymph nodes.

In contrast to these reports, Li et al., who also investigated fetal intestinal tissue from second trimester terminations, did not detect bacterial DNA by PCR (V4 region of the 16S rRNA gene, 35 cycles) based on visual inspection of agarose gels in any of the 101 samples tested. The authors detected a diverse set of metabolites in fetal intestinal samples and hypothesized that maternal, microbiota-derived metabolites may pass through the placenta to ‘educate’ the fetal immune system. This conclusion is supported by research in mice that showed that fetal immune education can be driven in the absence of direct microbial exposure by trans-placental passage of microbial metabolites from the maternal gut.

Kennedy et al. used a different approach and collected samples using rectal swabs during elective C-section for breech presentation at term gestation. Comparisons with environmental and reagent-negative controls from two independent sequencing runs were included to account for contamination and stochastic noise. No microbial signal distinct from negative controls was detected, and aerobic and anaerobic bacteria (*Staphylococcus epidermidis* and *Cutibacterium*)
acnes [formerly Propionibacterium acnes]) detected by culture of fetal samples were identified by
the authors as skin contaminants.

To compare these reports, we re-analysed the publicly available unfiltered relative abundance
data associated with the three publications that reported sequence data and determined the
relative abundance of each detected genus. While there was good agreement between the two
studies using 2nd trimester vaginally delivered fetuses38,39, the bacterial taxa detected in fetuses
derived by C-section29 were significantly different (Figure 1). The number of genera was much
lower in C-section-derived fetuses, and entire groups of microbes, especially those generally
found in the vagina, were absent. Most importantly, in the studies that claimed fetal microbial
colonization38,39, every genus detected in fetal samples was also detected in most control
samples.

Reproductive biology and obstetrics perspectives
The embryo and fetus develop within the uterus but not in the uterine cavity \textit{per se}. The early
embryo invades the maternal decidua and is completely embedded by 10 days post-fertilization.
The fetus grows within the amniotic cavity, which originates between the trophoblast and inner
cells mass in the second week post fertilization, surrounded by two layers of reproductive
membranes and bathed in amniotic fluid. Hence, even if microbes were present in the uterine
cavity49, they would have to pass through to the amniotic cavity and enter the amniotic fluid to
colonize the fetus. Amniotic fluid has antimicrobial properties, being enriched for example in
lysozyme50, human beta-defensin 251, and Gp340/Dmbt152, which binds and agglutinates diverse
gram-negative and gram-positive bacteria.
The placenta mediates communication between the fetus and the mother and is a potent immune organ that protects the fetus. Historically, the placenta has been considered sterile (defined here as free from living microorganisms), but in 2014 a complex but low-biomass placental microbiome was detected by DNA sequencing. The proposed placenta microbiome showed some similarity with sequence data of microbial communities of the oral cavity. Contamination controls were not included in this early study, and subsequent evaluation of the work found that most genera detected were also common contaminants. Several detected taxa, such as Gloeobacter, a genus of photosynthetic cyanobacteria, appeared biologically implausible as a component of a putative placental microbiome. Since this early report, dozens of studies have conducted a sequence-based microbial analysis of placenta tissues, with completely opposing conclusions (as reviewed by Bolte et al.).

Regardless of whether placental samples are collected by biopsy per vagina, clinically by chorionic villus sampling, or after delivery, it is always necessary to control for contamination, particularly from the tissues through which a placenta must pass prior to sampling. Accordingly, de Goffau et al. carried out a comprehensive study of the possible placental microbiome, and detected a range of species known to dominate the vaginal microbiota, such as Lactobacillus iners, L. jensenii, L. crispatus, L. gasseri, and Gardnerella vaginalis. When the presence of vaginal microbes and those in the laboratory reagents (the “kitome”) were accounted for, no placenta microbiome was detected in their studies or several further recent studies.

Pathogenic infection of the placenta by viral or bacterial pathogens is a well-recognized clinical phenomenon that contributes to preterm birth and neonatal sepsis. de Goffau et al. detected Streptococcus agalactiae in around 5% of cases as the only verifiable bacterial signal in placentas obtained by C-section deliveries conducted prior to rupture of the fetal membranes and the onset
of labour28. The presence of this species is plausible as it colonizes the genital tract of about 20\% of women and has invasive potential, being an important cause of maternal and neonatal sepsis57. However, the ability of specific pathogens to colonize and/or infect the placenta is distinct from the presence of an indigenous microbiota, that is, a prevalently stable, non-pathogenic, complex microbial community that is metabolically active58.

