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Abstract

The ocean mixed layer (OML) is a significant and dynamically active part of the ocean which
plays an important role in climate variability. Here, atmospheric processes such as winds, heat
fluxes or density differences drive the generation of small-scale, three-dimensional turbulence
and mixing of oceanic waters. These turbulent flows govern the distribution of buoyant
materials including oil droplets and microplastics, which have significant implications for
marine life and safety. However, turbulent flow structures are often too small to be resolved
by global or regional circulation models, and observations at these scales remain limited.
The focus of this thesis is to use numerical simulations to improve our understanding of the
small-scale, three-dimensional turbulent processes in the OML and examine their role on
transporting and accumulating buoyant material.

We use high resolution large eddy simulations (LES) and direct numerical simulations
(DNS), and model non-inertial, buoyant particles using a combination of buoyant tracers and
three-dimensional Lagrangian particles. Surface cooling drives convection, and under this
regime persistent convective vortices form which trap and accumulate buoyant particles. We
test the resilience of convective vortices under the additional presence of wind, and find that
in weak winds, convective vortices survive but are less effective at trapping buoyant material.
With sufficiently strong wind forcing, convective vortices are no longer visible, but some
clustering occurs in downwelling regions associated with longitudinal wind rolls.

Despite their small size, the convective vortices exhibit a bias towards cyclonic vorticity
which has not been reported previously. We independently vary the Coriolis acceleration
and surface buoyancy flux, and using Lagrangian particles, we find that the large convective
vortices develop through the merger of many small unbiased convective vortices. We propose
a statistical theory to predict the cyclonic bias of large convective vortices and test the
theory using LES results. We apply the theory to typical convective conditions and find that
convective vortices in OML are expected to exhibit a bias, but convective vortices in the
terrestrial and Martian atmospheres are expected to be largely unbiased.

Finally, motivated by accumulation of buoyant material observed at surface fronts in the
SUNRISE field campaign in the Gulf of Mexico, we run simulations of a highly idealised

front under geostrophic adjustment. By varying the balanced Rossby number, we show that



vi

strong fronts develop a three-dimensional instability which generates turbulence near the
top and bottom boundaries. We describe the physical mechanisms at play and the energy
pathways as the front evolves over time. In the case of the most turbulent dynamics, we
additionally model the movement of buoyant particles. Shear instabilities drive turbulence
which enhances mixing, and strongly buoyant particles are carried out of the front during the
first inertial period, which segregates the particles and leaves a large void in the centre of
the front. In contrast, weakly buoyant particles are quickly subducted into the interior, and
subsequently move according to the inertial oscillations of the front.



"You have brains in your head. You have feet in your shoes.
You can steer yourself any direction you choose."

— Dr Seuss
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Chapter 1

Introduction

1.1 Motivation

The upper ocean separates the atmosphere from the deep ocean and plays a crucial role in
the climate system. In this layer, interactions with the atmosphere drive large-scale currents
and small-scale three-dimensional turbulence. These turbulent flows influence the air-sea
exchange of carbon, momentum and heat fluxes, and are an essential component in the
Earth’s climate system (Belcher et al., 2012; Caldwell and Mourn, 1995; D’ Asaro, 2014).
Turbulence also determines the transport, dispersion, and accumulation of materials such
as dissolved gases, nutrients, phytoplankton cells and pollutants. These play a key role in
the marine ecosystem (Denman and Gargett, 1995; Mendelssohn et al., 2012; Worm et al.,
2017) and biogeochemistry. The turbulent flow moves material in ways that are difficult to
predict or model, often causing irregular distributions and much remains unknown about how
turbulent processes affect material transport and mixing in the upper ocean.

Consider as an example the case of microplastics, which are now widespread in the world
oceans and represent a major source of marine pollution (Borrelle et al., 2020). Large plastics
are deposited as waste and fragmented into microplastics through UV radiation, chemical
degradation and mechanical abrasion (Ward and Reddy, 2020). Microplastics tend to be less
dense than seawater (Geyer et al., 2017) with an average density of 965 kg/m® compared to
the average density of 1027 kg/m> for seawater (Morét-Ferguson et al., 2010), and hence
microplastics generally remain close to the surface. Observations suggest that there are up
to 51 trillion pieces of microplastic at the surface of the ocean, corresponding to a mass of
up to 236 thousand metric tonnes (Sebille et al., 2015). This is significantly less than the 20
million metric tonnes deposited each year (Borrelle et al., 2020), and has led scientists to
investigate the so-called ‘missing plastic’ quandary, to which the lack of understanding of

fluid dynamical processes is a major contributor (Sutherland et al., 2023). Plastics degrade
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very slowly and can be ingested by marine life, often at the surface of the ocean (Compa et al.,
2019; Wilcox et al., 2015) which poses a threat to marine life and safety. The development of
removal strategies for microplastics and the design of marine protected areas require detailed
knowledge of the transport and distribution of microplastics in the ocean.

There are a wealth of ocean processes that contribute to the transport of microplastics
which are summarised in figure 1.1. More generally, these processes influence any passive,
buoyant material. At the mesoscale (~ 100 kilometres), wind-driven ocean gyres transport
buoyant material. This is well supported by global circulation models and observations
operational since the 20th century (Kubota, 1994). In particular, the breadth of observations
from the Global Drifter Program since the late 1970s means that transport on this largest
scale is relatively well understood (Elipot et al., 2016) and is not the focus of this thesis.

At the smallest scales, material is subject to much smaller, fully three-dimensional
processes including wind transport, surface waves and convective plumes (C-G in figure 1.1)
which have typical time-scales of seconds to minutes and length-scales of down to a few
centimeters. Field observations of small-scale processes are challenging and few (D’ Asaro
et al., 2018) and transport scales are much too small to be investigated with global circulation
models. Progress has been made using more localised numerical models but face the ongoing
challenge of simultaneously simulating very small vertical scales and larger horizontal scales
(Chamecki et al., 2019).

More recently, increased attention has been brought to oceanographic processes on scales
between the mesoscale and small-scale turbulence. These processes contribute to inter-
scale coupling (McWilliams, 2016) and the transfer of energy through scales. The ocean
submesoscales (B in figure 1.1) range from 0.1 kilometres to 10 kilometres with time-scales
on the order of hours to days. Although often visible from high-resolution satellite imagery
(Kudryavtsev et al., 2012), observations of submesoscale flow features remain limited due to
their rapid evolution (D’ Asaro, 2014).

Observational challenges have led scientists to rely more strongly on numerical methods
which have significantly advanced our understanding of oceanic processes over the last few
years. However there are still obstacles to overcome in the computational world. Numerical
simulations on the global scale are too coarse to capture small-scale flow features that may
influence the transport of material (Haine et al., 2021; Hewitt et al., 2022) including dynamics
at the submesoscale and below. Instead, these processes are parameterised in global ocean
models to account for their effects (Dauhajre et al., 2017; Uchiyama et al., 2017). The
parameterisations are informed by a combination of observations, laboratory experiments,
theory and idealised high resolution numerical simulations (Chor et al., 2021; de Lavergne

et al., 2020). Here, we take the approach of running small-domain numerical experiments
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of isolated physical phenomena on the small-scale turbulent and submesoscale level, where
the role of fluid dynamics on particle motion is most pronounced. Note that our attention
is confined to physical processes in the open-ocean and hence we do not address processes
(H-K) in figure 1.2 in this thesis.

Below I present an overview of the physics and modelling needed to study the diverse
field of material transport. In section 1.2, I provide a detailed discussion of the physical
and theoretical background pertaining to the upper-ocean, with a particular focus on those
addressed in chapters 2-5 of the thesis (convective vortices in section 1.2.2 and adjusting
fronts in section 1.2.3). I then guide the reader through different approaches used to model
upper-ocean processes in section 1.3, before outlining how we model buoyant material
and reviewing the existing literature surrounding buoyant material transport in section 1.4.

Finally, in section 1.5, I give an outline of the following chapters.

1.2 Physical background

The surface ocean mixed layer (OML) is the uppermost layer of the ocean where turbulence
driven by atmospheric forcing acts to maintain weak density stratification (McWilliams,
2006; Pedlosky, 1987) and vertically mixes water properties to depths of roughly 10 to 100
metres. The OML is bounded from below by a strong buoyancy interface which takes the
form of a layer with a sharp vertical decrease in temperature (the seasonal thermocline) or
a sharp vertical increase in salinity (halocline), or both. In all cases, this layer (called a
pycnocline) is stably stratified, and here turbulence is damped, suppressing vertical motions
below it. The OML also admits a variety of submesoscale processes due to the abundance
of lateral density gradients, vertical shear and weak stratification. These provide ideal
conditions for the formation of sharp density fronts. Larger submesoscale currents act to
increase the stratification of the upper ocean (Bachman and Taylor, 2016; Callies and Ferrari,
2018; Fox-Kemper et al., 2008; Mahadevan et al., 2012) which limits the depth to which
atmospheric-driven small-scale turbulent processes can penetrate downwards and reduces
the depth of the OML (Taylor, 2016; Taylor and Ferrari, 2011).

Despite being small in volume, the OML plays a vital role in the climate system. For
example, the OML regulates sea-surface temperature dynamics (Deser et al., 2010) and
boundary conditions for air-sea fluxes (Frankignoul and Hasselmann, 1977; Kraus and Turner,
1967) and controls global ocean circulation (Hanawa and Talley, 2001) thus impacting climate
change (Belcher et al., 2012; D’ Asaro, 2014; Gargett and Wells, 2007; Li et al., 2017). A
significant fraction of the ocean’s primary production occurs in the sunlit OML, while the
ocean contributes roughly half of the global primary production (Falkowski et al., 1998).
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Littoral Continental Shelf Offshore PHYSICAL PROCESSES

Large-scale open ocean processes

Submesoscale open ocean processes

Open ocean Stokes drift

Internal tides

Direct wind transport (windage)
Langmuir circulation

Vertical mixing
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Extreme events

- X «

Transport by biology

om m 5m 10m 50m 100m 500m >1,000m

Sea floor depth

Fig. 1.1 A schematic showing the physical processes in the ocean which affect transport of
plastic (depicted in pink), accompanied by a table quantifying the relative importance of each
process. Thick pink lines indicate a highly important physical process and thin pink lines
indicate physical processes of lesser importance. Green lines indicate transport by organisms.
Reprinted with permission from Sebille et al. (2020).
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Most human interactions with the ocean are confined to the OML making it an important
region for the mixing and transport of pollutants. Although the atmospheric boundary layer
(ABL) has some striking similarities to the OML (such as the stratification profile), the
constantly changing mobile sea surface modifies turbulent dynamics in the OML resulting in

unique flows that have no atmospheric counterparts.

1.2.1 Small-scale turbulent processes

The turbulence which characterises the OML is primarily driven by atmospheric processes
at the upper boundary, although at the bottom boundary, large turbulent eddies can entrain
denser fluid from below into the OML. Figure 1.2 provides an overview of the physical
processes relevant to material transport in the OML. Within this, there are three main forcings
that account for the majority of the turbulence in the OML (Belcher et al., 2012): buoyancy
fluxes at the surface (associated with shortwave and longwave radiation entering and leaving
the ocean and evaporation and precipitation), wind shear (with an Ekman spiral in the
presence of rotation), and waves (breaking and non-breaking).

Buoyancy fluxes occur whenever there is a change in water density at the ocean surface,
either via incoming and outgoing heat fluxes, or salinity fluxes driven by precipitation or
evaporation. Here, we use the convention that a positive buoyancy flux is associated with an
input of buoyancy at the sea surface which increases the density stratification and reduces
the mixed layer depth. These conditions are usually associated with solar insolation during
daylight hours, or precipitation. In contrast, night-time cooling of the ocean surface causes a
negative buoyancy flux which drives turbulence and helps to deepen the OML (McWilliams,
2006). In this case, surface waters become more dense than the subsurface waters and
down-well as convective plumes which creates small-scale three-dimensional turbulence with
large vertical motions throughout the OML. This convective regime is often characterised
by a regular pattern of narrow and intense convergent plumes surrounding large, weak areas
of diverging fluid (Busse, 1978; Mason, 1989). Once surface cooling begins to wane at the
start of day, convection quickly ceases and a diurnal cycle of restratification and deepening is
borne out. The diurnal heating cycle which drives convection is one of the aforementioned
similarities between the OML and ABL.

Secondly, wind blowing over the surface of the ocean induces a tangential stress (wind
stress) at the interface which generates a vertical flux of horizontal momentum. When
the OML is neutrally or stably stratified, the momentum flux is large at the surface and
decreases as depth increases. Viscous forces between the moving surface water and the
relatively stationary water below drive a vertical shear and when the shear is sufficiently
strong, turbulence is generated. There are a number of pathways through which the energy
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input from the wind is dissipated (Wunsch and Ferrari, 2004). Wind-driven turbulence
transfers energy to small-scales where it can be removed via molecular friction. Turbulent
kinetic energy can also be used to mix the stable density profile, increasing the potential
energy at the expense of kinetic energy. In addition, low frequency (near-inertial) internal
waves carry momentum and energy into the ocean interior. Over timescales of about a day,
the Coriolis acceleration deflects the wind-driven currents and an Ekman spiral forms. In
the Northern Hemisphere, the surface layer transport points to the right of the wind stress
and convergence and divergence of surface flow associated with variable wind forcing drives
vertical motion in subsurface waters.

Winds also generate surface waves. Surface waves drive an orbital motion which directly
contributes to the surface circulation. The depth dependence of the amplitude of the orbital
motion induces a mean Lagrangian velocity profile in the direction of wave propagation,
commonly referred to as Stokes drift (McWilliams et al., 1997; Stokes, 1847; Thorpe, 2004).
The interaction between the Stokes drift and turbulence, known as the Craik-Leibovich
interaction generates the well-known Langmuir circulations (Craik and Leibovich, 1976)
characterised by large, coherent, counter-rotating vortices in the upper ocean which align
with the direction of surface wind (Leibovich, 1983). When neighbouring vortices rotate
away from each other, a divergent zone of upwelling is created between cells and when they
rotate towards each other, a convergent zone of downwelling is created. The alternating
regions of divergence and convergence can concentrate material in long windrows parallel to
the wind direction which was first quantitatively observed by Langmuir (1938).

Breaking waves release momentum input by the wind into the water column in localised
intermittent impulses, producing bubbles and sea spray. This dissipates energy and produces
turbulence near the surface, which contributes to mixing. However, the intensity of turbulence
is generally confined to a depth comparable to the breaking wave’s amplitude, which is usually
much smaller than the depth of the OML (Melville, 1996).

Finally, we note that compared to large-scale motion, the effect of the Earth’s planetary
rotation at small-scales is usually assumed to be negligible (Klinger and Marshall, 1995;
Morton, 1966). The Rossby number characterises the relative importance of the Coriolis
acceleration and the fluid inertia and is defined as Ro = U/(fL) where U and L are the
characteristic scales of horizontal velocity and length, and f is the Coriolis parameter. When
Ro > 1, flows are in a non-rotating regime with dynamics dominated by advection and
diffusion. Horizontal scales smaller than a few hundred metres are characterised by a large
Rossby number (Ro > 1), so rotational effects are generally assumed to be weak for small-

scale, turbulent processes in the OML described above. Indeed, rotation is largely neglected
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Radiation

OML

Bubbles

Buoyant Particles

Tracers
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Fig. 1.2 Schematic of relevant processes for the transport of material in the OML including
wind shear (which induces an Ekman spiral in the presence of rotation), buoyancy fluxes
(driven by longwave and shortwave radiation) and breaking waves. The inset shows four
different particle trajectories compared to flow streamlines: a surface floater (which we refer
to as surface drifters), a buoyant particle, a neutral fluid tracer (or a neutrally buoyant particle
- note that we use the term ‘tracer’ to describe a continuous Eulerian concentration field) and
a sinking particle (negatively buoyant particle). Reprinted with permission from Chamecki
et al. (2019).

in most studies of the OML (Chor et al., 2018a) and ABL (Stubley and Riopelle, 1988). The
work presented in this thesis challenges this assumption.

1.2.2 Convective vortices

Before proceeding to larger scales, we provide a more extended discussion on features in
buoyancy driven flows which constitutes a major aspect of chapters 3 and 4 in this thesis.
In convective fluids, small ‘convective vortices’ with a vertical axis of rotation develop,
particularly in the vertices joining two or more convective cells. Despite having been studied
in the ABL for more than a century (Baddeley, 1860), only recently have oceanic simulations

uncovered the presence of convective vortices akin to those observed in the atmosphere
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(Chor et al., 2018a). Although this thesis predominantly focuses on oceanic applications,
here we discuss convective vortices more generally to better contextualise and introduce this
interesting phenomenon.

The most widely documented convective vortices occur in the terrestrial atmosphere.
These are often made visible by entrained dust, sand and soil and for this reason, are
commonly referred to as dust devils. Atmospheric convective vortices can also take the form
of water spouts if they form over a body of water, or can occur in the absence of any visible
tracers leading scientists to believe they are much more common than originally thought
(Kanak, 2006). The upward moving, spiraling flow, as in figure 1.3a, is typically caused
by insolation-induced heating of near-surface air. Wind speeds of dust devils are not high
enough to significantly endanger humans, but their ability to lift mineral dust and aerosols
makes them an important component of the climate system. For example, the transport of
dust from the surface to the atmosphere is thought to be several orders of magnitude higher
than the background dust flux when a dust devil is present (Renno et al., 2004). Consequently,
dust devils have been considered in the global dust budget (Gillette and Sinclair, 1990; Han
et al., 2016; Metzger et al., 2011; Tang et al., 2018), global radiation budget and the water
and carbon cycle (Shao et al., 2011), and could be hazardous to low flying aircraft (Lorenz,
2012; Lorenz and Myers, 2005). The contribution of dust devils compared to boundary layer
winds in the dust cycle is still under debate (Jemmett-Smith et al., 2015; Koch and Renno,
2005) and apart from in some arid regions, dust devils are thought to be only ‘nuisance level’
phenomena.