Research claiming the presence of viable low-density microbial communities in the fetal intestine38 and fetal organs39 likewise calls for an evaluation of the sampling process. Mishra \textit{et al.} obtained fetal tissues after medical termination of pregnancy in the 2nd trimester with prostaglandins39. This procedure typically involves the individual going through hours of labor and often leads to the rupture of the fetal membranes hours prior to vaginal delivery. Even with a standardized approach, labor may be prolonged and may be accompanied by infection and fever, which are common with 2nd trimester terminations59,60. Both Li \textit{et al.}40 and Rackaityte \textit{et al.}38 also used 2nd trimester terminations but obtained the fetal tissues from core facilities. The tissues used by Li \textit{et al.} were from surgical terminations (14-23 weeks) performed with mechanical dilation. Unfortunately, Rackaityte \textit{et al.}61 did not provide sufficient information to determine if fetuses were obtained through surgical procedures or medical inductions. While the latter increases the risk of the fetus being exposed to vaginal microbes during labour, both procedures involve vaginal delivery of the fetus. As outlined below, the reported microbiology of these fetuses primarily reflects the sources of microbes to which they are exposed during these procedures.

\textbf{Microbiology and microbial ecology perspectives}

Host-microbe relationships range from mutualism (a prolonged symbiotic association from which both benefit) to commensalism (the host is unaffected), to pathogenesis where the microbe harms the host. Although claims for fetal microbial exposure38,39 have not established the nature of the
host-microbe interaction, and the duration of exposure or colonization, they have suggested a beneficial role for live organisms in fetal immune development, thereby implying a symbiosis. The microbiological approaches applied by Rackaityte et al.38 and Mishra et al.39 are, in large part, robust, and well suited to study symbiotic microbial populations. The combination of 16S rRNA gene sequencing, quantitative PCR (qPCR), microscopy, FISH, and culture is laudable, as the approaches are complementary. Next-generation sequencing of 16S rRNA gene amplicons provides a broad community overview and can detect microbes that escape cultivation, while qPCR, microscopy, and bacterial cultures have a high dynamic range, low detection limits, and reasonable specificity. The DNA sequence-based microbiota composition data in both studies is quite consistent (Figure 1), suggesting that several of the bacterial taxa detected were present in the samples and not artifacts derived from laboratory reagents or DNA-isolation kit contamination. However, although the microbiological analyses of samples were sound, the sampling procedures allowed the introduction of contaminant species and critical controls to determine whether contamination occurred were missing.

In agreement with the unavoidable vaginal exposure of fetuses obtained by 2nd trimester abortions (see above), both Rackaityte et al.38 and Mishra et al.39 found the genera \textit{Lactobacillus} and \textit{Gardnerella}, which dominate the vaginal microbiota55, among their most consistent findings (Figure 1). The species cultured by Mishra et al., \textit{G. vaginalis}, \textit{L. iners} and \textit{L. jensenii}, are highly specific to the human vagina62. Other microbes detected such as \textit{Staphylococcus} species and \textit{Cutibacterium acnes}, are skin commensals. As shown in Figure 1, abundances of \textit{Lactobacillus}, \textit{Gardnerella}, and \textit{Staphylococcus} found by Mishra et al. showed gradients with high population levels in fetal samples exposed to sources of contaminants (placenta and skin) and lower levels in internal samples (gut, lung, spleen, thymus). The omission of vaginal controls by both Rackaityte et al. and Mishra et al. to determine the microbiota of vaginally delivered fetuses is an
unfortunate flaw that casts doubt on the authors’ conclusion that the microbes originate from the womb. Indeed, Li et al.40, who used samples from 2nd trimester surgical terminations performed with mechanical dilatation, which decreases the bacterial exposure of the fetus during sampling, did not report positive bacterial PCR results in their study, further raising suspicion that sampling contamination was a serious confounder in the work of Rackaityte et al. and Mishra et al.

Although vaginal controls were not included by Rackaityte et al.38 and Mishra et al.39, direct comparisons of their findings with those by Kennedy et al.29 also provide clear evidence for vaginal contamination of terminated fetuses (Figure 1). The C-section derived fetal samples in Kennedy et al., which were not exposed to the vagina, carried no Gardnerella or Lactobacillus, but instead contained skin and reagent contaminants29,53. Despite attempts to reduce contamination, C-section derived fetal meconium had at least one positive culture29. Kennedy et al. did not consider these microbes of fetal origin, as they were skin commensals, and half of the samples, as well as many culture replicates, did not show growth. The authors concluded that such inconsistencies point to stochastic contamination and not colonization by a stable functional microbial community.

Despite vaginal contamination, the bacterial load found in terminated fetuses was extremely low38,39. Signals derived from qPCRs were only marginally higher than those of controls, with Mishra et al. reporting cycle thresholds (Ct) of >30 cycles, with Ct values for negative controls around 31-32 cycles. Cell counts as detected by both microscopy and culture were also low. Mishra et al. reported fewer than 100 colonies on average per entire fetus, with high inconsistencies among individual fetuses and tissues (see Table S6 in the original publication39). Such findings are readily explainable as contamination rather than mutualism/colonization.
Neonatal meconium samples have been studied for a century by culture-based methods and more recently by DNA sequencing; this has also sometimes yielded contradictory findings\(^{10,42,43,63,64}\) due to contamination and because postnatal colonization may occur before the first passage of meconium\(^{25}\). However, when meconium is passed soon after birth, culturable bacteria are seldom detected (as reviewed by Perez-Munoz et al.\(^{25}\)). In agreement with this, an analysis of meconium samples collected from extremely premature infants\(^{65}\) showed that taxa regularly identified previously as contaminants\(^{35,37}\) make up a large proportion of sequences collected within the first 3 days after delivery and then drop to almost zero in most samples at days 4-6 (Figure 2), indicating that the genuine bacterial signal is low in early meconium. This conclusion agrees with a recent study that applied strict controls for sequencing and culture and reported no meconium microbiota\(^{64}\).

Members of an authentic fetal microbiota should be, in theory, detectable in early-life fecal samples independent of birth mode. There is indeed some overlap between the reported fetal microbial taxa in vaginal versus C-section deliveries\(^{38,39}\), e.g. staphylococci, enterococci, lactobacilli, and enterobacteria, and the microbiota detected in infant fecal samples in the first week of life\(^{66-68}\). However, there have been few attempts to track species and strains to confirm fetal origin. One study investigated gastric aspirates of newborn infants collected immediately after birth\(^{69}\), which should contain microbes reported \textit{in utero}, as the fetus swallows amniotic fluid. However, aspirates from vaginally-born infants contained the specific \textit{Lactobacillus} species (\textit{L. iners} and \textit{L. crispatus}) that also dominate the microbiota of the vagina, while most samples from C-section deliveries clustered with negative controls\(^{69}\). This finding is consistent with vaginal transfer of microbes to a sterile fetus during delivery. In addition, many of the genuine bacterial signals that were detected in early meconium\(^{65}\) were typical maternal skin representatives (\textit{Staphylococcus} & \textit{Corynebacterium}) and were strongly associated with C-section, or were
maternal fecal microbiota representatives (*Escherichia* & *Bacteroides*) associated with vaginal delivery (Figure 2), indicating that these genuine signals were derived from microbes acquired *ex-utero*.

Research is beginning to determine the origin of post-partum neonatal microbial colonizers and has shown a delay in appearance of bacterial species presumed to originate from the mother’s gut (*e.g.* *Bifidobacterium* and *Bacteroides* species) in early fecal samples of infants born by C-sections. A substantial proportion of strains acquired by infants postnatally can be traced back to their mothers, and fecal microbiota transplant (FMT) restores the microbiome in C-section delivered infants. Thus, the published evidence, although still incomplete, suggests that the early life microbiome in humans is acquired through the vertical and horizontal transfer of microbes whose origin is fecal or environmental (from outside) rather than fetal (from inside).

Bioinformatic and data science perspectives

Characterization of low-biomass samples by 16S rRNA gene amplicon sequencing is challenging as DNA contamination can occur from the microbial DNA present in reagents, tools, instruments, and DNA isolation kits, and through cross-contamination between PCR tubes/wells, sequencing runs, or sequencing lanes. A common misconception in the field of low microbial biomass samples is that the use of negative controls is sufficient to account for all kinds of contaminants. Commonly, imperfect negative controls are used that account only for a limited number of the sample processing steps or are not spread evenly amongst all batches (thus not accounting for processing days, reagent batches and different sequencing runs), leading to batch effects that may be mistaken for genuine signals. Overreliance on or under-analysis of such negative controls, in combination with the misapplication of contamination removal programs like Decontam, specifically by not having negative controls in all batches, frequently results in false
retention of contaminants44. Even with appropriate controls, it is challenging to separate genuine signals from low abundance contaminants due to the law of small numbers, which means that contaminant signals may appear sporadically in samples and negative controls77. Thus, suboptimal handling of sequencing control samples may not reveal the full spectrum of contaminants because only the most abundant contaminant species are consistently detected. On the other hand, potentially genuine sample-associated signals sometimes also erroneously appear in negative control samples through cross-contamination during the PCR or sequencing steps (machine contamination)36.

Unfortunately, both Rackaityte et al.38 and Mishra et al.39 reported taxa as legitimate findings that are very commonly reported contaminants (Figure 1). The most obvious case is \textit{Bradyrhizobium}, which is one of the most dominant and consistent contaminants found in sequencing studies37,78. Rackaityte et al. reported \textit{Micrococcus} and \textit{Lactobacillus} as genuine fetal inhabitants, but a re-analysis of the data revealed that this finding was batch specific, indicative of contamination44. Although the authors rejected this conclusion61, this batch effect is clearly visible if the findings of the different batches are plotted together (Figure 3). In addition, Mishra et al. considered their own signal for \textit{Micrococcus} to be derived from contamination39. \textit{Afipia}, \textit{Flavobacterium}, \textit{Pseudomonas}, and \textit{Brevundimonas} are further genera reported by Mishra et al.39 that are commonly detected as kit or laboratory reagent contaminants35,37.