More recently, several landed spacecraft (e.g. VO, MPF-IMP) have observed convective
vortices in the Martian atmosphere (Balme and Greeley, 2006; Ellehoj et al., 2010; Kahanpii
et al., 2016; Metzger et al., 1999), an example of which can be seen in figure 1.3b. Although
the structure of a Martian dust devil is similar to its terrestrial counter-part (Balme and
Greeley, 2006; Metzger et al., 1999), they can be up to an order of magnitude larger and thus
have a higher dust load which could pose challenges to future exploration of Mars (Balme
and Greeley, 2006). As in the terrestrial case, they play an important role in the climate,
surface-atmosphere interaction and dust cycle on Mars (Greeley et al., 2003; Toigo et al.,
2003).

Convective vortices in the OML have only been reported in simulations within the last
few years (Chor et al., 2018a) and, to our knowledge, have not yet been observed in the
ocean. Chor et al. (2018a) suggests that oceanic convective vortices are resilient and coherent
features of the flow (figure 1.3d) with a much longer persistence time than other surface
flow structures. Additionally, convective vortices can advect buoyant particles such as

microplastics and oil droplets, trapping them in small clusters at the surface (Chor et al.,
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2018a) which could have strong implications for marine life (Compa et al., 2019; Wilcox
et al., 2015).

Although some properties may differ between convective vortices in different settings,
there are several similarities worth noting. Similar to Rayleigh-Benard convection, atmo-
spheric and oceanic convection is often characterised by a regular, hexagonal-like (Busse,
1978; Mason, 1989) pattern with narrow and intense convergent plumes surrounding large,
weak areas of diverging fluid. It is within the narrow, convergent regions where the convective
vortices are most frequently found, particularly in the vertices joining two or more convective
cells (Chor et al., 2018a; Raasch and Franke, 2011). The centre of a convective vortex is
marked by a local maximum of vorticity, a minimum of pressure and a change in the direction
of horizontal velocity (Sinclair, 1969). An example of the instantaneous three-dimensional
structure of a simulated convective vortex is visualised in figure 1.3c, which uses Lagrangian
particles, analogous to dust particles in dust devils, advected with the velocity field and
reveals the inwards spiraling, tube-like flow pattern. Efforts to understand the formation
mechanism of convective vortices remain inconclusive, with favoured theories being the
so-called ‘hairpin’ mechanism (Kanak, 2006; Renno et al., 2004), or the concentration of
vertical vorticity by general flow convergence. Difficulties arise in explaining why they form
in the absence of mean winds or surface inhomogeneities, and why vortices preferentially
appear at the vertices between convective cells. Finally, whether convective vortices have a
preferred sense of rotation is a long-debated topic (Durward, 1931; Sinclair, 1965). It is often
assumed that planetary rotation does not have a direct influence on convection in boundary
layers in the atmosphere and ocean (Klinger and Marshall, 1995; Morton, 1966; Stubley and
Riopelle, 1988). The general consensus in the atmosphere is that there is no rotational bias
(Raasch and Franke, 2011), which agrees well with the conventional view that convective
vortices are too small to be affected by planetary rotation (Morton, 1966).

1.2.3 Submesoscale fronts

Submesoscale dynamics fall between the small-scale, turbulent processes and the rotationally-
dominated, geostrophically-balanced large-scale motions and develop in a regime of weak
stratification such as the OML (Thomas et al., 2008). Flows at the submesoscale level are
usually visible as smaller eddies at the periphery of mesoscale eddies, or along temperature
or salinity fronts and filaments. Typically characterised by Ro ~ 1, Earth’s rotation is
important but does not constrain motion as strongly as at the larger scales, allowing for
some three-dimensional motion. This enables flows at the submesoscale level to develop
strong horizontally convergent surface currents and strong vertical velocities (Mahadevan
and Tandon, 2006) which could stimulate the subduction of surface waters to the interior
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Fig. 1.3 (a) A dust devil in the Arizona desert on June 10, 2005 (NASA); (b) a dust devil on
Mars photographed by the Spirit rover on the 486th day of the Martian year (NASA); (c) flow
visualisation of a convective vortex in the atmosphere using trajectories of particles moving
passively with the flow (reproduced with permission from Raasch and Franke (2011));
(d) visualisation of several vertical vortices in a small region of an oceanic convection
simulation with colour contours of the 2D Okubo parameter at the top surface (reproduced
with permission from Chor et al. (2018a)).
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(Capet et al., 2008; Lévy et al., 2012; Thomas et al., 2008), or enhance nutrient supply and
the exchange of dissolved gases with the atmosphere. In contrast to the well-studied large
and small-scale processes in the OML, research on the impacts of submesoscales are limited
to the last two decades and much remains unknown.

Submesoscales arise in the upper ocean through a variety of mechanisms including
unforced instabilities, such as the ageostrophic baroclinic instability (Boccaletti et al., 2007;
Molemaker et al., 2005), forced instabilities, for example through surface winds, waves or
heat fluxes at the boundaries (Tandon and Garrett, 1994) or frontal sharpening (frontogenesis).
Due to the relative importance of rotation, inertia and stratification, submesoscales are
associated with a dual energy cascade transferring energy both up-scale and down-scale
(Capet et al., 2008; Molemaker et al., 2010). Firstly, energy can move up scales due to
an inverse 2D cascade or via geostrophic turbulence (Salmon, 1980). More interestingly,
submesoscales play a key role in the forward energy cascade, which has been an ongoing
conundrum in geophysical fluid dynamics (McWilliams et al., 2001). The instabilities
associated with submesoscale dynamics draw their energy from kinetic and potential energy
reservoirs stored in mesoscale features and transfer it to smaller scales where it can be
dissipated through secondary instabilities and three-dimensional processes (Boccaletti et al.,
2007; Capet et al., 2008; Klein et al., 2008).

A front is an elongated region of fluid with an abrupt change in density in one horizontal
direction, typically known as the ‘cross-front’ direction, but a weak density gradient in the
perpendicular direction (the ‘along front’ direction) (Hoskins, 1982). Although fronts are
commonplace in both larger (e.g. western boundary currents or the Antarctic Circumpolar
Current) and smaller scales (e.g. shelf break and tidal fronts), the &'(1) Rossby number at
the submesoscale level rapidly intensifies submesoscale fronts making them amongst the
strongest in the OML (McWilliams, 2016; Shakespeare and Taylor, 2014). Submesoscale
fronts are associated with large vertical velocities which act to increase the transport of
tracers (e.g. heat, carbon dioxide, nutrients, pollutants) into the ocean interior. The enhanced
communication between the atmosphere and ocean (Taylor and Thompson, 2023) means that
submesoscales are often hotspots for biological activity (Ferrari, 2011; Thomas et al., 2008).

Submesoscale fronts tend to exist as relatively stable and long-lived features of the ocean
that can last for several days. The density gradient across the front is associated with a
pressure gradient which can be partly balanced by the Coriolis acceleration, arising due
to the rotation of the Earth. If the pressure gradient and Coriolis acceleration are in exact
geostrophic balance, we observe flow along the front. When the pressure field is also in
hydrostatic balance, flow is often said to be in thermal wind balance (originally derived in

the atmospheric framework).
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Geostrophic balance can be disrupted by background flows (such as eddies) or external
forcing (such as buoyancy fluxes or wind stress). The process by which an unbalanced flow
tends to evolve back towards geostrophic balance is known as geostrophic adjustment, also
commonly referred to as Rossby adjustment. This was first introduced by Rossby (1937)
who considered a wind-driven momentum imbalance and found that for a relatively weak
imbalance, a secondary, ageostrophic circulation is generated about the front that restores
the flow back to a balanced geostrophic state by tilting the isopycnals toward the horizontal,
bringing light fluid over the top of dense fluid. Later studies (Tandon and Garrett, 1994)
showed that a change in the buoyancy of a fluid layer (which could be driven by insolation,
precipitation or a storm) leads to a pressure imbalance and also stimulates geostrophic
adjustment and a corresponding secondary circulation.

In 1984, Ou (1984) used a Lagrangian framework to study the geostrophically adjusted
state of an initially motionless fluid with non-constant buoyancy gradients. Ou’s results
demonstrated that the secondary circulations associated with geostrophic adjustment can
produce regions of strong convergence where pre-existing density gradients are steepened.
When the initial density gradient is sufficiently sharp, Ou’s analysis revealed the possibility
for the formation of singularities in the inviscid equations at the region of strong convergence
and in this case, a geostrophically adjusted state does not exist. Blumen and Wu (1995)
extended Ou’s work by putting the above formulation into the Eliassen (1962) momentum
co-ordinate framework to determine the solution for the adjusted steady state in the case of
uniform potential vorticity flow. Even still, questions about the larger imbalance case remain
(Plougonven and Zeitlin, 2005). In chapters 5 and 6, we use numerical simulations to study
geostrophic adjustment and use these to compare and contrast the geostrophically balanced
state with Ou (1984) for weak imbalances, and explore the very sharp density gradients that

arise during frontogenesis for larger imbalances.

1.3 Modelling the ocean mixed layer

Observing small-scale, turbulent processes in the OML is very difficult due to the rapid
evolution and small length-scale of these features. They are often masked by larger, non-
turbulent motions such as surface and internal waves which are present across the entire
layer and cannot be easily separated from the turbulent motions of interest (D’ Asaro, 2014).
It is difficult to take measurements since velocities generated by a moving ship (or similar
platform) are much larger than the turbulent velocities of interest at the surface. Some success
has been achieved with instruments such as Lagrangian floats (D’ Asaro, 2003; D’ Asaro et al.,
1996), multibeam acoustic Doppler current profilers (Gargett and Wells, 2007; Thomson et al.,
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2009) and fast-response sensors on vertical or horizontal profiling instruments (Gregg, 1998)
but it remains challenging to assess the effects of a single ocean process under controlled
conditions. Partly due to these difficulties, computational methods are an important tool in
understanding OML dynamics.

Like most computational fluid dynamics problems, we begin with the classical Navier—Stokes
equations. For an incompressible fluid under the Boussinesq approximation (where we as-
sume that changes in density are small compared with the mean density of the fluid for
buoyancy-driven flows), the equations for velocity u = (u, v, w), pressure p and buoyancy b

arc:

V.u=0, (1.1)
D 1 .
M fxu=——VprvViutbi+F(x,y), (1.2)
Dr Po
Db
— =1,V . 1.3
Dr b (1.3)

In equation (1.2), f is the Coriolis force, Vv is the molecular viscosity, pg is the reference
density, F(x,y) is a spatially-varying body force, V = (d/dx,d/dy,d/dz),z = (0,0,1) is the
basis vector in the positive z direction, and D /Dt = d/dt +u -V is the material derivative. In
equation (1.3), k3, is the molecular diffusivity for buoyancy. To solve this system of equations
numerically, two different discretisations are required; we need to approximate the flow
field on a discrete set of spatial points and we need to advance the equation in time using
discrete time-steps. An ongoing challenge of the numerical approach is how to best choose
the number of spatial points and time-steps; too few points or time-steps can result in an
inaccurate, unstable simulation but too many can be prohibitively computationally expensive.
Depending on the length and time-scale of the process being modelled, we have to find a
practical balance.

To model the roughly nine orders of magnitude difference in scales in the OML would
require a very large domain to capture the largest scales, but a very fine grid discretisation
to ensure that the smallest scales are also resolved. The computational power required for
this is so large that a simulation which truly captures the full range of processes is unfeasible
for the foreseeable future (Pope, 2001). To overcome this obstacle, studies typically use one
of two approaches, which prioritise either the large-scale or small-scale motions. The first
approach consists of running large-domain, global or regional models and parameterising the
small-scale processes. The difficulty of observing OML phenomena means that many such
parameterisations have been adapted from the ABL (Large et al., 1994) which sometimes

leads to incorrect modelling or omission of processes that are unique to the ocean. For
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example, studies have expressed a need for parameterising mixing generated in Langmuir
turbulence (McWilliams and Sullivan, 2000; McWilliams et al., 1997) which is missed in an
ABL parameterisation. Large domain models are the most applicable to studies of mesoscale
processes and the associated material transport at this level (Dauhajre et al., 2017; Uchiyama
et al., 2017). The second approach targets small-scale processes by focusing on a small
domain and disregarding the larger-scale phenomena. In this setup, it is common to isolate
one or two small-scale processes, for example simulating either Langmuir dominated regimes
or convective dominated regimes. Although it may be challenging to obtain a full picture of
how different processes interact, the controlled, systematic approach allows us to explore
each process in detail and fully understand the physics and its effects. This can in turn inform
the larger-scale models which parameterise the effects of small-scale processes.
Throughout this thesis, we take the latter approach and run numerical experiments with
horizontal scale /(100 m). Even still, challenges remain in choosing the spatial and temporal
resolution small enough to be computationally efficient, but large enough to capture enough
information about the desired system. Consider as an example the case of convective vortices.
Since convective vortices are not isolated phenomena but are part of a convective system, we
need to resolve scales of the whole convective layer as well as capturing the much smaller
convective vortices. This limits the resolution of a convective vortex to only a couple of grid
points (Chor et al., 2018a; Giersch et al., 2019). Below, we outline two of the main numerical

methods used to tackle such problems.

1.3.1 Direct numerical simulations

A direct numerical simulation (DNS) is a technique that solves the governing equations
(1.1)-(1.3) ‘exactly’ without any turbulence model. This minimises numerical artefacts that
could be introduced and unwittingly interact with the physical phenomena we want to study.
To ensure the equations are solved accurately, we need to make the spatial and temporal
resolution to be small enough to capture the very smallest and fastest evolving features. We

can estimate the smallest scale of turbulence using the Kolmogorov scale, ng, defined as

3\ 1/4
nKN(%) : (1.4)

where V is the molecular viscosity and € is the viscous dissipation of kinetic energy (Kol-

mogorov, 1962, 1991). The fastest time-scale of turbulence is estimated as

1/2
tn ~ G) . (1.5)
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For flows with a wide range of scales, it quickly becomes difficult to resolve a simulation
down to the Kolmogorov scale in every direction. One way to circumvent this is to choose an
artificially high value of viscosity which forces the Kolmogorov scale to be more attainable.
However, v is then much larger than the true molecular value which somewhat clouds the
interpretation of the simulations. We can view these simulations in two ways. Firstly, we
can simply interpret them as low Reynolds number simulations. Secondly, we can view the
larger value of viscosity as an eddy viscosity which is associated with unresolved turbulence
in the mixed layer. In chapter 5, we use DNS and take the latter approach. Even still, the
high computational expense associated with DNS limits the parameter space and domain size

that we can feasibly consider.

1.3.2 Large eddy simulations

Oftentimes DNS is still prohibitively computationally expensive simply because we do not
have enough computational resources to resolve down to the Kolmogorov scale. In the
past few decades, large eddy simulations (LES) have been adopted in ocean modelling
(McWilliams et al., 1997; Skyllingstad and Denbo, 1995) which have enabled high-fidelity
simulations that capture three-dimensional turbulence with a good level of accuracy. Coupled
with the recent progress in parallel computing, LES can tackle problems with a wider range
of scales than DNS, such as those associated with OML turbulence.

Whilst DNS resolves all scales of motion, LES only resolve scales larger than a prescribed
length-scale (usually termed the filter width) set by the grid spacing, and model the influence
of any smaller scales using a parameterisation scheme. Comprehensive reviews of LES can
be found in Lesieur and Metais (1996), Meneveau and Katz (2000), and Sagaut (2006). This
modelling approach lies in between DNS and the less accurate Reynolds averaged Navier
Stokes (RANS) approach, where all turbulence is parameterised. We use the LES approach
in chapters 3, 4 and 6.

In an LES, the Navier-Stokes equations are filtered in space modifying equations (1.1
-1.3) to:

V.u=0, (1.6)
Du _ 1 b Tm
— +fxu=—-——Vp+vVu+bz+F(x,y)—V-T, (1.7)
Dt Po
Db -
— =k, V?h—V.A 1.8
D1 Kp , (1.8)

where u indicates the filtered velocity, more formally defined as u = u+ uggs where uggs

is the sub-grid scale (SGS) velocity. The pressure and buoyancy fields are decomposed
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similarly as b = b+ bggs and p = P+ psgs. LES solve for i on a discretised grid and model
contributions of uggs. In particular, T in equation (1.7) and A in equation (1.8) represent the
effect of the sub-filter scales on the filtered velocity and buoyancy. By only resolving the
filtered velocity, the number of grid points is significantly smaller which reduces the overall
computational cost of the simulation.

There are many possible choices of models for 7 and A. Studies of OML turbulence often
use an eddy-viscosity model (Smagorinsky, 1963) where T = —2vygs|S| for the resolved
strain-rate tensor, S, and A = —Kks;sVb. Under this configuration, the aim is to develop a
model for the SGS viscosity, Vsgs, and the SGS scalar diffusivity, Ksgs. Typically, models
assume that the SGS Prandtl number Prsgs = Vsgs/Ksgs = 1, so we only need to model
Vsgs. Common choices often include the Smagorinsky model (Smagorinsky, 1963), dynamic
Smagorinsky model (Germano et al., 1991) or Deardorff 1.5 closure (Deardorff, 1973), which
we review briefly below. The choice of SGS model is important; although the mean fields are
fairly insensitive to the SGS model, second-order statistics and behaviour near the boundaries
are more significantly affected (see as an example the comparison between McWilliams et al.
(1997) and Yang et al. (2015) for a Langmuir turbulent regime). In the ABL, the effects of
different SGS models have been compared at length (Bou-Zeid et al., 2005; Mirocha et al.,
2014) and given the importance of small-scale turbulence near the surface of the ocean, a
similar comparison for the OML remains a desirable topic of research, although not one
addressed here.