Mishra et al. and Rackaityte et al. also reported marginally higher total bacterial load in fetal samples, as compared to controls, using qPCR38,39. However, eukaryotic DNA in tissue samples (which is absent in negative controls) might have a DNA carrier effect leading to a more efficient DNA precipitation of prokaryotic reagent contaminants. In addition, bacterial PCR primers may also amplify mitochondrial DNA, which is evolutionarily of bacterial origin. Together these factors
may explain why samples from low-biomass studies are often reported as having more bacterial DNA than controls and show that this may not always be relied upon as evidence for the presence of microbes. Rackaityte et al. depleted human mitochondrial DNA (mtDNA) from their 16S rRNA gene sequence set that co-amplified in the PCR, but neither study accounted for mtDNA in their qPCR analysis, although their primers targeted the 16S rRNA gene and were therefore potentially susceptible to cross-reactivity38,39.

Immunological perspective

The enteric microbiota acts as potent drivers of adaptive mucosal immune maturation and priming in the adult host79-82. Besides their intrinsic immunogenic nature, microorganisms also generate metabolites that critically promote and shape immune maturation and priming83-85. Although the early fetal immune system is immature, recent research demonstrates migration of fetal dendritic cells (DCs) to the mesenteric lymph nodes; somatic hypermutation in fetal B cells; and increasing T cell receptor repertoire diversity, evenness and activation during late fetal development7,86,87.

The existence of metabolically active microbes in the fetus could, in principle, provide one possible explanation for these findings. Mishra et al.39 used an autologous T cell expansion assay to show that fetal DCs loaded with antigen from bacteria that had been isolated from fetal tissues stimulated proliferation of CD45RO+ and CD69+ T cells. T cell proliferation was reduced but still detectable in the absence of DC-derived cytokine release suggesting an activated memory response39. Demonstration that the fetal T cell memory response is specific for the bacteria present in one individual fetus would be necessary to strengthen the interpretation that specific immune responses are routinely driven by fetal bacterial colonization.
There are alternative explanations for fetal immune responses apart from *bona fide* microbial colonization. Maternal antigen-IgG complexes have been detected in cord blood and transplacental immune priming of the fetal immune system in early gestation has been demonstrated. Cross-reactivity, as observed for microbiota reactive enteric secretory immunoglobulin A, would support fetal priming by maternal microbial antigens. Similarly, maternal microbiota-derived microbial molecules partly bound to IgG stimulated innate immune maturation of the murine fetal gut, and maternal intestinal carriage of *Prevotella* protected the offspring from food allergy in humans. Thus, maternal microbiota-derived microbial antigens and metabolites may pass the placental filter directly or bound to IgG and evoke the observed fetal immune responses.

The hypothesis of a low biomass fetal microbiome requires the identification of mechanisms that control and tolerate bacterial populations and prevent overt inflammation and tissue destruction in the presence of viable microorganisms, many of which are opportunistic pathogens. Alongside this, mechanisms by which the commensal or symbiotic microbes survive the immune response and antimicrobial effector molecules would also have to be identified, and it is unclear how the fetal immune system would differentiate between pathogens and symbionts once protective barriers are breached. Given that such immunological and anatomical mechanisms have not been identified or even proposed, the observed immune maturation and priming during fetal development is most likely not induced through colonization of the fetus with live microbes. Instead, fetal immune development might be driven through maternal immune components or microbial fragments and metabolites crossing the placenta, which protects the sterile fetus from live microbes through multiple layers of immunological defence.

Clinical microbiology perspective
No part of the human body is impregnable to bacterial invasion. Transient bloodstream bacteraemia can result from innocuous activities such as tooth brushing, and most host tissues can tolerate occasional ingress by microbes. However, to avoid serious pathology, bacteraemia must be rapidly cleared by innate immune mechanisms and inflammation. Some pathogens establish persistent infections that may be asymptomatic either by evading the immune system or by forming persister cells in response to antibiotic treatment. The claims for non-pathogenic fetal microbial exposure have not established whether host-microbe interactions reflect small scale translocation, asymptomatic infection, persistent symbiosis or mutualism.

The ‘fetal-enriched taxa’ reported include Micrococcus, Lactobacillus, Flavobacterium, Staphylococcus, Escherichia, Enterococcus, Afipia, Pseudomonas, Bradyrhizobium, and Brevundimonas. Mishra et al. also report successful culturing of lactobacilli and staphylococci from fetal tissue, but the lack of unambiguous species-level taxonomic identification of the cultured organisms is an unfortunate and significant technical limitation. Bacteria such as Micrococcus, which were detected in fetal intestines by Rackaityte et al., rarely cause invasive infection in humans. Their prolonged presence within healthy tissues and transmission through the placenta would require bacterial mechanisms of resistance against antimicrobial effector molecules of the host innate immune system. Such mechanisms have not been described for the genus Micrococcus, which is an environmental organism found in water, dust, and soil, and is also a common contaminant. Lactobacilli are usually of low pathogenic potential, they inhabit external mucosal surfaces of healthy humans, including the nose and vagina, and they are often used as probiotics. However, some strains and species of lactobacilli do express potential virulence factors, resist oxidative stress and grow in the absence of iron, which allows them to cause serious infections such as endocarditis when provided with the opportunity to access the bloodstream. This raises potential problems with the interpretation of
lactobacilli being asymptomatic colonizers of fetal tissue rather than contaminants that are picked up during vaginal delivery.

An even greater challenge arises when species of the genus Staphylococcus are considered, particularly strains that were cultured from fetal tissue and that exhibit high-level 16S rRNA gene sequence identity (99-100%) to Staphylococcus aureus and several closely related coagulase-negative Staphylococcus species (CoNS). These organisms can be long-term colonizers of external mucosal surfaces of humans and do not typically cause disease unless the mucosal barrier is breached. However, once they bypass mucosal barriers, they can deploy a more extensive repertoire of virulence factors to invade tissues by degrading connective tissues and, in the case of S. aureus, a repertoire of over a dozen cytolytic toxins genes that kill human cells. CoNS, on the other hand, are ubiquitous skin colonizers. Their detection in clinical diagnostic laboratories is so common that it is considered a major diagnostic challenge and is usually assumed to reflect contamination from the patient and occasionally the healthcare worker, in the absence of other reasons to suspect a CoNS infection. There are, however, distinct clinical scenarios where the presence of CoNS and their pathogenic capacity are considered critical: for example, in patients with indwelling devices and in preterm neonates, they are the most common cause of late-onset neonatal sepsis. Therefore, given that they are either contaminants or overt pathogens, the detection of staphylococci, no matter whether S. aureus or CoNS, is difficult to reconcile with in utero colonization of a healthy fetus.

Other bacteria identified as part of a notional “fetal microbiome”, such as Enterococcus faecalis and Klebsiella pneumoniae, are equally problematic. These belong to a group known as “ESKAPE pathogens”, which include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species.
The lethality of tissue colonization with ESKAPE pathogens is well documented, and these microbes are leading causes of healthcare-acquired infections worldwide with significant mortality and morbidity, even when treated with antibiotics110. Several ESKAPE pathogens readily survive in adverse conditions outside of vertebrate hosts, including drying, oxidative stress, and exposure to heat or sanitation chemicals111. They are likely to persist on inanimate surfaces including utensils or clinical fabrics112,113, thereby increasing their likelihood of being contaminants. While these microorganisms were not reported at the species level39, it is noteworthy that closely related organisms can also cause neonatal sepsis114-116, which makes them unlikely colonizers of a healthy fetus.

A consideration prompted by a notional fetal microbiome is the possibility that the fetus might cope better with nosocomial pathogens than neonates or even adults. However, there is ample evidence to show that amniotic fluid, the placenta and fetal tissues are highly susceptible to bacterial infection, and the outcomes of infections with \textit{Streptococcus agalactiae} or \textit{Listeria monocytogenes} are often catastrophic117,118. Importantly, in \textit{L. monocytogenes} infections that occur during the third trimester of pregnancy, fetal infection progresses while the mother's infection can be cleared, indicating that the fetus does not have greater resistance to infection than an adult human. Therefore, from a clinical perspective, most interpretations brought forward in recent publications38,39 on the presence of microbes in fetuses seem to be biologically difficult to reconcile, as it is highly plausible that they would result in harm or death of the fetus. In agreement with this conclusion, in a series of well-controlled studies in various clinical settings, DiGiulio and co-workers found no evidence for microbes in amniotic fluid except when associated with neonatal morbidity and mortality119-122.

\textbf{Gnotobiology perspective}
The traditional assumption that the human fetus is free from other life forms in utero is based primarily on the observation that, with few exceptions, bacterial and viral pathogens that infect the mother are incapable of crossing the placental barrier to infect the fetus123-125. Additionally, the amnio-chorionic membranes enclosing the fetus in the uterine cavity, as well as the cervical mucus plug, protect the fetus from external microbes. Sterility of the fetus is the basis for the derivation by hysterectomy of germ-free mammals (mainly mice and rats, but also pigs and other species25), which have long been used to study the biochemical, metabolic, and immunological influences of microbes on their mammalian hosts126-128. The primary consideration is whether germ-free animals are truly ‘free of all demonstrable forms of microbial life’129. If they lack microbial associates, there cannot be a fetal microbiome. Testing germ-free animals for contaminating microbes uses microscopic observation of stained fecal smears, culture of feces in nutrient media under various conditions of temperature and gaseous atmosphere124,129-131, PCR using ‘universal bacterial’ primers130,132, and serological assays for viral infections133. These tests consistently demonstrate an absence of microbial associates. Therefore, gnotobiology provides strong evidence that the fetus in utero is sterile.