The constant Smagorinsky model is one of the oldest and most frequently used SGS
models (Smagorinsky, 1963). Here, the SGS viscosity is Vsgs = (CsA)?|S| where A is the
filter width and Cj is the Smagorinksy constant (usually taken as C; = 0.13 as suggested by
Deardorft (1970)). However, the constant Smagorinsky model typically performs poorly in
laminar flows where the SGS energy is very small. To address this, the dynamic Smagroinksy
model was derived by Germano et al. (1991), which calculates the SGS viscosity in the same
way as the Smagorinsky model, but allows the coefficient C; to vary in space and time. The
dynamic coefficient is estimated by a comparison of scales between a test case filter and
the original LES filter width. This model performs better in laminar flows, but is highly
computationally expensive and can be numerically unstable. More recently, the anisotropic
minimum dissipation (AMD) model has been developed by Rozema et al. (2015) following
Abkar et al. (2016). This model seeks to minimise the eddy viscosity required to dissipate
the SGS energy, whilst also maintaining separation between large and small scales of motion.
Specifically, vsgs depends on invariants of the resolved rate of strain and rate of rotation
tensors, whose full expression is given in Vreugdenhil and Taylor (2018). In chapter 3 and 4,

we use the AMD model to ensure energy is not overly dissipated in wind-driven flows. In
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contrast, chapter 6 employs the constant Smagorinsky model for ease of comparison with the
DNS presented in chapter 5, and to reduce numerical noise near the surface. Further specifics
about the SGS model choice are presented in appendix 6.A.

All simulations conducted as part of this thesis use the numerical solver DIABLO,
originally developed by Taylor (2008) and Bewley (2019). MPI parallelisation enhances
computational efficiency, horizontal derivatives are computed using pseudospectral methods
and fast Fourier transforms (FFT) in the horizontal directions and centred second-order finite
difference in the vertical direction, and time-stepping is achieved through a combination of
the explicit third-order Runge—Kutta method and Crank—Nicolson method.

1.4 Material transport

The challenges in modelling the OML also have repercussions on the study of material
transport, of which there are again limited observations due to the short time-scales and small
length-scales involved. We broadly define material to include solid particles, liquid droplets
(in a gas), and gas bubbles (in a liquid). Material that is small enough to be treated as a point
particle (i.e. the geometry doesn’t matter) is termed a particle. Particles that are less dense
than sea water are positively buoyant, and tend to remain close to the surface of the ocean
(e.g. microplastics, oil droplets, sargassum, some phytoplankton cells). We refer to buoyant
particles that stay on the surface and never move off as surface particles, sometimes also
known as surface drifters or floaters. Neutrally buoyant particles have the same density as sea
water and their motion tracks that of fluid particles. Particles which have a density greater
than seawater are termed sinking particles (e.g. suspended sediments), and self-propelled
particles which can produce their own motion are known as active particles (e.g. swimming
plankton). A summary of this is given in the inset of figure 1.2 where the only distinction is
that ‘tracer’ is used to describe a neutrally buoyant particle. In this thesis, our attention is
primarily devoted to buoyant particles, examples of which include microplastics, oil droplets

and some phytoplankta.

1.4.1 Particle equations of motion

Similar to the Navier-Stokes equations for a fluid, we need an equation of motion to model
the movement of particles. We begin by describing some further details about properties of
particles before introducing the relevant equations below. The difference between the particle
velocity, w, and the vertical fluid velocity, w is called the slip velocity, wy = w), —w, also

known as the terminal rise velocity or free-fall velocity. This characterises how positively
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or negatively buoyant a particle is. For buoyant particles which are our primary focus, wy is
positive. If the slip velocity exceeds the local downwards vertical velocity, that is wg +w > 0,
the particle moves upwards. Similarly, if ws +w < O then the particle moves downwards.
Examples of typical values of the slip velocity are wy >~ 5 — 25 mm/s for microplastics
(Kukulka et al., 2012), wy ~ 8 — 300 mm/s for oil droplets (Chor et al., 2018a) and w; ~ 0.27
mm/s for the marine species Noctiluca scintillans (Tiselius and Kigrboe, 1998). Contrast this
with an estimate of the vertical velocity in the OML such as Langmuir circulations which
have an average vertical velocity of about 10 — 200 mm/s (Harcourt and D’ Asaro, 2008;
Leibovich, 1983; Weller and Price, 1988), breaking waves which have an average vertical
velocity of about 50 mm/s (Sullivan et al., 2007) or submesoscales which have a vertical
velocity of about 10 mm/s (D’ Asaro et al., 2018; Taylor, 2018). Overall, we estimate the root
mean square vertical velocity in the OML to be w,,,,; ==~ 1 — 100 mm/s which places the
particle slip velocity in the middle of the typical range of the vertical velocity. To simplify
modelling, most studies hold wy constant (D’ Asaro, 2008; Lande and Wood, 1987; Ruiz,
1996) which is equivalent to assuming the particle has constant size and density. In reality
there are many factors including biofouling, chemical degradation or mechanical abrasion
which change w and can even turn buoyant particles into sinking particles (Kooi et al., 2017;
Long et al., 2015), although on much longer time-scales than we consider here.

In most practical applications, the volume fraction and mass loading of particles is small.
Here, we assume it is sufficiently small that we can neglect both interactions between the
particles and neglect the effect of particles on the flow. This approach is often referred to as
one way coupling (Balachandar and Eaton, 2010), or a passive dispersed phase. Note this
means that although the particles themselves may be buoyant, they do not affect the fluid
buoyancy.

The motion of small, inertial, spherical particles immersed in a turbulent flow field is
described by the Maxey-Riley equation (Maxey and Riley, 1983). The starting point for most
studies is a somewhat simplified version of the particle equation (Balkovsky et al., 2001;
Chamecki et al., 2019) where the Faxen correction, Basset history force and lift force are
neglected on the basis that the radius of the particle is much smaller than the scales over
which the fluid velocity changes (i.e. particle radius is much smaller than the Kolmogorov
scale). Brownian motion is also neglected since the focus is on sufficiently large scales that
this factor is unimportant. Under these assumptions, the particle velocity, v, satisfies the

following equation:

d — ~ D
“p_ u+ﬂz+(1+&)—u, (1.9)
T T,8 ) Dt
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where u is the fluid velocity, 7, is the particle response time and w; is the terminal slip
velocity. Even still, solving this equation requires evolving a complicated set of differential
equations and further simplification is not only desirable but often necessary for modelling
purposes. Similar to other studies of particles in OML turbulence (Chamecki et al., 2019;
Yang et al., 2014), we make three further assumptions outlined below.

Firstly, we consider the particle Reynolds number, Re, = |v, —u|d,/v (where d), is
the particle diameter) which characterises the relative importance of viscous drag and fluid
inertia on a particle. When Re,, < 1, particles are described as being in the Stokes regime.
Under this regime, the drag force and buoyancy force on a small spherical particle are given
by (Balachandar and Eaton, 2010; Yang et al., 2016):

1
szgwwqumﬁg, (1.10)

1
Fi = < (py = pp)gnd, - (1.11)

Here, p is the fluid density, p,, is the particle density and Cy = 24Re;1 is the Stokes drag
coefficient. We assume that there is an exact balance between the drag and buoyancy and
no other forces contribute. Equality between equation (1.10) and equation (1.11) yields an
expression for the particle response time, T,, and terminal slip velocity, wg, which can be

written as:

(Pp+pr/2)d;
Tp = T s (1.12)
_ 42
WSZZQﬁL_£QQ§_£, (1.13)
18uy

where Ly is the dynamic viscosity of the fluid. Since the particles under consideration move
passively with the flow, we assume that the timescale for particle acceleration is much longer
than the particle response time to the fluid, i.e. |dv,/df| < |v,/7,|. Then the first term in

equation (1.9) is negligible and our governing equation becomes,

~ wy \ Du
Vp:u—f-WSZ—'—(Tp—f—?)E. (114)

Secondly, we consider the Stokes number, which characterises the tendency of a particle

to move with the fluid velocity. The Stokes number is defined as the ratio between the
particle response time and the turbulence timescale (the shortest fluid timescale of interest),
St = 7,/7. A very small Stokes number indicates that the particle motion is strongly

influenced by the fluid flow whilst a large Stokes number indicates that the particle moves
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independently of the fluid. The Stokes number for microplastics has been estimated to be
between &'(1073) and &(10~2) at the surface (Chamecki et al., 2019; Kukulka et al., 2012)
which corresponds to a particle size of about 1cm or less (Poulain et al., 2018). In the limit
where St < 1, |Du/Dt| < |u/7,| and equation (1.14) can be further approximated as (Ferry
and Balachandar, 2001; Sutherland et al., 2023; Yang et al., 2016):
~  wgDu

The last term on the right-hand side is the leading-order inertial effect. Similarly to Chor

et al. (2018a), we are interested in flows for which fluid acceleration is small compared to

gravity, i.e. g~'Du/Dt < 1. This gives our final particle motion equation as
V, =u+ Wz, (1.16)

which describes the motion of particles for which inertial effects are negligible compared to
flow advection and buoyancy effects.

In some scenarios, the applicability of this simplified equation is limited. For example,
the lift force and Basset history force terms are not always negligible (Fraga and Stoesser,
2016; Guseva et al., 2016), and inertial effects may play a role near the surface of the OML
when wave breaking occurs. If particles are nonspherical, reassessment of the form of Fp
and Fp is required, which will depend on the particle geometry, roughness and orientation in
the flow (Bagheri and Bonadonna, 2016; Loth, 2008). In most cases, the additional effects
of neglected terms would severely increase computational cost and only have a very small
impact on results (Yang et al., 2014), so we proceed using the simplified equation (1.16) to

model particle motion throughout this thesis.

1.4.2 Eulerian approach

In the Eulerian approach, the concentration of buoyant particles is modelled via a continuum
approximation which considers the behaviour of the whole concentration of particles rather
than the behaviour of each individual particle. We use the term tracer to describe such a
concentration field, which has previously been used to model microplastics (Kukulka and
Brunner, 2015), oil droplets (Yang et al., 2014) and phytoplankton cells (Smith et al., 2016).
A continuous version of equation (1.16) is given by:

Dc dc

oW =KV (1.17)
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where c is the tracer field and k. is the tracer diffusivity. For LES, the equation includes an
additional sub-grid scale term:
D¢ Jc

Eersa—Z:V((KCJrKSgS)VE), (1.18)

where K, is the sub-grid scale diffusivity. One advantage of this approach is that the
equation for the tracer can be solved alongside the velocity and buoyancy field equations
of motion (Yang et al., 2014). Additionally, the SGS term can be handled as an extension
to the SGS models used for the buoyancy (or temperature/salinity) field. Some studies also
include a particle feedback term by adding a Boussinesq-approximated buoyancy force onto
equation (1.17) which extends the applicability to two-way coupled materials (Liang et al.,
2012; Yang et al., 2015).

However, this approach does not come without disadvantages. Although the total tracer
concentration is conserved, a small number of negative concentration values can occur due
to Gibbs ringing at the grid-scale and the meaning of negative concentrations is entirely
nonphysical. For large values of wy, the buoyant tracer strongly accumulates near the surface,

leading to difficulties in resolving vertical gradients.

1.4.3 Lagrangian approach

Alternatively, we can solve equation (1.16) directly for a set of individual particles and track
the position of each one, which is known as the Lagrangian approach. The flow is seeded
with a large number of particles whose position, X, evolves according to the time-stepped

version of equation (1.16),
X, (t+dt) =xp,(t) +u(xp,t)dt +wdt Z . (1.19)

In LES, the effects of SGS terms can be accounted for by including an additional SGS

modelling term:
Xp(t+dt) =X, (1) +U(Xp,1)dt +wedt Z+ Xg5(Xp,1) (1.20)

where the random displacement model for X4 can be chosen circumstantially. For example,
in the ABL, a Lagrangian stochastic model (LSM) has been used for x,o, (Weil et al.,
2004). In the OML, consideration of the SGS term has been largely neglected without much
justification (Noh et al., 2006). However recently, introduction of a random displacement
model (Liang et al., 2018) and an ocean based LSM (Kukulka and Veron, 2019) have shown
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the importance of the SGS component on particle trajectories and the necessity for their
inclusion. We implement a random displacement model following Liang et al. (2018) which
we describe in chapter 2.

The earliest papers which investigate material transport in the OML were somewhat
limited by computational requirements forcing the use of two-dimensional surface particles.
These are often interpreted as the limit of extremely buoyant particles when wy > |w|.
Confining the particles to the surface allows easy visualisation of distinct flow features such as
surface convergence or patterns of accumulation. For example, long, narrow windrows which
constitute one of the most recognisable characteristics of Langmuir turbulence were originally
illustrated using surface particles (McWilliams and Sullivan, 2000; McWilliams et al., 1997;
Skyllingstad, 2000; Skyllingstad and Denbo, 1995). It is only in the last few decades that
studies have progressed beyond surface particles and have started to investigate the behaviour
of buoyant (Kukulka et al., 2012) and sinking (Noh et al., 2006) three-dimensional particles.
Surface particles remain a useful tool which we make use of in chapters 3 and 4, before using
three-dimensional buoyant particles in chapter 6.

There are some clear advantages of the Lagrangian approach. Tracking the position,
velocity and other properties of a large number of individual particles gives a wealth of
data about how particles are transported within a turbulent fluid system. This approach
also provides a different perspective of the flow compared to the Eulerian framework which
the velocity and buoyancy fields are solved in, allowing us to look at complicated physical
phenomena in more than one way. Since all particles are advected independently, it is
easily parallelisable and straightforward to implement (Liang et al., 2011). Compared to the
Eulerian approach, we aren’t limited by numerical noise for large values of w,. However,
issues arise when the number of particles to be simulated is very large, which is sometimes
needed to ensure that results are statistically converged. This is particularly problematic
when particles cover the whole three-dimensional space.

1.4.4 Accumulation of buoyant material

Buoyant material is generally not uniformly distributed in the OML but instead accumulates
near the surface in regions of strong convergence. On the global scale, convergent wind-
driven currents cause microplastics to accumulate in mid-ocean gyres (Cole et al., 2011;
Eriksen et al., 2017) leading to well-known ‘garbage patches’. At the submesoscale, strongly
convergent flow causes oil and surface particles to accumulate in narrow (10-100m) density
fronts (D’ Asaro et al., 2018; Taylor, 2018). Finally, at the small, turbulent scales, wind and
buoyancy-driven turbulence drive buoyant particles to accumulate in ephemeral patches and
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streaks. Again, we focus on accumulation at the submesoscale level and below, sequentially
providing examples of accumulation in some of the most common oceanic conditions.

One of the most widely observed and striking examples of accumulation at the smallest
scales are the narrow, streak-like pattern of particles in the convergent regions of Langmuir
cells. Figure 1.4a shows the effect of an oil spill from a deep-water blowout interacting with
Langmuir turbulence. Here, the patches of oil are confined to the characteristic Langmuir
windrows. Early LES with surface particles captured this in numerical models (McWilliams
and Sullivan, 2000; McWilliams et al., 1997; Skyllingstad, 2000), an example of which
can be seen in the second panel of figure 1.4b (Skyllingstad and Denbo, 1995) where the
velocity has transported most of the surface particles into thin, distinct lines. More recent
simulations have revealed that behaviour is similar for three-dimensional buoyant particles
under Langmuir turbulence (Kukulka et al., 2012; Liang et al., 2012), although the degree of
particle accumulation in the windrows is heavily impacted by the particle buoyancy (Yang
et al., 2014), with the more buoyant tracer being more strongly clustered. The relatively
strong vertical velocities associated with Langmuir circulations can also submerge buoyant
particles deep into the OML (Kukulka and Brunner, 2015; Kukulka et al., 2016).

Particles accumulate in convergent regions associated with other small-scale turbulent
processes, although with somewhat less striking patterns. In contrast to the relatively straight
accumulation lines in the second panel of figure 1.4b, the first panel shows more random, less
aligned accumulation of surface drifters under a combination of wind shear and convective
forcing from early LES (Skyllingstad and Denbo, 1995). Under these conditions, there is
a distinguishable flow transition from convective cells to longitudinal wind rolls as wind
forcing is added to a convective regime, with three distinct flow patterns being observed
under weak, moderate and strong wind forcing (Heitmann and Backhaus, 2005). Mensa
et al. (2015) produced similar patterns of accumulation using low-resolution RANS. They
found that under pure convection, buoyant tracer accumulates in convergent regions of
convective cells and with the additional presence of weak wind forcing, tracer accumulates
in downwelling regions of distorted convection cells. In the absence of convective forcing,
Kukulka et al. (2012) used observations and a one-dimensional column model to study
wind-driven vertical mixing of plastic debris and showed that surface measurements may
underestimate the prevalence of buoyant plastics. Similarly, in the absence of wind stress,
Kukulka et al. (2016) used observations and numerical simulations to show that turbulence
generated by convection can deeply submerge buoyant particles.

More recently, high resolution simulations of pure convection have revealed that in
addition to buoyant particles accumulating in convergent regions of convective cells, the

presence of convective vortices in the vertices between some cells act to additionally cluster
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Fig. 1.4 (a) Field images of surface oil slicks from an underwater blowout (U.S. Air Force
photo/Tech.Sgt.Adrian Cadiz); (b) Position of floaters 1 hour after uniform release (black
dots) in a simulation driven by wind shear and surface cooling (left panel) and Langmuir
turbulence (right panel). Vertical velocity is shown 5 m below the surface (colour) and
distances in both axes are indicated in metres (reproduced with permission from Skyllingstad
and Denbo (1995)); (c) Normalised surface concentration of a positively buoyant tracer field
in a simulation of pure convection in the OML (reproduced with permission from Chor et al.
(2018a)); (d) Field images of bubbles and sargassum along a submesoscale front in the Gulf
of Mexico (photo credited to SUNRISE 2023); (e) Horizontal slices of positively buoyant
tracer concentration at z = —25 m and ¢ = 3.3 days in a submesoscale eddy. White contours
indicate regions of strong downwelling with w = 0.005 m/s (reproduced with permission
from Taylor (2018)).
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the most buoyant particles (Chor et al., 2018a). Figure 1.4c shows a horizontal slice of the
buoyant tracer concentration at the surface in a convectively-driven flow when wy = 7.77
mm/s. Here, we again see that the tracer accumulates in the convergent regions of convective
cells, but surprisingly there is a significantly higher concentration at the nodes between cells.
This pattern becomes even more extreme for higher values of wg with almost all tracer inside
the nodes. The highly buoyant tracer is advected into and trapped inside resilient convective
vortices. Each convective vortex continuously collects more and more tracer, concentrating it
in a significantly smaller area than the convergent regions of convective cells. Eventually,
the vortices weaken and are broken up by the flow, leaving behind small clusters of buoyant
tracer. The relatively recent discovery of oceanic convective vortices leaves this accumulation
mechanism one of the lesser explored areas which we address in chapters 3 and 4.