Summary - The experimental evidence indicates that the healthy human fetus is effectively sterile

Through multiple angles of explanatory considerations, we conclude that the evidence is strongly in favour of the sterile womb hypothesis. Although it is impossible to disprove the occasional presence of live microbes in a healthy human fetus, the available data does not support stable, abundant colonizers under normal, non-pathogenic circumstances. We are aware that our position conflicts with dozens of publications that claim evidence for in utero microbial populations20, but we are confident about in the validity of our multi-layered approach.
The processes by which the fetus matures and becomes immunologically equipped for life in a microbial have life-long implications. Aside from the caution and safeguards recommended in this perspective, our aim here is not to dissuade scientists from exploring the microbial drivers of fetal immune development. We agree with proposals that there is a need to better understand microbial interactions at the maternal-fetal interface20, but do not think that symbiotic microbial populations in the placenta or fetus play a role in this. Paradoxically, we contend that sterile tissues are both immunologically and microbiologically fascinating, but require an adjustment of the methodological approaches used. How does the fetus mature and become immunologically equipped for life in a microbial world in the absence of direct exposure to live microbes? Are maternal-derived microbial metabolites sufficient for fetal immune education? Future research could include exploration of how maternal microbial-derived metabolites and small molecules, as well as maternal immune components, prepare the fetus for the microbial challenges of post-natal life91.

Considerations for the critical evaluation of low- or no biomass samples

Contamination is always a potential confounder in microbiology but is of particular concern for those studying low- or no biomass samples35,37. The issue has been highlighted by recent reports of human tissues, such as blood, brain, and cancers (Box 1), previously thought to contain no, or very little, bacterial biomass that apparently harbour diverse microbial communities. As with intrauterine studies described above, these microbial populations are often discussed in light of their perceived importance for human diseases and health.

In studies on low biomass samples, it is challenging to identify relevant signals from among contaminating noise. In instances of contamination, a tissue may be misjudged as non-sterile, whereas in others, a real microbiological signal may be obfuscated by contamination. The removal
of all sequences present in negative-control samples or that have been previously identified as contaminants in the literature may result in loss of authentic signals. Post-sequencing contamination removal using software packages such as Decontam76 or other statistical approaches35,134 have been developed to remove the more abundant contaminants, leading to microbiome profiles that are more likely to reflect the real community. Practical examples of contamination removal in 16S rRNA gene sequence data is provided by Heida \textit{et al.}65, Saffarian \textit{et al.}135, and Jorissen \textit{et al.}136 and we expand on these examples in Box 1.

We draw attention to the distinction between “low biomass” and no biomass samples. This has practical significance; true “low (microbial) biomass” samples are amenable to contamination-removal approaches but “no (microbial) biomass” samples require a different approach (Box 1). For credible proposals of the presence of microbes, multiple layers of evidence are required, first with quantitative, sensitive (lower detection limit) approaches, such as quantitative PCR with strict controls before contamination-sensitive sequencing approaches are applied. Since contamination removal will provide data regardless of whether microbes are present or absent, the starting proposition should be the null hypothesis to avoid confirmation bias, particularly when results are inconsistent and at the outer technical limits for detection, or if results defy mechanistic plausibility.

Given the limitation of sequencing approaches, confirmation by alternative methods, such as FISH and culture, are required. However, as demonstrated with recent studies of fetal samples, even a combination of approaches has the potential to produce false findings, as contamination during sampling is a considerable challenge. We posit that studies on all low biomass samples can benefit from a similar trans-disciplinary assessment, as applied above for fetal samples, to interpret findings considering biological and mechanistic explanations27. When obligately photosynthetic, psychrophilic, thermophilic, halophilic, or chemolithoautotrophic bacteria are
found in human tissues that do not provide the growth conditions for such organisms23,137, or if the detected genera are known contaminants of laboratory kits/reagents (such as Proteobacteria readily culturable \textit{Pseudomonas} and \textit{E. coli} for example)138-140, the authenticity of such signals should be questioned.

\textbf{Box 1: Experimental considerations for biological samples containing different levels of biomass.}

\textbf{High biomass samples}

\textit{Examples:} Faeces, dental plaque, wastewater treatment plant samples.

\textbf{Impact of contamination:} Very low. The high microbial biomass derived from the sample dominates the signal derived from background contamination, meaning most observations are robust.

\textbf{Mitigations:} Experimental design seldom needs to be significantly adjusted to account for contamination, beyond monitoring “blank” negative control samples that reveal which contaminating species are present and basic post sequencing analysis. Sequencing controls and removing samples with significant contamination levels is nevertheless prudent.

\textbf{Low biomass samples}

\textit{Examples:} Skin Swabs, nasal tract swabs, breastmilk, most respiratory tract samples, tissue biopsies & mucosal samples, including intestinal crypts.

\textbf{Impact of contamination:} Ranges from low to high. Contaminated samples are progressively affected with reducing input microbial biomass37.
Mitigations: Inclusion of multiple controls to facilitate contamination recognition. When possible, samples should be concentrated prior to processing to increase input biomass. Advance consideration of potential sources of contamination during the sample acquisition stage is always recommended. After sample collection, processing should be carried out in a clean-room environment, preferably with all surfaces bleached and UV-treated. The extraction step may benefit from use of non-kit-based methods (e.g. phenol-chloroform extractions) where plasticware and individual reagents can be UV-treated prior to use. Contamination from DNA isolation and PCR kits is usually identifiable, particularly if well-defined batches are created\(^\text{64}\) and controlled using different lot numbers of particular kits. Regardless of the DNA extraction method, the presence of contaminants should be monitored by including “blank” negative controls. The inclusion of controls generated by serial dilution of DNA of known composition (e.g. mock community) will indicate the biomass level at which contamination becomes a dominant feature of sequencing results. Contamination may also be estimated prior to sequencing by qPCR using serially diluted known quantities of spiked input DNA. Post-sequencing analyses, using programs like Decontam, and analysis steps as described by de Goffau et al.\(^\text{35}\) and used by Heida et al.\(^\text{65}\) will usually identify contaminants.

Samples in which the existence of microbes is not established (potential “No-biomass” samples)

Examples: Placental and fetal tissues, amniotic fluid, meconium, brain tissue and cerebrospinal fluid, blood, bone, and internal cancer tissues, healthy middle ear samples.

Impact of contamination: High and potentially up to 100%, unless infection/injury is present.

Mitigations: Experimental design should be robust and directed specifically against contamination. An initial assessment using quantitative methods (e.g. qPCR) with low detection limit and microscopic visualisation (e.g. Gram staining/labelling by FISH) is required to determine
if microbes are present, before embarking on a sequence-based approach. Note such approaches are still susceptible to sample contamination and other artefacts (e.g. non-specific staining or auto-fluorescence from mucins, can sometimes appear “microbe-like” in size and shape)44,141. All mitigations outlined for “Low biomass” samples above should be adopted. Repeating sample processing with different DNA extraction kits/methods31 and/or at different days can also be informative142. These will track the presence of particular species in sequencing profiles associated with specific kits/reagents or environment. Species that are repeatedly detected regardless of technical approach used are more likely to be genuine signals, unless they were introduced during the sample collection. Binary statistics (absence/presence) are recommended. Ideally, the presence of microbes identified by sequencing should be verified with a different technique such as cultivation, another sequencing technique with sufficient taxonomic resolution, and a species-specific qPCR or FISH using high magnification to visualize the size and morphology of individual microbial cells.

References

Seqencing study using robust controls concluding that there is no evidence for a placental microbiome.

The only sequencing study to date that characterized the microbial populations in human fetuses using meconium samples obtained after c-section, concluding no evidence for a microbiota.

One of the first experimental demonstrations that contaminating DNA is ubiquitous in commonly used DNA extraction kits and other laboratory reagents.

Microbial characterisation of fetal samples obtained after vaginal delivery reporting highly limited bacterial colonization.

Analysis of fetal tissues obtained after medical termination of pregnancy in the 2nd trimester and vaginal delivery reporting microbial colonization of the fetus and bacterial priming of fetal immune cells.

Characterization of the microbiota in fetuses obtained by vaginal delivery reporting no evidence for bacterial colonization.

Study demonstrating that aspects of prenatal immune development induced by maternal microbial compounds can occur in the absence of live microbes in the fetus.

Sequencing study of amniotic fluid of 166 women in preterm labor with PCR and culture that showed near-complete positive correlation of bacterial detection with neonatal morbidity and mortality.