Finally, we turn to submesoscale fronts. These are often associated with a strongly
convergent zone between two water masses of differing density, salinity or temperature
which creates potential for strong particle accumulation. Often, the particles, foams and
debris that accumulate in the convergent regions make fronts visible on the surface. For
example, figure 1.4d shows sargassum and bubbles accumulating in a submesoscale front
captured on the Submesoscales Under Near Resonant Inertial Shear Experiment (SUNRISE)
campaign in 2023 in the Gulf of Mexico. Here, a rich field of submesoscale fronts and eddies
are generated by the interactions between the output from the Mississippi-Atchafalaya river
plume and the salty, more dense, off-shore coastal water. A striking feature of this image is
the offset between the sargassum (on the salty side) and the bubbles (on the fresh side) along
the relatively two-dimensional, straight front which inspired the work in chapters 5 and 6.
The downwelling associated with such a front could transport buoyant particles downwards,
potentially sinking them to the ocean interior (Omand et al., 2015).

Also in the Gulf of Mexico, D’Asaro et al. (2018) illustrated the strong convergence
mechanism at play in a cyclonic, submesoscale eddy using 200 satellite-tracked surface
drifters in the CARTHE field campaign. They found that over half of the floating drifters
concentrated in a region 10* times smaller than the initial separation between drifters, a stark
difference to the dispersive effect that was predicted. Taylor (2018) used LES to demonstrate
that buoyant tracers accumulate at the surface along a submesoscale density front, and are
subsequently subducted down into the water column. Even in the presence of additional
convective forcing, the frontal downwelling associated with the front enhances the vertical
velocities enough to distinctly concentrate the tracer. Figure 1.4e shows the horizontal slice of
a buoyant tracer (wy = 0.5 mm/s) at a depth —25 m below the surface overlain with contours
of strong downwelling. The highest concentration of tracer occurs near the front coincident

with the regions of strong downwelling and strong convergence. More work is needed to



26 Introduction

explain the complicated transport mechanisms associated with submesoscale fronts such as

those visible in figure 1.4d.

1.5 Thesis outline

Our understanding of the oceanic processes that govern the distribution of buoyant materials
at the submesoscale level and smaller is far from complete. Challenges remain in designing
numerical simulations which can accurately capture small-scale processes, with the additional
hurdle of how to best include a computationally affordable particle tracking model. This
thesis aims to push the limits of numerical modelling in some of the less explored oceanic
flows at the small-scale turbulent and the submesoscale level, utilising Lagrangian and
Eulerian buoyant material.

In chapter 2, we introduce a three-dimensional Lagrangian particle model which was
written and implemented into the existing channel flow solver (DIABLO) as part of this
thesis. In particular, we highlight the interpolation method employed and details of how the
code is parallelised.

In chapter 3, we consider the accumulation of buoyant material in the newly discovered
oceanic convective vortices. We build on the work by Chor et al. (2018a) and use high reso-
lution LES to test the resilience of convective vortices under combined wind and convective
forcing. We model non-inertial buoyant particles using both buoyant tracers and Lagrangian
surface particles, which allows us to explore a wide range of particle buoyancies. Despite
their small size, we show that the convective vortices exhibit an unexpected bias towards
cyclonic vorticity which has not been reported previously. Analysis of the Lagrangian trajec-
tories allows us to partially explain the bias based on the average time that a particle spends
inside a convective vortex. The addition of wind forcing reveals three distinct flow patterns
under weak, moderate, and strong wind forcing. We characterise the convective vortices in
each of these regimes, and quantify the degree of particle clustering.

Chapter 4 continues in a similar vein to chapter 3, delving deeper into the cyclonic bias
of oceanic convective vortices and applying a predictive analysis to atmospheric convective
vortices on Earth and on Mars. We use even higher resolution LES compared to those in
chapter 3 under pure convective forcing and uncover a new class of small convective vortices.
Using Lagrangian particles, we find that the small convective vortices play a significant role
in setting the bias of the larger convective vortices. We propose a scaling theory to predict
the cyclonic bias of convective vortices under different convective conditions and test the
theory using highly idealised LES of a simplified circulation cell. We then apply the scaling

to typical convective conditions in the ocean and the terrestrial and Martian atmospheres.
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In chapter 5, we turn our focus to submesoscale fronts. We use DNS and study the
frontal dynamics, instabilities, and three-dimensional turbulence associated with geostrophic
adjustment. We consider an isolated, finite-width front comprising a frontal region with
horizontally-varying and time evolving buoyancy gradients, initialised with motionless fluid
with a lateral density gradient analogous to Ou (1984). To our knowledge, this is the first time
that DNS has been applied to this problem. By varying the initial frontal strength, I'y, we find
that strong fronts develop a buoyancy jump which generates three-dimensional turbulence
near the top and bottom boundary. We analyse and quantify the energy pathways and mixing
dynamics as the front evolves over time.

In chapter 6, we extend our simulations to investigate the movement of three-dimensional,
buoyant material in a geostrophically adjusting front. We use LES of the strongest front
simulated in chapter 5 (I'g = 16), and include three-dimensional buoyant Lagrangian particles
with several classes of particle buoyancy. We identify several different accumulation mecha-
nisms based on the particle buoyancy and connect this to the frontal dynamics investigated in
chapter 5.

Finally in chapter 7, we conclude with a discussion of the overall findings of this thesis
and consider the future directions this research field could take.






Chapter 2

Lagrangian Particle Tracking Model

2.1 Introduction

Throughout this thesis, we perform LES using the open-source computational fluid dynamics
(CFD) solver, DIABLO, designed by Bewley (2019) and extended by Taylor (2008) to allow
for the consideration of geophysical problems, channel flows and scalar advection. An
in-depth description of the numerical solver, including details of the parallel computing and
algorithm structure, can be found in chapter 6 of Taylor (2008). As part of this thesis, a new
three-dimensional Lagrangian particle tracking model has been developed and implemented
alongside the main numerical solver. In this chapter, we discuss the intricacies of the model

including the interpolation scheme, parallelisation and details of how to implement the model.

2.2 Interpolation

To model particles in the Lagrangian framework, we need to solve equation (1.16) for each
individual particle. In particular, recall that u(x,) is the velocity field at the particle location.
In the main numerical solver, the velocity field is solved on a discretised grid and is not readily
available at the location of particles, which are not confined to grid points. Thus to find u(x,),
interpolation is required. However, interpolation can be time consuming, requires large
amounts of memory and is generally the most computationally expensive aspect of particle
advection. Hence, we aim to choose an interpolation method that is both highly accurate
and computationally efficient. Like many CFD solvers, DIABLO treats periodic horizontal
directions using pseudo-spectral methods, where fast Fourier transforms (FFTs) are used to
transform data between real space and Fourier space. FFTs computationally expensive, so

to minimise the computational cost of the particle model, we aim to minimise the number
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of FFTs in the interpolation step. Several studies have already investigated interpolation
for spectral codes (Balachandar and Maxey, 1989; Hinsberg et al., 2012; Yeung and Pope,
1988) and we closely follow the work of Hinsberg et al. (2012) and use B-spline interpolation
in the horizontal. DIABLO uses second-order finite differences to calculate derivatives in
the vertical (wall-bounded) direction, so another interpolation scheme is required for the
vertical direction. Here, we use second-order accurate linear interpolation in the vertical (to
match the order of accuracy for vertical derivatives). To combine horizontal and vertical
interpolation schemes, we first interpolate horizontally, and then interpolate vertically.

2.2.1 Horizontal interpolation

In the last few decades, B-spline interpolation has been used to remedy shortcomings of other
interpolation methods and to take advantage of spectral codes. For example, Hermite inter-
polation requires several additional FFTs, making it computationally expensive. B-splines
require only one additional FFT, have a small interpolation error, and the interpolated field
has a high order of continuity. A detailed discussion of the comparison and implementation
of linear, Hermite and B-spline methods can be found in Hinsberg et al. (2012), while here
we provide relevant details of how we incorporate the B-spline method into our particle
tracking model.

In the numerical solver, u is discretised on a uniform grid in the horizontal directions with
N, and Ny, grid points in the x and y directions respectively. We aim to create an interpolated
approximation to u that is as smooth as possible which we do by expressing the velocity
field in terms of the B-spline basis functions. Below, we first outline the interpolation of a
one-dimensional function, which we then extend to the two horizontal directions needed in
our model. Without loss of generality, we work in the x direction with periodicity of u on the
interval x € [0, N, — 1] (where the variable x denotes position along the grid). Additionally,
we consider a singular component of the velocity field, u, and generalise to the full velocity
field, u, afterwards.

The uniform B-spline basis function with degree » is defined recurrently as:
B,(x) = (By—1 *B1)(x), (2.1)

By (x) 1 if —0.5<x<0.5, 2.2
1\X) = .
0 elsewhere,
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where * represents the convolution product defined by

(Fe8)0 = | _f)g—ndy. 23

The nth function is of degree n — 1, and is (n — 2) times differentiable with a continuous
(n — 2)th derivative (i.e. C"~?2), and has local support length n. In our interpolation scheme,
we use cubic B-splines (where n = 4). Hinsberg et al. (2012) shows that this will give a high
enough degree of accuracy without being too computationally expensive (as described later,
higher order accuracy would require more horizontal ghost cells in a parallel run which adds
adversely to the computational cost). The functions can also be written in matrix form, with
the n = 4 case written as:

4
B4()C) = 234’,'()6) 5 (24)
i=1
4 i—1
M x/ fo<x<l1,
Byi(x+2—1i)= LMy (2.5)
0 elsewhere,
1 -3 3 -1
114 0 -6 -3
M=— . 2.6
31 3 3 -3 2.6)
0O 0 O 1

We ensure periodicity of the B-spline concurrent with boundary conditions in the horizontal
directions by defining,

Bp() = B4 fx<Me/20 o N1 @.7)
Ba(x—Ny) ifx>Ny/2

The discrete function u can be expressed in terms of the B-spline basis functions using
the relation u = up *p Bp, where up are coefficients of the B-spline functions and *p is the
circular discrete convolution:

m

(f*pg)(x) =} f(»)g((x—y) mod(m)), x=0,1,...m—1, (2.8)

y=0

for a periodic function g with period m (where m = N, in this work). In principle, we
know both u and Bp, so it remains to find up. This can be done by computing the inverse,
Ug = U*p Bl_)1 where B[)] is defined such that Bp *p BZ)] = §; and §; is the discrete Kronecker

delta function. This inverse convolution is an expensive step in physical space, but relatively
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inexpensive in Fourier space. The velocity field is already readily available in Fourier space

after solving for the updated velocity field, so we perform the inverse operation as:

— S A

iip(k) = (uxp By ) (k) = (k) Bp' (k) = —<—~-, (2.9)

where ~ denotes a variable in the Fourier space. The coefficients Ii\)(k) only need to be
calculated once which can be done at the start of the code. After evaluating up, we use a
single inverse FFT to return to physical space and find up.

The cubic B-spline functions have support length 4, and we make use of this to further
reduce computations in constructing the interpolant. Given a particle position x,, at which to
interpolate, we only need to evaluate at the four nearest grid points, x1, x3, x3 and x4 (two to
the right of x, and two to the left). The interpolated approximation to u, denoted #, is then:

M-

i(xp) = ) up(x;) Ba(xp —x;). (2.10)

i=1
Finally, we can easily extend this to two dimensions with the basis coefficients given by

~ (k)
k)= — A 2.11
ip (k) Bo (k) x Bp(ky) @11)

where k = (ky,k,), and equation (2.10) is evaluated as a double sum (in the x direction and

the y direction). This can be done for each component of the velocity field, u = (u,v,w).

2.2.2 Vertical interpolation

In DIABLO, variable grid spacing is used in the vertical direction. This allows us to capture
the turbulence near the surface using a fine grid, but also save on computational cost at
a greater depth where motions have a larger scale. In the vertical direction, calculations
in the main code have errors which are second-order accurate (Taylor, 2008) (e.g. finite
difference method, grid interpolation, vertical derivatives) and so we choose to implement
linear interpolation in the vertical direction, which is also second-order accurate, (i.e. the
error in the interpolant is &’(Az?) where Az is the vertical grid spacing). Higher order schemes
would involve communicating additional ‘ghost cells’ on the vertical grid (see section 2.3.2)

which would be computationally expensive and difficult to implement. For a particle located
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at z,, the linear interpolant is

u(zy) u(z0)(z1 —zp) +u(z1)(zp — 20) 7 (2.12)
21 — 20

where 7 is the closest grid point below z,, and z; is the closest grid point above z,,.

In many geophysical problems, the flow is bounded above and below with the vertical
velocity set to zero on the boundary. To avoid particles becoming trapped on either boundary,
we include a small buffer at the top and bottom into which the particles cannot move. If the
particle position exceeds the buffer boundary at the top, we return it to the buffer boundary
for the next time-step (and similarly at the bottom). Wave-breaking often submerges particles
a few metres deeper than the surface, but wave breaking is not captured in our simulations,
which have a flat ocean. The buffer zone can be viewed as simple way to represent missing
transport processes like wave breaking. To implement a surface particle model, particles are

vertically fixed at the first grid point below the surface (as in chapters 3 and 4).

2.3 Parallel Computing

Parallel computing enables large, expensive fluid dynamics problems to be solved more
efficiently by using several computers (or several processors within one computer). Par-
allelisation has been implemented in DIABLO using the standardised Message Passing
Interface (MPI) library. It uses a two-dimensional parallelisation in one horizontal direction
(x-direction in Fourier space and y-direction in physical space) and in the vertical direction,
z. The grid in the z direction is split into sub-grids for each processor which each contain
ghost points at either end. The scheme relies upon communication of variables at these ghost
points between two neighbouring processes.

In the Lagrangian particle framework, each individual particle trajectory is determined
independently and we need the interpolated velocity for every single particle. We often
require a very large number of particles to achieve convergence of statistical properties, which
means the particle model can be time consuming and memory demanding. In developing
the particle tracking model, we take advantage of the existing parallelisation and implement

some new strategies to increase computational efficiency.

2.3.1 Parallelisation of particles

The goal of parallelisation is to split the work of a simulation as equally as possible between
different processors. For this reason, we divide particles equally between the processors
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so that each processor has a specific set of particle positions which it tracks throughout the
whole simulation. We call the processor which stores an individual particle’s position the
particle processor. This is not necessarily the same as the processor which the particle is
spatially located on, which we call the spatial processor. This ensures that in a convergent
flow such as those investigated in this thesis, information about particle position does not all
end up on one processor when the particles spatially cluster together. However, by doing
this, we create additional communication challenges when finding the interpolated particle
velocity, because the particle processor does not store the velocity local to the particle.

To overcome this hurdle, we employ several stages of communication between the
particle processor and the spatial processor. The number of processors used in a simulation
is determined by the main DIABLO code, we do not add any processors to deal only
with particles. We initialise each processor with N particles which it retains throughout
the simulation (no exchanges of particles or change in number of particles). The particle
processor stores the particle location and any other statistics we choose to save along particle
paths (e.g. velocity, vorticity, pressure). The initial conditions, time update, application of
boundary conditions and saving statistics are all completed on the particle processor. The
only step which is carried out on the spatial processor is the interpolation. To do this, we need
to communicate information between the particle and spatial processors at every time-step.

For each of the N particles on a given particle processor, we first find the associated
spatial processor. The horizontal grid is uniform and easily defined between processors, but
the vertical grid is not uniform and we need to communicate the end-points of the z-subgrid
between processors before finding the vertical processor associated with the particle location.
Since the grid does not change throughout the simulation, this can be done once at the start.
Once we have determined the spatial processor for each particle, we count how many of the
N particles are on each spatial processor which tells us how large the communication will be.
We communicate this number between a particle processor and a spatial processor. Since each
processor acts as both a particle and spatial processor, we use two-way communication, so as
well as sending a particle count to another processor, each particle processor also receives a
particle count. Once the size of communication is known, we send and receive a vector of
particle positions between processors. The particles received have a spatial location within
the grid limits of the processor by which they are received and the interpolation can be carried
out at each particle position. After interpolation, we send a vector of interpolated particle
velocities back to the processor on which they are stored (the original particle processor),
and receive back a vector of particle velocities from another processor (since we are using
two-way communication). These velocities can then be used to update the particle position

on the particle processor. Communication is done between all pairs of processors in a circular
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RANK M

1. Find particle processor for each particle and count
the number of particles on each processor

2. Perform interpolation for particles whose spatial
processor is the same as the particle processor

FOR N=1, ... Nrrocs - 1

RANK M -N RANK M RANKM + N
(MOD Nrrocs) (MOD Nrrocs)

1. Send number of particles
—— > 2. Receive number of particles

3. Send vector of particle positions —
—— > 4. Receive vector of particle positions

5. Interpolate u at received particle
positions

& 6. Send matrix of interpolated particle
velocities

7. Receive matrix of interpolated &———
particle velocities

Fig. 2.1 Illustration of communication between different processors during the interpolation
of particle velocities with reduced wait-times using a circular approach. Here, Nprocs is the
number of processors which we run on, RANK is the current processor, and arrows indicate
passage of information.

fashion to avoid idle processors. A summary of this communication can be seen in figure 2.1
and an example of the code can be seen in figure 2.2.