Figure 1. Distribution and mean relative abundance (%) of genera present in fetal samples from three recent studies29,38,39 investigating the fetal microbiome and their corresponding abundance in control samples. Taxa were selected based on the following criteria: Genera that were cultured from or enriched in fetal samples as described by Mishra \textit{et al.}39 (indicated by \(^\wedge\)) or by Rackaityte \textit{et al.}38 (indicated by \(^\ast\)); all genera detected in fetal samples from Kennedy \textit{et al.}29; and the PBS-enriched genus \textit{Ralstonia}39. Taxa were grouped by potential source of contamination (see left-hand side illustrations) in agreement with the likely origin of genera (for skin microbes) and previous studies that characterized sources of contamination35-37. For taxonomic data from Rackaityte \textit{et al.}, OTU10 (family \textit{Micrococcaceae}) was manually assigned to the genus
Micrococcus as in the original publication. Publicly available unfiltered relative abundance data associated with each publication were merged into a single phyloseq object (RRID:SCR_01380). Amplicon Sequence Variants (ASVs) were grouped at the genus level. The mean relative abundance of each genus was calculated for each sample type within each study and plotted in R (tidyverse, ggplot2; RRID:SCR_014601). Dot size corresponds to the mean relative abundance of each genus by sample type and study (mean relative abundances <0.0001% were excluded). Dots are colored by sample type: reagent controls in lightest blue (Mishra: PBS n=42, Reagent n=23; Rackaityte: Buffer n=11; Kennedy Reagent n=2); sampling negatives in light blue (Kennedy: Swab n=1; Rackaityte: Air swab n=19; Procedural swab n=16; Moistened swab n=17) and environmental negatives in sky blue (Mishra: Environment n=47, Operator n=12), internal controls in dark blue (Mishra: Thymus n=27, Spleen n=12; Rackaityte: Kidney n=16), fetal lung in pink (Mishra, n=25), fetal gut in purple (Kennedy: n=20; Mishra: n=44; Rackaityte: Proximal n=41, Mid n=45, Distal n=42), and external tissues in red (Mishra: Skin n=35, Placenta n=16).
Figure 2. Reagent contamination in meconium samples of extremely premature infants. **a)**
Representation of the % of reagent contamination in the first meconium of extremely premature infants in relation to the day of procurement of said samples (Day 1-3 or Day 4-6) or in regard to the mode of delivery (C-section or Vaginal). Colors indicate the percentage of reagent contamination reads (legend on top). The day of procurement is significantly correlated with the % of reagent contamination reads \((p = 0.005 \text{ MW-U test or } p = 0.01 \text{ Spearman rho test}) \) and the mode of delivery shows a trend \((p = 0.07 \text{ MW-U test}) \). The number of samples is noted below each category \((n) \). **b)** Lists of reagent contaminants shown together in Figure 2a (top) and of the...
most abundant sample-associated-signals and their association (or lack thereof due to limited size of cohort) with vaginal (V) or C-section (C) delivery (bottom).

Figure 3. Distribution and mean relative abundance (%) of genera present in fetal and control samples from Rackaityte *et al.* by batch as defined by Rackaityte *et al.*. Dominant taxa were manually selected as described in Fig. 1. For taxonomic data OTU10 (family *Micrococcaceae*) was manually assigned to the genus *Micrococcus* as in the original publication. Publicly available unfiltered relative abundance data associated with each publication were merged into a
single phyloseq object (RRID:SCR_01380). ASVs were grouped at the genus level. The mean relative abundance of each genus was calculated for each sample type within each batch and plotted in R (tidyverse, ggplot2; RRID:SCR_014601). Dot size corresponds to the mean relative abundance of each Genus by sample type and batch. Dots are coloured by sample type: reagent controls in lightest blue (Buffer), sampling negative controls in light blue, internal controls in dark blue (Kidney), and fetal gut samples in purple.

Acknowledgements. T.B. receives funding from the Deutsche Forschungsgemeinschaft (German Research Foundation No. BR2925 10-1 & PL241 16-1). J.D. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement ERC-2017-AdG No. 788191 - Homo.symbiosus). W.M.dV. and A.S. are supported by the Academy of Finland (grants 1308255 and 1325103). A.M.E. is funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Department of Health and Human Services, under Grant Number U19AI110818 to the Broad Institute. F.D.B. is funded by AI045008, AI120489, R33HL137063, CA219871, AI139240, and the PennCHOP Microbiome Program. M.A.E. is funded through grants R01HD102318, R01HD098867 and R01NR014784. S.C.G.V. was funded through a Peter Hans Hofschneider Professorship provided by the Stiftung Molekulare
Biomedizin. M.G.G. and D.M.S are funded by the Canada Research Chairs Program. L.J.H. is supported by Wellcome Trust Investigator Awards 100974/C/13/Z and 220876/Z/20/Z; the Biotechnology and Biological Sciences Research Council (BBSRC), Institute Strategic Programme Gut Microbes and Health BB/R012490/1, and its constituent projects BBS/E/F/000PR10353 and BBS/E/F/000PR10356. M.W.H. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 101019157). S.L. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement 852600 Lacto-Be). A.J.M. receives funding from ERCAd HHMM-Neonates and Swiss National Science Sinergia. Work in P.W.O., L.O’M., and J.W. laboratories is supported by Science Foundation Ireland (SFI) through a Centre award (APC/SFI/12/RC/2273_P2) to APC Microbiome Ireland. J.W. acknowledges support through an SFI Professorship (19/RP/6853) and thanks Victoria McMahon for coordination of this review and Ryan O’Callaghan for encouragement. J.R. acknowledges funding from the Interuniversity Special Research Fund (iBOF) Flanders [FLEXIGUT R-11423], the Rega Institute, VIB and KU Leuven. N.S. receives funding from the European Research Council (ERC-STG project MetaPG-716575). F.S. is supported in part by Science Foundation Ireland. G.C.S.S. acknowledges funding from Medical Research Council (UK; MR/K021133/1) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (Women’s Health theme). D.M.S. is funded by the Canadian Institute for Health Research and the Canada Research Chairs Program. A.W.W. receives core funding support from the Scottish Government’s Rural and Environment Science and Analytical Services (RESAS). M.Y. is supported by the Azrieli Faculty Fellowship.