Although the interpolation step needs to be performed for each velocity component
(u, v, w), we can communicate the particle positions once at the start of each time-step and
carry out all interpolations before sending the interpolated quantities back. If any additional
statistics are saved, we must additionally communicate the particle position at the end of the

time-step and interpolate again.
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Now find particle velocity for particles with position on
non-local process

DO M=1,NPROCS-1
Loop through the processes

RANK_SEND=MODULO (RANK+M,NPROCS )

RANK_RECV=MODULO (RANK-M,NPROCS)

Create send buffer array XP_SEND
i=1
DO N=1,NP
Loop over the number of particles
IF (RANK_SEND.eq.RANK_PARTICLE(N)) THEN
XP_SEND(i,1)=XP(N)
XP_SEND(i,2)=YP(N)
XP_SEND(1,3)=ZP(N)
XP_INDEX(1i)=N
i=i+l
END IF
END DO

! Determine how many particles to send and receive

CALL MPI_SEND(NUM_SEND (RANK_SEND),1,MPI_INTEGER
& ,RANK_SEND,1,MPI_COMM_WORLD, IERROR)

CALL MPI_RECV(NUM_RECV,1,MPI_INTEGER

& ,RANK_RECV,1,MPI_COMM_WORLD, STATUS, IERROR)

! Send this rank the particle position
IF (NUM_SEND(RANK_SEND).GT.0) THEN
CALL MPI_SEND(XP_SEND(1:NUM_SEND(RANK_SEND),1:3)
& ,3+NUM_SEND (RANK_SEND) ,MPI_DOUBLE ,RANK_SEND
& »1,MPI_COMM_WORLD, IERROR)
END IF
! Receive particle position
IF (NUM_RECV.GT.@) THEN
CALL MPI_RECV(XP_RECV(1:NUM_RECV,1:3),3%NUM_RECV,

& MPI_DOUBLE, RANK_RECV,1,MPI_COMM_WORLD,STATUS, IERROR)

Fig. 2.2 Source code from DIABLO subroutine ‘particles.f” illustrating the communication
of particle velocity between a particle processor and a spatial processor. Note that in the
code, the y and z directions are transposed.

Interpolate the velocity to the particle position in XP_RECV
Returns the velocity in VP_SEND
CALL INTERPOLATION_3D(BU1,NUM_RECV,XP_RECV,V1P_SEND)
CALL INTERPOLATION_3D(BU2,NUM_RECV,XP_RECV,V2P_SEND)
CALL INTERPOLATION_3D(BU3,NUM_RECV,XP_RECV,V3P_SEND)

Pack into an array to send back to the original process
DO N=1,NUM_RECV
VP_SEND(N, 1)=V1P_SEND(N, 1)
VP_SEND(N, 2)=V2P_SEND(N, 1)
VP_SEND(N, 3)=V3P_SEND(N, 1)
END DO

Send the velocity back to the original process
CALL MPI_SEND(VP_SEND(1:NUM_RECV,1:3),3*NUM_RECV,MPI_DOUBLE
& ,RANK_RECV, 1,MPI_COMM_WORLD, IERROR)
END IF

IF (NUM_SEND(RANK_SEND).GT.0) THEN

CALL MPI_RECV(VP_RECV(1:NUM_SEND(RANK_SEND),1:3)
& ,3+NUM_SEND (RANK_SEND) ,MPI_DOUBLE ,RANK_SEND

& ,1,MPI_COMM_WORLD, STATUS, TERROR)

Save the velocity corresponding to each particle
DO i=1,NUM_SEND(RANK_SEND)
U1P(XP_index(i))=VP_RECV(i,1)
U2P(XP_index(1i))=VP_RECV(1i,2)
U3P(XP_index(i))=VP_RECV(i,3)
END DO
END IF
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2.3.2 Ghost cells

The interpolation step requires knowledge of the basis coefficients and B-spline function for a
4 x 4 grid of points in the horizontal, and knowledge of the interpolating field for 2 points in
the vertical. We update the position of particles in physical space, where the horizontal grid is
parallelised in the y direction and the vertical grid is also parallelised. If a particle is located
near the edge of either a y or z subgrid, the processor may not contain all the information
required to construct the interpolant. To overcome this, we add extra cells beyond the edge
of the domain called ‘ghost cells’ which store information from a neighbouring processor.
However, this information must be communicated between processors at each time-step.

The vertical grid already has ghost cells at either end, so we do not need to additionally
communicate anything in this direction. The x direction is not parallelised in physical
space, so we also do not need to communicate in this direction. However, in the y direction,
there may be particles close to the boundaries which require information from grid points
on a different horizontal processor which the main DIABLO code does not communicate.
The B-spline function can be easily defined on all processors and so we do not need to
communicated anything about B-splines. However, a subset of the basis coefficients, ug, are
stored on each processor, so we must add some ghost cells in the horizontal direction to allow
for interpolation near the boundaries. Each horizontal processor has Ny, grid points indexed
0,1,...,Ny, — 1, and on a given spatial processor, the particle position (which is not bound to
grid cells) can vary from the Oth grid cell (inclusive) to the Ny,th grid cell (exclusive).

For a field u, a matrix of the basis coefficients for the local grid points, up, is calculated
on each processor by first finding up (in Fourier space) and then performing an inverse FFT.
Given that we need the coefficients at two points either side of the particle position in equation
(2.10), we create one ghost cell below the Oth point for interpolation of particles between the
Oth and 1st grid points and two ghost cells above the (N, — 1)th grid point for interpolation
of particles between the (Ny, —2)th and Ny,th grid points. Each time the matrix is found, we
communicate the points from the processor above/below to fill the ghost cells in physical
space. Then the matrix contains all the required information for interpolation of points on
that processor even if a particle is near the edge. A summary of ghost cell communication is
provided in figure 2.3, and an example of the source code is provided in figure 2.4. Again,

communication is implemented in a circular manner to avoid idle processors.

2.4 Implementation

We implement the Lagrangian particle tracking model in DIABLO in a carefully ordered way

to minimise the number of storage variables and FFTs. In particular, the algorithm is ordered
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RANK M+1
Nyp+1
Nop
Nip -1
RANK M 2
Nt — 1
Now 0
Nyp -1 N
. 70 1 Ni-1
RANK M-1 2
Nyt1 < 1
S 4 0
Nip -1 S
70 1 Ni-1
2
!
0
1
0 1 Na-1

Fig. 2.3 Grid indexing with ghost cell communication of the basis coefficients in the x and y
directions. Here, N, is the number of grid points on each y processor, Ny is the number of
grid points in the x direction, and RANK is the current processor. Communication is depicted
by arrows, and ghost cells are coloured in red.
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The size of T1B is U1B(@:NX+1,0:NZP+1,0:NY+1)
The size of T1B_FULL is T1B_FULL(@:NX+1,-1:NZP+1,0:NY+1)
T1B is local in X and split in Z

Pass the points in the Z direction to add ghost cells
Pack the data points into an array to send
DO J=0,NY+1
DO I=0,NX+1
TB_SENDDOWN(I,J,1)=T1B(I,0,J)
TB_SENDDOWN(I,J,2)=T1B(I,1,J)
TB_SENDUP(I,J)=T1B(I,NZP-1,])
END DO
END DO

! Pass points between 0&1,1&2,283 etc...
IF (MODULO(RANKZ,2).eq.@) THEN
CALL MPI_SENDRECV(TB_SENDUP, (NX+2)#*(NY+2),MPI_DOUBLE,
& RANKZ+1,1, TB_RECVDOWN, (NX+2)*(NY+2)*2,MPI_DOUBLE,
& RANKZ+1,1,MPI_COMM_Z,STATUS, IERROR)
ELSE
CALL MPI_SENDRECV(TB_SENDDOWN, (NX+2)*(NY+2)%*2,MPI_DOUBLE,
& RANKZ-1,1, TB_RECVUP, (NX+2)*(NY+2) ,MPI_DOUBLE,
& RANKZ-1,1,MPI_COMM_Z,STATUS, IERROR)
END IF

! Pass points between NPROCZ-1&0,1&2,384 etc...
IF (MODULO(RANKZ,2).eq.@) THEN
CALL MPI_SENDRECV(TB_SENDDOWN, (NX+2)*(NY+2)%2,MPI_DOUBLE,

& MODULO (RANKZ-1,NPROCZ),1, TB_RECVUP, (NX+2)*(NY+2),
& MPI_DOUBLE,MODULO (RANKZ-1,NPROCZ),1,MPI_COMM_Z,
& STATUS, IERROR)
ELSE
CALL MPI_SENDRECV(TB_SENDUP, (NX+2)%(NY+2),MPI_DOUBLE,
& MODULO (RANKZ+1,NPROCZ) , 1, TB_RECVDOWN, (NX+2 ) (NY+2)%2,
& MPI_DOUBLE,MODULO (RANKZ+1,NPROCZ),1,MPI_COMM_Z,
& STATUS, IERROR)
END IF

! Unpack data

DO J=0,NY+1

DO I=0,NX+1
T1B_FULL(I,-1,J)=TB_RECVUP(I,J)
T1B_FULL(I,NZP,J)=TB_RECVDOWN(I,J,1)
T1B_FULL(I,NZP+1,J)=TB_RECVDOWN(I,J,2)

END DO

END DO

Fig. 2.4 Source code from DIABLO subroutine ‘particles.f” illustrating the communication
of endpoints on the basis matrix between adjacent processors. Note that in the code, the
y and z directions are transposed. Here T1B is a storage variable of basis coefficients,
TB_SENDDOWN and TB_SENDUP are packing variables used in the communication step.
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so that the physical and Fourier space arrays can occupy the same location in memory. A full
algorithm of the velocity-solver in DIABLO can be found in Taylor (2008). Execution of
the particle model takes place after the velocity and pressure fields have been updated, but
before the start of the next time-step.

The boundary conditions for the particles can be easily altered depending on the physical
requirements of a specific problem, but in our work, we implement periodic boundary
conditions in the x and y directions. As mentioned previously, we apply vertical buffers
bounding the particles in the z direction. The size of the buffer is a variable that can be set
in the input file. Additionally, the particle slip velocity, wy, and the number of particles per
processor, N, can be set in the input file.

Time-stepping is accomplished with a low storage third-order Runge-Kutta (R-K) method
with time-marching at each R-K substep determined in the main code. We ensure this scheme
is storage efficient by only using two storage variables per particle velocity component.

In conjunction with the main DIABLO code, any output statistics along particle paths are
saved in the HDFS5 data format for I/O. This is a highly effective data storage method which
allows for easier post-processing.

For completeness, we also include details of a random motion model which partially
accounts for Brownian motion and makes use of the SGS viscosity in the main code of an
LES run. This can be optionally included in the full particle model and is easily switched on

or off. Recall that equations for the motion of non-inertial particles are:
Xp (1t +dt) =X, (1) +0(Xp,1)dt +wdiz + Xgg5(Xp, 1), (2.13)

where X, models the influence of SGS effects. We follow the approach in Liang et al. (2018)

and implement a random displacement model. In particular, we have

Xsgs,i — a—xl (Xpat) dt + (Z(ngs(xp;t))-l—)%dgia (214)

where u is the resolved velocity interpolated at the particle position and Xg is the dis-
placement due to sub-grid scale motion. In equation (2.14), the subscript i indicates the
spatial dimension, Vg, is the sub-grid scale viscosity (which is readily available in the main
code) interpolated at the particle position, d&; is Gaussian white noise with variance dt, and
(-)+ =max( -,0). Note that inclusion of the SGS model requires interpolating four additional
variables (Vsgs and its three horizontal derivatives). Interpolation is implemented in the
same way and at the same time as particle velocity interpolation to minimise communication

between Processors.



Chapter 3

Large eddy simulations of the
accumulation of buoyant material in
oceanic wind-driven and convective

turbulence

This chapter is a slightly modified version of the work published in Dingwall, J., Chor, T.,
and Taylor, J. R. (2023). Large eddy simulations of the accumulation of buoyant material in

oceanic wind-driven and convective turbulence. Journal of Fluid Mechanics, 954:A27.

3.1 Introduction

In the ocean mixed layer (OML), buoyant material is subject to a variety of processes
including convective plumes, Langmuir and wind-driven turbulence, submesoscale eddies,
Ekman flow and Stokes drift. Due to their low density, buoyant materials such as microplastics
tend to remain in the OML and accumulate near the ocean surface in regions with convergent
surface currents. In this chapter, our focus is on the smaller scales where buoyant material
accumulates in ephemeral patches and streaks.

In the absence of Stokes drift, the small-scale structure of the ocean mixed layer is
governed by processes such as convection forced from night-time cooling and shear stress
generated by surface winds. Kukulka et al. (2016) showed that convective turbulence can
submerge buoyant particles into the water column, while Kukulka et al. (2012) revealed
that wind-driven mixing can vertically distribute buoyant particles in the OML. Skyllingstad

and Denbo (1995) showed that under a combination of wind and convective forcing, the
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horizontal distribution of particles at the ocean surface coincides with regions of convergence.
Mensa et al. (2015) used a relatively low-resolution model to demonstrate that under pure
convection, tracer accumulates in convergent regions of Rayleigh-Benard cells. With the
additional presence of weak wind forcing, they found that convection cells were distorted but
tracer continued to accumulate in downwelling regions. Chor et al. (2018a) expanded on this
using higher resolution numerical simulations in a purely convective regime and a range of
buoyancies for the tracer field. They found that, in addition to buoyant particles accumulating
in convergent regions of the Rayleigh-Benard cells, the presence of convective vortices in
the vertices between some cells acted to additionally cluster the most buoyant particles.
It remains unclear to what extent convective vortices and the associated accumulation of
buoyant particles persist in the presence of wind forcing.

In this chapter, we extend previous work by studying the formation and persistence of
convective vortices under the combined effects of wind and convective forcing and their
influence on buoyant material. In the atmosphere it has been noted that the number and
strength of convective vortices (e.g. dust devils) that form depend strongly on wind conditions
(Raasch and Franke, 2011).

We study these processes using a series of LES under idealised conditions where tur-
bulence is generated by imposing a constant surface heat flux and shear stress. LES is a
useful tool for studying the accumulation of buoyant particles because they resolve the largest
turbulent motions responsible for particle accumulation and vertical transport. LES has also
been used to study convective vortices in the atmosphere (Raasch and Franke, 2011) and the
ocean (Chor et al., 2018a).

We model buoyant material using a combination of buoyant tracers and Lagrangian
surface particles (advected with the surface velocity). The upwards slip velocity causes
buoyant tracers to concentrate near the surface of the ocean and is opposed by turbulence
and diffusion which transports the tracer downwards. For a buoyant tracer to be effectively
trapped at the surface, the slip velocity must exceed the maximum vertical velocity of the
fluid. Due to numerical constraints, there is a limit to the slip velocity that can be added to a
tracer field. Here, we additionally use Lagrangian particles at the surface which allows us to
investigate the limit where the slip velocity is much larger than the fluid vertical velocity.

Whilst Chor et al. (2018a) provides an extensive study of convective vortices in a purely
convective regime, we focus on the extent to which convective vortices persist in the presence
of a surface wind stress, and how this affects particle clustering inside convective vortices.
Unlike our simulations, Chor et al. (2018a) did not include the Coriolis acceleration due to the
Earth’s rotation and hence they did not observe the bias towards cyclonic convective vortices
that we observe. Additionally, Chor et al. (2018a) only used a tracer field to investigate
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clustering of buoyant material and did not look at the limit of extremely buoyant material
with Lagrangian particles.

Below, in section 3.2, we introduce the problem configuration and numerical methods. In
section 3.3, we present our results. Section 3.3.1 includes a qualitative description of the flow
and the buoyant particles, section 3.3.2 describes convective vortices with and without wind
forcing, and section 3.3.3 includes a quantification of the accumulation of buoyant particles.

A summary of the study and discussion of the key results is given in section 3.4.

3.2 Setup and numerical methods

Here, we use large eddy simulations to solve a low-pass filtered version of the non-hydrostatic
incompressible Boussinesq Navier-Stokes equations (3.1) and (3.2) in terms of the low-pass
filtered velocity u = (u,v,w), low-pass filtered pressure p, and buoyancy b,

0 1 N
—u+u~Vu—|—f><u:——Vp+vV2u—V-1:+bz, 3.1
ot Po

db

§+u-Vb:Kbv2b—v-).. (3.2)

The buoyancy is treated as a single scalar variable under the assumption of a linear
equation of state and neglecting double diffusive effects. In the momentum equation, f =
(0,0, f) is the Coriolis parameter under the ‘traditional’ approximation. The sub-grid scale
stress tensor, T, and sub-grid scale scalar flux, A, are both calculated using the anisotropic
minimum dissipation model (Abkar et al., 2016; Vreugdenhil and Taylor, 2018) which is
described below.

The computational domain is 500 m in each horizontal direction and 120 m in the vertical
direction. A constant buoyancy loss (equivalent to cooling the surface of the ocean) is
applied at the surface to drive convection. Various values of the imposed surface buoyancy
flux are used, ranging from 0 to —4.24 x 10~8 m?/s3, but the surface buoyancy flux is
constant in each simulation. Using a thermal expansion coefficient of a@ = 1.65 x 1074 C~!
and a heat capacity of 4 x 10® J kg C~!, a surface buoyancy flux of —4.24 x 10~8 m?/s’
corresponds to a heat loss of about 100 Wm™2. Wind is applied using a shear stress at z =0
m which is aligned with the x-axis without loss of generality. Various values of the wind
stress are considered, ranging from 0 to 0.1 Nm ™2, but again this value is constant for each
simulation. At the bottom of the computational domain, a no stress boundary condition is
applied in both horizontal directions and a sponge layer is applied to prevent reflections.

Planetary rotation is included with a Coriolis parameter of f = 10~* s~!. Atz = 0 hours, the
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buoyancy is initialised with a mixed layer with depth 80m overlying a region with stable
stratification. Specifically, db/dz =0 s> for —80 m < z < 0 and db/dz =9 x 1076 s2
for z < —80 m. This stratification is in the range of values observed by Brainerd and Gregg
(1993) in the diurnal thermocline and is equivalent to a potential temperature gradient of
00/9z=0.01°Cm~! for z < —80 m.

The vertical velocity is set to zero at the top and bottom of the domain. We also do not
include the Craik-Leibovich vortex force. Hence, although we run simulations for about
24 hours to allow wind and convective turbulence to fully develop, we do not consider
the development of surface waves or Langmuir circulation. This can be viewed as an
approximation to calm conditions (e.g. at the start of a wind event before waves have had
time develop), but our primary motivation is to simplify the physical processes and isolate
the influence of wind-driven shear on convective vortices. Periodic boundary conditions
are applied in both horizontal directions. The velocity is initialised as random white noise
with an amplitude of 10~* m/s. The molecular viscosity is v = 10~ m?/s and the molecular
diffusivity is &, = 10~% m?/s, although both are small compared to the sub-grid scale terms
and do not directly influence the model results.

The resolved fields are discretised on a grid with 512 points in each horizontal direction
and 65 points in the vertical direction. This gives a horizontal grid spacing of 0.98 m and a
variable vertical grid spacing between 0.95 m and 2.57 m with higher resolution near z = 0 m.
Derivatives in the horizontal directions are calculated using a pseudospectral method, whilst
vertical derivatives are approximated using second-order finite differences. The equations are
time-stepped using an implicit Crank-Nicolson method for the viscous and diffusive terms
and a third-order Runge-Kutta method for all other terms. Further details of the numerics
can be found in Taylor (2008).

The sub-grid scale terms are modeled with the anisotropic minimum dissipation (AMD)
model (Abkar et al., 2016; Rozema et al., 2015; Vreugdenhil and Taylor, 2018). In developing
our simulations, we also tested the constant Smagorinsky model but found that the AMD
model converged more rapidly as the resolution was increased. With the AMD model, the
dynamics under pure convection are relatively insensitive to grid spacing. In the wind forced
case, the root mean square vertical velocity and pressure near the surface increase as the
resolution increases. This is likely due to additional small-scale turbulence near z = 0 m
being resolved in higher resolution runs. However, at a depth of —30 m, close to the depth
where the rms vertical velocity reaches its maximum, the vertical velocity is only weakly
dependent on the resolution under both convection and wind forcing. A detailed discussion

of the resolution convergence can be found in appendix 3.A.
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Buoyant material is modelled using two approaches: an Eulerian tracer concentration
field and Lagrangian surface particles. The setup for the Eulerian tracer concentration field
is similar to Taylor (2018) and Chor et al. (2018a). The tracer is modelled as a continuous
concentration of non-interacting particles. Each particle moves with the local fluid velocity
plus a constant upwards slip velocity. This is equivalent to considering small, buoyant
particles of a fixed size and density. We assume low tracer concentrations, so although the
tracers themselves are buoyant, they do not affect fluid buoyancy. The equation for the
concentration of buoyant material is given by:

de

+u-Vc+ws@ =V - ((ksgs+ k) Vc) (3.3)
ot dz

where w; 1s the constant slip velocity and Ksgs is the sub-grid scale diffusivity. We set
k. = K, = 107% m? /s, although this value is very small compared with ksgs and does not
influence the tracer concentration. The buoyant tracer concentration is updated using the
same numerical method as the main LES code. A small number of negative values of
the tracer concentration occur due to Gibbs ringing at the grid-scale, but the total tracer
concentration is conserved by the numerical scheme. The initial condition of the tracer is
exponential in depth, specifically ¢(x,y,z,t = 0) = ¢%/19™ In this study, three tracers are
considered with slip velocities of wy = 0.001, 0.005, 0.01 m/s. Experiments on a sample
of microplastics from the North Atlantic Subtropical Gyre estimate the slip velocity to be
between 0.005 and 0.025 m/s (Kooi et al., 2016) which coincides with the two most buoyant
tracers in our simulations. Above a value of 0.01 m/s the continuous tracer field exhibits
significant numerical noise which prevents us from further increasing the slip velocity.

To investigate buoyant material with higher slip velocities, we turn to Lagrangian particles.
We implement a two-dimensional particle model at the surface of the domain, which can be
interpreted as the limit of extremely buoyant particles where wg > |w|. The movement of
small inertial particles for which inertial effects are negligible compared to flow advection and
buoyancy effects is governed by a simplified version of the Maxey-Riley equations (Maxey
and Riley, 1983), which we outlined in chapter 1. To model the influence of unresolved
turbulence on particle motion, a random displacement is included following the approach in
Liang et al. (2018). This gives the equations for the motion of two-dimensional non-inertial
particles as the following:

Xp(t+dt) =X, (1) +u(Xp,1)dt + Xegs(Xp, 1) (3.4)

0 Vsgs 1
Kogsi = g o (% )i+ (2 Vegs (1)) ) e (35)
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In equation (3.4), u is the resolved velocity interpolated at the particle position and X is the
displacement due to sub-grid scale motion. In equation (3.5), the subscript i indicates the
spatial dimension, Vyg, is the sub-grid scale viscosity interpolated at the particle position, d&;
is Gaussian white noise with variance dt, and (-); = max( - ,0).

Interpolated quantities are calculated using cubic B-splines following Hinsberg et al.
(2012). This method was chosen due to its low computational cost and high accuracy
(outlined in chapter 2). The particle evolution equations are time-stepped using the third-
order Runge-Kutta method alongside the main LES code. We simulate the motion of 4000
particles which are initially randomly distributed. In appendix 3.A, we discuss the sensitivity
of particle clustering to the resolution of the LES and find that in the cases with pure
convective forcing, the results are not very sensitive to resolution. In the wind forced case
increasing the resolution slightly reduces the tendency for the particles to cluster.

Here, we report seven simulations with different values of the surface buoyancy flux
and wind stress. The parameter space can be interpreted in terms of the friction velocity u*
and the convective velocity w* (Deardorff, 1970) which characterise the velocity scales of

wind-driven turbulence and convection, respectively. These are defined as:

-~
==, 3.6
! (Po> G0

w* = (|Bo|H)3. 3.7)

Here, 7 is the surface wind stress, pg is the constant reference seawater density, By is the
surface buoyancy flux and H is the initial mixed layer depth. The ratio between u* and w*
measures the relative importance of wind and convection.

There is some disagreement in the literature as to the ratio of u* and w* that marks
a transition from convective turbulence to stress-driven turbulence. For example, early
numerical studies using LES estimated that a value of u*/w* = 0.65 marks the change
from convective cells to convective rolls in the atmospheric boundary layer (Moeng and
Sullivan, 1994), whilst for convection between flat plates the estimated transitional value is
u* /w* =0.35 (Sykes and Henn, 1989). In the ocean, Heitmann and Backhaus (2005) found
a change in flow behaviour for u*/w* = 0.4 — 0.7. Regardless of the transition value, we
expect wind-driven turbulence to dominate when u*/w* > 1 and convection to dominate
when u*/w* < 1. For intermediate values, both wind and convective forcing likely both
influence the dynamics to some degree. In the context of vertical mixing of buoyant materials,
Chor et al. (2018b) introduced a generalised turbulence velocity scale, W, and in the absence
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Simulation name | B x 10% (m?/s%) ¢ (Nm™2) w*(m/s) u*(m/s) L
I —4.24 0 0.015 0 0
—4.24 0.01 0.015  0.003 0.1

—4.24 0.05 0.015  0.007 046

I —4.24 0.1 0015 001 0.6
—0.424 0.1 0.0070 001 141

—0.0424 0.1 0.0032  0.01  3.05

11 0 0.1 0 001 o

Table 3.1 Simulation parameters

of Langmuir turbulence this is given by:
W3 =uid + A3 (3.8)

where Kk = 0.41 is the von Kédrmén constant and A, represents the contribution of convective
turbulence to W which Chor et al. (2018b) estimated to be A, = 1.170. The larger convective
coefficient suggests that vertical mixing is influenced more strongly by convective turbulence
than wind shear when u* = w*. The Monin-Obukhov length-scale also characterises the

importance of convective forcing and wind forcing, and is defined as

*3
—Uu
L= 39
KBy’ (3.9)

where x is the von Kdrman constant as above, and By is the surface buoyancy flux. In case II
defined below (u* = w*), we find L = 58 m which predicts that wind forcing is important
throughout the upper part of the mixed layer.

Our simulations can be arranged into two series, each independently varying the strength
of the wind or the convective forcing. This includes one simulation with pure convection and
one simulation with pure wind forcing, which act as control simulations. The first series is
run with a surface buoyancy flux held constant at —4.24 x 103 m?/s® and the wind stress
varying between 0 and 0.1 Nm~2, which is equivalent to wind velocities at 10 m ranging
between 0 and 8.1 m/s (calculated using a drag coefficient Cp = 0.0013). The second series
is run with wind stress held constant at 0.1 Nm~2 and the surface buoyancy flux varying
between 0 and —4.24 x 1073 m?/s3. This allows us to see the effect of increasing wind and
convection independently and ensures that we cover a wide range of flow behaviour without
applying unrealistic wind or convection forcing. Each simulation has a different value of
u* /w*. The parameters of the simulations are listed in table 3.1, and the parameter space can

be visualised in figure 3.1.
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Fig. 3.1 u* and w* parameter space for simulations. Case I, II and III are labelled for
reference.

3.3 Results

Here, we primarily focus on three simulations that illustrate the three main flow regimes:
pure convection (case I), combined wind and convection (case II) and pure wind forcing
(case III). In case I, w* = 0.01 m/s and u* = 0 m/s, in case I, w* = u* = 0.01 m/s, and in
case III, w* = 0 m/s and u* = 0.01 m/s. This allows us to directly examine convection and
wind forcing of similar strengths. The remaining simulations exhibit qualitative features
that are represented in one of these three cases. In all analysis below, we neglect transient
effects by considering horizontal slices at t = 12 hours and calculating time averages over
one inertial period from 6 —23.5 hours. This ensures that the simulated flow has reached
a fully developed turbulent condition before the start of the time average. In cases I and
I, quasi-steady convection is established by approximately 4 hours. This suggests that our
results might be consistent with at least part of the diurnal cycle when night-time convection
becomes fully developed.

The results are organised into three subsections: in section 3.3.1, we present a qualitative
description of the flow, buoyant tracers and surface particles; in section 3.3.2, we investigate
the formation of convective vortices and the influence of wind forcing on the vortices; in

section 3.3.3, we look at the accumulation of buoyant tracer and surface particles.



3.3 Results 49

3.3.1 Qualitative description of the flow and the distribution of buoyant

material

In this section, we start by describing the qualitative features of the turbulence and the
distribution of buoyant tracers and particles in cases I, II, and III. Figure 3.2 shows horizontal
slices of the vertical velocity, tracer concentration and surface particle positions. The vertical
velocity field is shown 5 m below the surface. The tracer concentration and particles are
shown at the surface (z = 0 m). We show the tracer with w, = 0.005 m/s, which is the
intermediate buoyancy used in our simulations. A smaller value of wy gives a more uniformly
distributed tracer field, whilst a larger value of wy gives a more strongly clustered tracer
field (shown below). In all of the cases, the average vertical fluid velocity is zero due to the
boundary conditions at the surface. The regions of downwelling appear to occupy a smaller
area (particularly in I and II) but are larger in magnitude.

In case I, distinct convection cells are visible. Convective cells are characterised by
large areas of weak upwelling surrounded by narrow regions of strong downwelling. The
downwelling regions between neighbouring convective cells meet at convective ‘nodes’. As
in Chor et al. (2018a), the horizontal scale of the convective cells is typically about 1-2
times the depth of the mixed layer (recall that the mixed layer depth is 80 m). The buoyant
tracer concentration is elevated in locations of downwelling between convective cells with
the highest concentrations in the nodes. The particles, which unlike the tracer are confined to
the surface, have a more extreme distribution and are located almost exclusively in the nodes.

In case II with convective and wind forcing, the convection cells are replaced by distinct
larger-scale downwelling streaks. The tracer accumulates in the streaks with the strongest
downwelling. This is mirrored in the distribution of surface particles. In case I1I with pure
wind forcing, the vertical velocity exhibits horizontal streaks on a smaller scale compared to
case II and the tracer concentration also exhibits streaks. In section 3.3.3, we show that the
tracer accumulates in streaks of high speed. The average tracer concentration is noticeably
higher at the surface for the same slip velocity (discussed below). The surface particles
appear to be less organised than the tracer in this case, although this might be due to the
small size of the wind-driven turbulent streaks and the limited number of particles. Inherent
differences between Eulerian and Lagrangian dynamics and statistics are interesting, but
we are not able to comment on this directly since the tracers and particles sample different
depths in our simulations. Still, some areas exhibit elevated particle concentrations and the
particles are not uniformly distributed.

As the slip velocity of the tracer increases, the surface tracer concentration increases and
the tracer becomes more clustered. Figure 3.3 shows the tracer distribution at the surface

with increasing slip velocity (left to right) in case II. The least buoyant tracer concentration
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Fig. 3.3 Horizontal cross section at z = 0 m of tracer with wy = 0.001 m/s (a), wy = 0.005
m/s (b), wy = 0.01 m/s (c) in case II.

(left) exhibits horizontal streaks but with smaller variations (note the difference in colour
axis scale for the three horizontal slices). The most buoyant tracer (right) is more strongly
clustered; it has wide expanses of low concentration as well as a few large-scale horizontal
streaks with very high tracer concentration, up to fifty times higher than the least buoyant
tracer. The distribution of surface particles (see figure 3.2i) exhibits the same patterns as
the most buoyant tracer. Note that the mean surface tracer concentration is also significantly
higher for the more buoyant tracers, and this is discussed further below.

The influence of the slip velocity on the tracer distribution can be explained in terms of
the ability of the vertical fluid velocity to overcome the slip velocity. For all three tracers, the
slip velocity is smaller than the maximum vertical velocity (approximately 0.02 m/s). Tracer
accumulates in regions of horizontal flow convergence, and at the surface this coincides
with downwelling regions of the flow where tracer can be transported below the surface.
A less buoyant tracer is more easily submerged and may then resurface in an upwelling
(horizontally divergent) region giving a more uniform distribution. Very buoyant tracers are
only subducted in regions of strong downwelling and the tracer then quickly rises back to
the surface. As a result, very buoyant tracers remain close to regions of strong horizontal
convergence and downwelling. It is worth noting, however, that not all downwelling regions
exhibit high tracer concentrations. In case I the buoyant tracer and surface particles are
strongly clustered in a subset of the convective nodes. As we will see in the next section,
these regions are occupied by convective vortices.

Figure 3.4 shows vertical profiles of the mean tracer concentration (horizontally and time
averaged) under different wind and convection forcing conditions. In all cases, the mean
tracer concentration is surface intensified and the concentration at z = 0 m is highest for
the most buoyant tracer. As noted from visualisations of the buoyant tracer (figure 3.2),

the mean tracer concentration is noticeably higher at the surface in case III compared to
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Fig. 3.4 Vertical profile of mean tracer concentrations.

cases I and II. This is confirmed in figure 3.4, which shows that in case III, the vertical
distribution of the mean tracer concentration is significantly different from I and II. For all
slip velocities in case III, the tracer concentration at the bottom of the mixed layer (z = —80
m) is small compared to the surface concentration (z = 0 m). In comparison, the mean tracer
concentration profiles in I and II are quite similar. In both cases the weakly buoyant tracers
are relatively homogeneous in the middle of the mixed layer (i.e. —60 m < z < —20 m).
These vertical profiles closely resemble those in Chor et al. (2018b) and suggest that vertical
mixing by convection is fast enough to overcome the effects of tracer buoyancy with or
without wind forcing. The turbulence velocity scale, W (see equation (3.8)), predicts that
convective forcing contributes to vertical mixing more than wind shear when u* = w*, and
explains why the vertical distribution of the buoyant tracers in case II is more similar to case
I than case II1.

Although the mean tracer concentration is relatively constant in the vertical direction in
cases I and II, the tracer concentration within the mixed layer is not uniform. Figure 3.5
shows the tracer concentration on horizontal slices at z = —30 m. By comparing with figure
3.2, it is evident that regions with high tracer concentration at z = —30 m generally coincide
with regions with high concentration at z = 0 m. This suggests that regions with elevated
tracer concentration are vertically coherent in cases I and II. There are also small areas of
very high concentration, particularly visible in case 1. These are generally co-located with
the surface particles and in the next section we will show that these correspond to convective
vortices. In case III, there are a few small spots with elevated tracer concentration, but the
concentration is generally quite small at this depth.
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Fig. 3.5 Horizontal cross section at z = —30 m of buoyant tracer (wy = 0.005 m/s).

3.3.2 Convective vortices

In this section, we examine the convective vortices in more detail, focusing in particular
on the influence of wind forcing on the convective vortices. There are several ways to
identify convective vortices. Chor et al. (2018a) characterised convective vortices using the
two-dimensional Okubo parameter. Here, we apply a similar method as developed in Raasch
and Franke (2011) who identified dust devils in a convective boundary layer using pressure
and vorticity. Whilst vorticity is an obvious measure, small-scale turbulence also contributes
to vorticity, making it difficult to identify coherent convective vortices. We eliminate some
of this small-scale noise by applying a Gaussian filter to the vorticity field before using it to
identify convective vortices. In addition, structures such as regions of high shear can have
large values of vorticity, and so we use the pressure field in conjunction with vorticity to
exclude such structures. The physical reasoning behind using the pressure field is that the
centrifugal force created by the fluid rotating inside the vortex causes the pressure to be lower
than the surrounding fluid (Hussain and Jeong, 1995). We have verified that pressure and the
Okubo parameter yield qualitatively similar results (see appendix 3.B).

Vortices are identified using the local minima of the departure from the hydrostatic pres-
sure and local maxima of the filtered absolute vorticity field, where local minimum/maximum
means that the values are smaller/larger than the adjacent 224 grid points (forming a 15 x 15
grid). This grid size has been determined empirically to avoid detection of multiple vortex
centres within one convective vortex. We use the pressure and vorticity fields evaluated at
z = —1 m to match the depth of the surface particles. We require the pressure minimum to be
located within two horizontal grid points of the filtered absolute vorticity maximum, which
we define as the vortex centre. We use a threshold value of 5 times the standard deviation
of filtered absolute vorticity (567, where 5 denotes the Gaussian filtered vorticity) and 5
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times the standard deviation of perturbation pressure (56),) at z = —1 m which is similar to
the applied thresholds in other vortex detection algorithms (Giersch et al., 2019; Nishizawa
et al., 2016b). This threshold aims to eliminate as much non-coherent turbulence as possible,
whilst still capturing sufficient information for analysis. The magnitude of the threshold
value depends on the strength of wind forcing and convective forcing of each simulation.

More convective vortices are identified under strong convective conditions, and the
number of convective vortices decreases with increasing wind strength. To quantify this in all
simulations, we count the number of vortices detected using our criterion at each time-step
and average over one inertial period. Figure 3.6 shows that the total number of vortices
decreases as u* /w* increases. In case I, there are approximately 2 vortices per 100 m? (40
vortices in the 500 m? domain). When u* ~ w* (case II), the number decreases by about
two orders of magnitude compared to when u* = 0 m/s (case I). For higher values of u* /w*,
less than one vortex is detected in the domain at any given time. Note that the number of
convective vortices is not exactly equal to zero when w* = 0 m/s. We interpret this as rare
regions of intense turbulence that happen to meet our criterion rather than as convective
vortices.

To visualise the convective vortices in cases I, II and III, we use the pressure field.
Figure 3.7 shows pressure isosurfaces in the upper panel and pressure contours at 7z = —1 m
(black) and particle position (red) in the lower panel. In cases I and II, we observe coherent
convective vortices which typically occur in the regions of strong downwelling and extend

down from the surface into the mixed layer. Note, however, by comparison with figure 3.2
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that not all locations with strong downwelling contain a convective vortex. In case I, the
convective vortices occur in the nodes where downwelling regions join together and there
is coincident particle clustering inside the convective vortices. In case II, the convective
vortices preferentially occur in the coherent downwelling streaks and are tilted in the direction
of wind forcing. Surface particles cluster in the larger downwelling streaks and are less
confined to convective vortices than in case I. In case III, coherent vortices are not visible
and there is relatively little particle clustering. In all cases, the convective vortices detected
have a relatively small diameter of a few metres. This implies that simulations need a high
resolution for convective vortices to be visible and observations in the ocean would require
measurements at small-scales.

To further characterise the surface flow, we look at the relationship between vertical
velocity and pressure. This allows us to identify regions of downwelling and convective
vortices, both of which have a role in clustering buoyant material. The joint probability
distribution function of vertical velocity and pressure is shown in figure 3.8 under different
wind and convective forcing at z = —1 m. In all cases, points which have values of vertical
velocity and pressure near zero are much more common than points with extreme values. In
case I, the distribution of points is highly skewed, with a long tail of values with negative
pressure. The contour at probability density level 10~* demonstrates that there are more
points with negative pressure and negative vertical velocity. This indicates that convective
vortices experience a bias towards downwelling circulation, which is consistent with the
visualisations (figure 3.7d).

With wind forcing (cases II and III), the shape of the joint probability density function
becomes more isotropic, in particular in the distribution of pressure points between positive
and negative values. The range in vertical velocity is larger in case II and III compared to
case I (note the change in axis limits). Case II has more points with low pressure than case
II, consistent with the visualisation showing well-defined convective vortices in case II but
not case III, and the very small number of vortices detected (figure 3.6).

We can analyse the mean structure of the convective vortices by superposing many
convective vortices and averaging their properties. For each time-step, we identify convective
vortices using the detection method described above and average the field centred at the
vortex centre over all of the vortex centres found during one inertial period.

Figure 3.9 shows horizontal (a) and vertical (b) slices of the vertical velocity for the
averaged convective vortex in case I. The horizontal cross sections are taken at z = —1 m
whilst the vertical cross sections are taken through the centre of the averaged convective
vortex. The threshold pressure contour (red) is included along with the vectors of velocity
(black).
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The averaged convective vortex is symmetric about its centre. Although the mean vortex
diameter is about 5 m based on the pressure threshold, enhanced subduction extends about
15 m from the vortex centre. Since the vortex diameter is only a few times larger than
the model grid spacing, it is possible that the vortex diameter would be even smaller in
higher resolution simulations. The mean flow spirals inwards to the centre of the convective
vortex with cyclonic (counter-clockwise) rotation. The peak vertical velocity occurs on the
periphery of the convective vortex and encircles a local minimum in the centre. This is
consistent with simulations of dust devils in the atmosphere (Giersch and Raasch, 2021;
Raasch and Franke, 2011) which speculate that the decrease in vertical velocity in the central
core of an averaged vortex could indicate stagnation points or flow reversal inside dust devils,
shown schematically in Balme and Greeley (2006). Such features may be observable in
instantaneous data with higher resolution, but this is outside the scope of the current study.
Below 30 m the downwelling broadens and becomes weaker in the bottom half of the mixed
layer.

The convective vortices are maintained by vortex stretching. The vertical component of
the vortex stretching term is @ - Vw where @ = V X u is the vorticity and w is the vertical
velocity. Figure 3.9c-e shows the vertical component of vorticity, {, dw/dz, and {dw/dz
all averaged over the ensemble of convective vortices. The term @ - Vw is dominated
by stretching of vertical vorticity ({dw/dz), whilst the vortex twisting term ({,dw/dx +
{y,0w/dy) is one order of magnitude smaller and shows little coherence. The ensemble
mean is characterised by large vertical vorticity near the surface which decreases with depth.
Interestingly, the average vorticity is positive, which indicates a bias towards cyclonic rotation
as explored further below. The vertical component of the vortex stretching term is positive in
the core of the mean vortex, indicating a source of positive vertical vorticity. Below 30 m,
dw/dz changes sign and there is little coherence in the vortex stretching field. The relatively
small positive vorticity below 30 m is likely maintained by advection or diffusion.

The structure of the convective vortex changes as the wind stress increases. Figure 3.10
shows horizontal (a-d) and vertical (e-h) cross sections of the vertical vorticity averaged
over the ensemble of convective vortices for T = 0 (case I) , 0.01, 0.05, 0.1 Nm~2 (case
IT), with the buoyancy flux remaining constant (Bg = —4.24 x 1078 m?/s3). The remaining
simulations do not have a sufficiently large number of convective vortices to provide a robust
average (see figure 3.6) and are not shown. As wind forcing increases, the horizontal vortex
structure becomes less symmetric and we observe a streak of increased vorticity which
extends from the vortex centre in the direction of wind forcing. Under these higher wind
strengths, the vortex tilts and is confined to shallower depths which is consistent with the

shearing of the convective vortices seen in figure 3.7. Interestingly, the magnitude of vorticity
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Fig. 3.10 Horizontal (a-d) and vertical (e-h) cross sections of vertical vorticity for the averaged
vortex for 7 =0,0.01,0.05,0.1 Nm~2 with vectors of horizontal velocity superimposed.

inside the convective vortex is not strongly dependent on the strength of the wind forcing,
and the bias towards positive vorticity also persists.

Despite their small size, the convective vortices in our simulations exhibit a strong bias
towards cyclonic (counter-clockwise in the northern hemisphere) rotation, suggesting an
influence from the Coriolis acceleration. The relative importance of the Coriolis acceleration
is typically quantified using the Rossby number, Ro =U /(fL) ~ {/ f. Itis generally assumed
that the planetary rotation is unimportant for processes that are characterised by Ro > 1.
Here, {/f > 100 within the convective vortices in case I, and hence the bias towards cyclonic
rotation is surprising. Although there has been some debate, observations and simulations of
dust devils in the atmosphere appear to indicate that cyclonic and anticyclonic vortices form
in roughly equal number (Balme and Greeley, 2006; Sinclair, 1965). In the oceanic case, Chor
et al. (2018a) set f = 0 s~! and hence did not explore the possibility of a cyclone/anticyclone
asymmetry. Similar observations of a rotational bias within a high Rossby regime have been
recorded in experiments and simulations of convective plumes in a rotating environment
(Frank et al., 2017; Sutherland et al., 2021).

Figure 3.11 shows the probability density function (PDF) of the vertical vorticity at z =0
m for points associated with convective vortices (left) and for all points in the domain (right)

over one inertial period. To remove turbulent fluctuations, the vorticity at each point is
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Fig. 3.11 Probability density function of vertical vorticity at z = 0 m for points identified as
convective vortices (a) and all points in the domain (b).

averaged over a box measuring approximately 5 mx5 m, which is a similar length-scale
to the diameter of a convective vortex. In addition to cases I (t =0 Nm~2) and Il (t = 0.1
Nm™2), we show the vorticity distribution for the two simulations with intermediate wind
stress T = 0.01 Nm~2 and 7 = 0.05 Nm~2, with the buoyancy flux remaining the same
(Bo = —4.24 x 1078 m?/s%).

In case I, the PDF shows a distinct peak at { ~ £0.015 s~! which agrees with the
ensemble mean shown in figure 3.10. All cases show a bias towards cyclonic vorticity, and
for 7=0Nm 2 and 7 = 0.01 Nm—2, there is a noticeable bias in the distribution of vorticity
for all points in the domain. As the wind stress increases, the peak in vorticity has a larger
magnitude. This is likely due to the increased standard deviation of filtered vorticity in the
stronger wind cases, leading to a larger threshold value used to identify convective vortices.

To explain the cyclonic bias, it is useful to examine the evolution of vorticity along
the trajectory of surface particles. In the absence of friction, the vertical component of the

vorticity evaluated along the paths of Lagrangian particles at z = 0 m satisfies

d¢ dw
—=(0+f)5 3.10
where { is the vertical component of the vorticity vector and f is the constant Coriolis
parameter.

We can obtain a useful approximation if we use a constant value for dw/dz to characterise

the flow within a convective vortex. In the limit when |{| < | f| (corresponding to early times
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when particle vorticity is very small), equation (3.10) then yields

=Gt 2, (3.1D)
<

where {y can be interpreted as the vorticity when the particle first encounters the convective
vortex.

Sutherland et al. (2021) used a similar argument, along with a scaling for dw/dz, to
explain the unexpected influence of rotation on high Rossby number plumes in a rotating
environment observed in lab experiments reported earlier in Frank et al. (2017). Following
their arguments, we can estimate the timescale needed for a particle that initially has no
vorticity to reach a state with || ~ | f|. Using dw/dz ~ 2 x 1073s~! (figure 3.9d) gives a
timescale of about 8 minutes. In section 3.3, we quantify the time a particle spends inside a
convective vortex using particle statistics and find that in case I, particles remain within a
convective vortex for an average of 47 minutes. This suggests that particles spend enough
time within convective vortices for the planetary rotation to become important even if a
particle enters a vortex with no relative vorticity.

The argument above holds when |{| < | f|. However, the mean vorticity within convective
vortices greatly exceeds f (figure 3.10). Returning to equation (3.10) and taking |{| > |f]
while again using a constant value for dw/dz yields solutions with exponentially increasing
vorticity:

= Goe. (3.12)

To examine the applicability of the linear and exponential solutions for vorticity, we
evaluate the vorticity along trajectories of surface particles. For each particle, the pressure
and vertical vorticity are interpolated at every time-step using cubic B-splines. We identify
the time when each particle enters a convective vortex as the time when the particle pressure
falls below 50, and the particle filtered vorticity falls below 565 (the same criterion as used
to identify convective vortices) and remains below this threshold for 30 minutes when 7 =0
Nm~?2 (case I) and 10 minutes when 7 = 0.05 Nm~2. We then average the vorticity sampled
along each particle path as a function of time referenced to the time when the particle entered
the convective vortex (labelled = 0 mins). Figure 3.12 shows the timeseries of the average
vorticity sampled along the surface particle paths for T =0 Nm~2 and 7 = 0.05 Nm~2, where
we also show the linear and exponential growth solutions using dw/dz =2 x 1073 s~1. We
have verified that for T = 0.01 Nm~2, the timeseries of the average vorticity is similar to case
I, whilst for 7 = 0.1 Nm~2, the particles do not enter enough convective vortices to provide a

meaningful average.
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Fig. 3.12 Average trajectory of { along a surface particle path against the time spent inside a
convective vortex (blue) with the exponential (red) and linear (yellow) vorticity solutions
superimposed. Time ¢+ = 0 minutes corresponds to the time at which the particle enters a
convective vortex.

In both cases, the sudden increase in vertical vorticity just before the particle enters
a convective vortex is consistent with an exponential increase in vorticity at a rate set by
the value of dw/dz given above. Even before entering a convective vortex, particles are
biased towards cyclonic vorticity from vortex stretching acting on the planetary vorticity
(equation (3.11)). During each vortex encounter, the vorticity sampled along particle paths
exponentially increases due to vortex stretching. Shortly after the particles enter the convec-
tive vortices, the vertical vorticity saturates. It is likely that frictional dissipation (which we
neglected in equation (3.10)) competes with vortex stretching to prevent the relative vorticity
from increasing further. A full exploration of the dynamics of convective vortices including
frictional effects is left for a future study.

3.3.3 Clustering of buoyant material

In this section, we analyse the influence of convective vortices on the accumulation of
buoyant material. We start by looking at the distribution of a buoyant tracer in the flow and
then analyse the trajectories of surface particles. Finally, we introduce a measure to quantify
buoyant material clustering and give an overview of clustering for all simulations.

Figure 3.13 shows the horizontal and vertical slices of the tracer concentration averaged
over the ensemble of convective vortices for T =0, 0.01, 0.05, 0.1 Nm~2. In case I, the
concentration of the buoyant tracer is highest at the surface and inside the convective vortex,

and the tracer concentration decreases with distance from the vortex centre. Interestingly,
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Fig. 3.13 Horizontal (a-d) and vertical (e-h) cross sections of tracer concentration (wy = 0.005
m/s) for the averaged vortex for T = 0,0.01,0.05,0.1 Nm~? with vectors of horizontal
velocity superimposed.

the maximum buoyant tracer concentration does not coincide with the region of maximum
downwelling (figure 3.9a,b) but with the maximum vorticity. The reason for this is not clear,
but we explore the relation between vertical velocity, pressure and tracer concentration further
below. Under strong wind forcing, the maximum tracer concentration occurs upstream of the
vortex centre and tracer accumulates in a horizontal streak oriented in the direction of wind
forcing. We observe vertical shearing of the vortex similar to the vorticity field (figure 3.10)
and there is less tracer at depth under stronger wind forcing.

The cyclonic convective vortices are more effective at accumulating buoyant particles
than the anticyclonic vortices. To quantify this, we count the number of particles inside
each convective vortex identified using our vortex detection criterion, where a particle is
counted as being inside a vortex if it is located within a 15 x 15 grid (corresponding to 14.25
m X 14.25 m grid) centred at the vortex centre. We find that in case I, the average number
of particles inside a cyclonic vortex is 23, whilst the average number of particles inside an
anticyclonic vortex is 6. This bias continues up to T = 0.01 Nm~2 with the buoyancy flux
remaining constant (B = —4.24 x 10~8 m?/s®). Beyond this, we do not observe enough
particles accumulating inside the convective vortex to give a statistically significant result.

We see a similar pattern with the tracer field. Although the average tracer concentration

Tracer concentration

Tracer concentration
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(wg = 0.005 m/s) is qualitatively similar in cyclonic and anticyclonic convective vortices, the
tracer concentration is much higher inside the cyclonic vortices (maximum surface tracer
concentration in the averaged cyclonic vortex is three times higher than in the averaged
anticyclonic vortex for case I).

In convective dominated simulations, we observe buoyant material accumulating inside
convective vortices rather than downwelling regions (figure 3.2d, figure 3.13). Figure 3.14
shows the concentration of buoyant tracer with wy = 0.005 m/s at z = 0 m, averaged in
bins based on the vertical velocity and pressure at z = —1 m. In case I, the buoyant tracer
has a strong tendency to accumulate in regions with negative pressure which characterise
convective vortices. This effect is dominant over the preference for particles to accumulate
in regions with negative vertical velocity. This result is in line with the findings from Chor
et al. (2018a). The large variability of tracer concentration at the edge of the distribution
is associated with averaging over a small number of points (see figure 3.8). Outside the
convective vortices, the regions with positive vertical velocity (above 0.002 m/s) have a very
low tracer concentration, which is consistent with the visualisation in figure 3.2d.

When wind forcing is present (cases II and III), the tracer is more uniformly distributed
across pressure and vertical velocity and there are fewer extremes in the tracer concentration
(note the difference in colour axis for these panels). In both cases there is a distinct minimum
in the tracer concentration in regions with positive vertical velocity. When convection
and wind are both present (case II), the tracer concentration is large in regions of strong
downwelling and low pressure. The notable difference in the tracer distribution in cases |
and II shows that although convective vortices are present in case II, they are not as effective
at accumulating buoyant tracers compared to the convective vortices in case 1.

Although the buoyant tracer does not accumulate as effectively inside the convective
vortices under strong wind forcing, we see accumulation inside streaks of high speed. Figure
3.15a-c shows the concentration of the buoyant tracer with wy = 0.005 m/s at z =0 m,
averaged in bins based on the vertical velocity and squared horizontal speed (u” 4 1?) at
z= —1 m. In case III, the concentration of buoyant tracer is highest in regions of high
speed, even when the vertical velocity is positive. In case II, the tracer is more uniformly
distributed (note change in colour axis) but there are still elevated concentrations in regions
of high speed. This is consistent with the close resemblance of horizontal distribution of
speed (figure 3.15d-f) and buoyant tracer (figure 3.2e,f), both of which show clear streaks
with elevated speed/tracer concentration.

When wind forcing is removed (case I), there is a clear difference in tracer distribution
amongst speed and vertical velocity points. We see a distinct minimum tracer concentration

when vertical velocity is positive (similar to figure 3.14a). There is a small set of points
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Fig. 3.14 Concentration of buoyant tracer (wy = 0.005 m/s) at z = 0 m conditioned to pairs
of vertical velocity and pressure perturbation (0p) at z = —1 m.

which have high tracer concentration and large values of speed and from figure 3.15d, we see
that these correspond to convective vortices which have high speed on the periphery.

We can use the surface particles to describe the statistics of particle encounters with
convective vortices. We calculate the time that a particle spends inside a convective vortex
based on the time that the pressure sampled along the particle path is below the threshold
value (50),) and the filtered absolute vorticity sampled along the particle path is above the
threshold value (5 65). We repeat this for 4000 particles over one inertial period. We also
measure the distance that each particle is transported by the convective vortices. This is
done by calculating the Euclidean distance between the point where the particle first falls
below the pressure threshold value and the last point where the particle pressure is below the
threshold value before increasing. In a similar way, we calculate the time spent and distance
travelled by a particle outside of a convective vortex. This is the period after a particle has
just been expelled from a convective vortex (pressure or filtered vorticity are below/above
threshold values) until it next enters another convective vortex. Some key statistics from
these calculations are given in table 3.2 for each of the three cases.

In case I, particles enter and exit convective vortices frequently. On average, particles
enter a convective vortex more than 10 times during one inertial period and particles spend
a similar amount of time inside and outside convective vortices. This latter statistic is
remarkable considering the relatively small area occupied by convective vortices (see figure
3.2h). The time that particles spend in a convective vortex can be compared with the
convective timescale. This is defined as 7. = H /w* and provides a characteristic timescale for
the mean circulation within convective cells. In case I, 7. ~ 88 minutes, which is comparable

to the average time that particles spend inside a convective vortex. This suggests that in

Tracer concentration
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Fig. 3.15 Concentration of buoyant tracer (wy = 0.005 m/s) conditioned to pairs of vertical
velocity and squared horizontal speed (u> + v?) at z = —1 m (a-c). Horizontal cross sections
of squared horizontal speed at z = —1 m at = 12 hours (d-f).

this case, convective vortices trap particles for a period of time that is significant compared
to the convective timescale. In addition, the average distance that particles travel during
periods inside and outside of convective vortices is small compared to the 50 — 150 m size of
convective cells (see figure 3.2). This suggests that convective vortices do not travel long
distances sweeping up particles as suggested in Chor et al. (2018a), but rather that particles
remain close to the convective vortices in the convective nodes.

The addition of wind disrupts the effectiveness of convective vortices at trapping particles,
which can be seen by the contrast in statistics in cases II and III. Most particles do not enter
a convective vortex at all, and upon entering, particles spend just 2-3 minutes on average
inside the convective vortices. This is much smaller than both the average time spent outside
convective vortices and the convective timescale, which is also 88 minutes for case II. In
cases II and III, particles travel much further outside convective vortices than inside the
vortices, and the distance travelled outside is comparable to the scale of the wind streaks.
This suggests that the dynamics outside the convective vortex are much more important in
determining particle distribution compared to case 1.

A physical explanation for the clustering of surface particles inside convective vortices is

as follows. Convective vortices preferentially occur in the ‘nodes’ linking the downwelling

Tracer concentration

Squared horizontal speed (m?/s?)
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Case I Case 11 Case 111

Number of times 4000 particles enter a vortex 44424 231 5
Mean time spent in a vortex (mins) 47 3 2
Upper centile time spent in a vortex (mins) 118 5 3
Mean distance travelled in a vortex (m) 9 2 1
Upper centile distance travelled in a vortex 17 6 3
(m)

Number of times 4000 particles are outside 41984 4555 4022
vortex

Mean time spent outside a vortex (mins) 44 951 1070
Upper centile time spent outside a vortex 115 1084 1080
(mins)

Mean distance travelled outside a vortex (m) 11 199 225
Upper centile distance travelled outside a vor- 28 301 312
tex (m)

Table 3.2 Statistics from individual surface particle trajectories for time and distance travelled
inside (upper half) and outside (lower half) a convective vortex
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Fig. 3.16 Ratio of u* and w* against the Gini coefficient averaged over one inertial period for
surface particles (a) and buoyant tracer (b). The dashed line indicates the Gini coefficient for
a random distribution. The arrow indicates the Gini coefficient for case III where the ratio is
infinite. (c) Parameter space coloured by Gini coefficient for surface particles.
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regions of neighbouring convection cells. Particles that are brought into the convection
nodes by convergent surface currents are pulled into the centre of the convective vortex by
the inwards spiralling flow. In pure convection and under additional weak wind forcing,
convective vortices are able to collect many neighbouring particles which, on average, remain
trapped inside the vortex for a relatively long time compared to the convective timescale and
only travel a short distance inside the vortex. When a convective vortex eventually breaks up,
it leaves behind a cluster of particles inside the convective nodes which tend to stay close
together since their local flow field is the same. The cluster may then fall into another nearby
convective vortex, which attracts additional particles and further increases clustering.

The degree of clustering for buoyant tracers and surface particles can be quantified using
the Gini coefficient (Gini, 1912). For a sample of size n where observed values y; (i =1,...,n)

are in non-decreasing order (y; < y;+1), the Gini coefficient is defined as:

Gzl(n+l—2< ?—1(”“_")”)). (3.13)

n Y Vi

A Gini coefficient close to O indicates a uniform distribution, while a value close to 1
indicates strong clustering. For the surface particles, we calculate the Gini coefficient using
the number of particles within boxes formed of 3232 grid points (or 31.25 m x 31.25 m) at
each time-step, and we average the Gini coefficient over one inertial period. This box size
has been chosen because it characterises clustering at a scale which captures the two most
extreme behaviours of our simulation: under strong convective forcing, 31.25 m is small
enough to distinguish clustering in different vortices, while under strong wind forcing, it
captures the larger scale behaviour when there is less clustering.

Figure 3.16a shows that the Gini coefficient for surface particles decreases as the ratio
u* /w* increases. The limited number of particles in our simulations implies that the particles
will not be evenly distributed between the boxes even if the particle distribution is purely
random. To quantify this and provide a baseline for comparison, we calculate the Gini
coefficient for a set of particles which have been randomly distributed. To do this, we
randomly distribute 4000 particles throughout the domain and calculate the Gini coefficient
using equation (3.13). We repeat this process 500 times and the dashed line in figure 3.16a
indicates the average of the resulting Gini coefficients for random distributions. The particles
in the wind dominated regime (III) exhibit more clustering than would be seen for a random
distribution of the same number of particles (dashed line), suggesting that some clustering
still occurs in the wind-forced case. The ratio of u* and w* against the Gini coefficient closely
resembles the ratio of u* and w* against the instantaneous number of vortices (figure 3.6)

and suggests that fewer convective vortices leads to less particle clustering.
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For the buoyant tracer, we apply the Gini coefficient to the total tracer concentration
within boxes composed of 32x32 grid points (same clustering scale as above) at each time-
step and average over one inertial period. For comparison with a random distribution of
tracer, we generate a uniformly random concentration at each grid point on the 512 x 512
grid and calculate the Gini coefficient using equation (3.13), averaged over 500 samples. The
slip velocity has a significant impact on tracer clustering as can be seen in figure 3.16b. Under
all forcing conditions, the strongly buoyant tracer (red) is more clustered than the weakly
buoyant tracer (blue). For the strongly buoyant tracer, the Gini coefficient trend is very
similar to that for surface particles: the Gini coefficient decreases as the wind to convection
ratio increases. The Gini coefficient for the weakly buoyant tracer is not strongly affected
by the strength of wind or convection, but the distribution is still distinct from a random
distribution of tracer (dashed line). Even in case I (u* /w* = 0), the convective vortices that
effectively trap surface particles do not cause strong accumulation for the weakly buoyant
tracer.

Figure 3.16¢ shows the particle Gini coefficient as a function of #* and w*. This enables
us to separate out the behaviour for increasing wind strength and increasing convective
forcing. Recall that the simulations are initialised with the same reference density and mixed
layer depth, and hence changes in u* and w* (calculated with constant H = 80 m) reflect
changes in the surface wind stress and the surface buoyancy flux, respectively.

In the series of simulations with constant wind stress (vertical line of points in figure
3.16¢), increasing the magnitude of surface cooling leads to more clustering and a larger Gini
coefficient, while increasing the wind stress for a fixed level of convective forcing (horizontal
line of points) results in a decrease in the Gini coefficient. Although it is tempting to draw
conclusions about the value of the Gini coefficient on lines of constant u* /w*, only a small
section of the parameter space has been covered by our simulations. It remains unclear
whether the Gini coefficient can be described purely as a function of u*/w*.

3.4 Conclusions and discussion

In this chapter, we used idealised large eddy simulations to investigate the distribution of
buoyant material in the ocean under combined wind and convection forcing. Convective
turbulence was generated using a constant buoyancy flux at the surface and wind forcing was
generated using a constant shear stress boundary condition applied at the surface (z=0m). A
series of simulations were conducted with different strengths of wind and convective forcing.
We used two approaches to model buoyant particles: a continuous Eulerian tracer field with

an upwards slip velocity and Lagrangian particles that were confined to the surface. The
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tracer field allowed us to look at the distribution of particles with vertical motion included,
whilst the surface particles allowed us to look at the limit where the slip velocity exceeds
the maximum flow speed. The flow dynamics and subsequent clustering of buoyant material
depend on wind and convection forcing, which we characterised with the ratio of the frictional
velocity and convective velocity u* /w*.

The horizontal distribution of buoyant material depends strongly on the slip velocity.
Weakly buoyant tracers are relatively uniformly distributed at the surface and are advected
deeper in the turbulent mixed layer. We used the Gini coefficient to characterise clustering
and found that clustering decreases with increasing wind strength, while it increases with
increasing convection strength. On the other hand, weakly buoyant tracers remain nearly
uniformly distributed regardless of the strength of wind or convection forcing.

In the simulations with strong convection, convective vortices form in the ‘nodes’ that
join regions of downwelling in neighbouring convective cells. In the absence of wind forcing,
convective vortices are highly effective at accumulating surface particles and strongly buoyant
tracers. Convective vortices also act to transport buoyant tracer deep into the mixed layer.
This is consistent with the findings from Chor et al. (2018a) who considered simulations of
buoyant tracers in convection without wind forcing.

Although convective vortices survive under strong wind forcing, they become less effec-
tive at clustering buoyant material as the wind stress increases. As wind forcing is increased
under a convective regime, we observe fewer convective vortices and a transition from clus-
tering inside convective vortices to clustering inside streaks of high speed. When convective
forcing is removed, the buoyant tracers remain close to the surface and some clustering
occurs due to accumulation in regions of high speed and downwelling regions.

Surprisingly, the convective vortices exhibit a bias towards cyclonic vorticity despite
their small size and the fact that they are characterised by very large Rossby numbers. The
vorticity sampled along particle paths increases exponentially as the particles enter convective
vortices. This is consistent with a simple theory for the vorticity amplification using the
vertical divergence (dw/dz) measured near the convective vortices. A similar argument was
put forward by Frank et al. (2017) and Sutherland et al. (2021) to explain rotational effects
on buoyant plumes from a fixed source. This might help explain how a cyclonic bias first
develops, but their assumption that |{| < f (small Rossby number) and the predicted linear
increase in vorticity are not consistent with our simulations.

The picture that emerges is that surface particles that accumulate in the nodes between
convection cells frequently encounter convective vortices. The first time that a particle
encounters a convective vortex, the planetary vorticity is amplified, leading to a bias towards

cyclonic vorticity. With each subsequent encounter, the relative vorticity is ‘ratcheted’ up.
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z=0m.

Eventually this increase is balanced by the removal of vorticity through viscosity, although
we have not investigated this balance and we leave this for future work.

It is important to keep in mind potential limitations of the current study. In our simulations,
we held the surface forcing constant. In the ocean, the surface heat flux and wind stress are
often highly variable, and this variability could impact the distribution of buoyant material.
Here, we also focused solely on the effects of convection and wind-driven turbulence and
neglected many other processes that are active in the upper ocean, notably surface waves
and Langmuir circulation, mesoscale and submesoscale eddies, and density fronts. Future
work could examine the relative importance of convective vortices in the presence of these
processes.



72 LES of buoyant material in wind-driven and convective turbulence

Appendix 3.A

We examine the influence of horizontal grid resolution on the flow dynamics for two sim-
ulations: pure convection (case I) and pure wind (case III). The horizontal resolution is
varied from 0.5 m — 2 m, whilst all other parameters in the simulations, including vertical
resolution, are kept the same. To reach a 0.5 m resolution without the simulation being too
computationally expensive, we reduce the domain size to 250 m and use a 512x512 point
grid. Since convective cells are approximately 50 — 150 m in diameter and wind streaks
are even smaller, this is still large enough to capture the flow dynamics. All quantities are
averaged over one inertial period.

Figure 3.17 shows the resolution dependence of the root mean square (rms) vertical
velocity (a) and pressure (c) at z = —1 m for pure wind (black) and pure convection (red). In
case I the dependence of the rms vertical velocity on resolution is small.

In case III, increasing the resolution causes a significant increase in rms vertical velocity
and rms pressure. Our simulations do not have sufficiently high resolution to capture all
turbulent motions that develop close to the boundary at z = 0 m. For example, near-wall
streaks develop in shear-driven turbulent boundary layers with a characteristic wavelength of
A ~ 100v/u* (Smith and Metzler, 1983). For u* = 0.01 m/s and v = 107% m? /s, this gives
A ~ 1 cm which is far too small to be resolved with our 1 m grid spacing. As the resolution
is increased, we anticipate that more of the near-wall turbulent structures will be resolved in
the simulations. Here however, we are interested in accumulation at a much larger scale (in
section 3.3 we quantify clustering on a 31.25 m scale).

Figure 3.17b shows the dependence of the rms vertical velocity at z= —30 m. In both
cases I and III, the rms vertical velocity is weakly dependent on grid spacing. This is because
the additional small-scale structures which feature under wind forcing only occur near the
surface.

The random displacement model that we add to the particle motion equations helps
compensate for the unresolved wind-driven turbulence. In section 3.3, we introduce the Gini
coefficient to quantify particle clustering and we use the same quantity to check particle
convergence, which can be seen in figure 3.17d. In the case of the highest resolution, our
domain size is reduced to 250 m and for a comparable particle distribution, we tile four 250m
domains together in a 500 m x 500 m square with 1000 particles on each tile. We find that
in case I, the Gini coefficient is insensitive to grid spacing. In case III, the Gini coefficient
decreases by 26% for the highest resolution. This is due to either missing larger scale flow
structures which are not present in the smaller domain size or additional small-scale structures
that are resolved only on the highest resolution grid.
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Appendix 3.B

The two-dimensional Okubo parameter, Q, is defined as:

du  Iv\?> du  Iv\? ov  du\?
(5-%) +(5+%) ‘(a‘a—y)] . G119
—

0=

Regions with Q > 0 tend to be strain-dominated, whilst regions with Q < 0 can be understood
as being vorticity-dominated. Chor et al. (2018a) identified convective vortices as regions
with extreme negative Q. Figure 3.18 shows the joint probability density function of the
Okubo parameter and pressure. In all cases, points with the most negative values of the
Okubo parameter also have negative pressure. Under strong wind forcing, there are some
points (figure 3.18b,c) which have negative pressure but near-zero Okubo parameter. These
may characterise horizontal vortices which form under wind shear and are not classified as

vortices by the two-dimensional Okubo parameter.
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Chapter 4

A model for the cyclonic bias of

convective vortices in a rotating system

This chapter is a slightly modified version of the work published in Dingwall, J. and Taylor, J.
R. (2024). Model for the cyclonic bias of convective vortices in a rotating system. Physical
Review Fluids, 9:033503.

4.1 Introduction

It is often assumed that planetary rotation does not have a direct influence on convection in
boundary layers in the atmosphere and ocean (Klinger and Marshall, 1995; Morton, 1966;
Stubley and Riopelle, 1988). Surprisingly, in chapter 3 we found that convective vortices in
ocean mixed layer convection display a strong bias towards cyclonic vorticity. By diagnosing
the evolution of vorticity along particle paths, we found that vortex stretching amplifies the
planetary vorticity to generate the observed cyclonic bias in relative vorticity. However, this
approach was purely diagnostic. In this chapter, we develop a prediction for the vorticity bias
of convective vortices in terms of the bulk parameters of the flow, and extend our prediction
to convection in the terrestrial and Martian atmosphere.

Thermal convection can occur when a fluid is heated from below or cooled from above,
leading to an unstable density configuration. The relative importance of the nonlinear
advection and Coriolis terms in convective flows is set by the convective Rossby number,
Ro* = |B()]1/ 2¢-3/2H-1 where By is the surface buoyancy flux driving convection, f is the
Coriolis parameter, and H is the height of the convective layer (Chen et al., 1989; Fernando
et al., 1991; Julien et al., 1996; Marshall and Schott, 1999). Laboratory and numerical

experiments suggest that rotational effects become important when Ro* < 0.1 — 0.7 (Coates
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et al., 1995; Jones and Marshall, 1993; Maxworthy and Narimousa, 1994). The well-
studied problem of turbulent Rayleigh-Benard convection under steady rotation has revealed
asymmetric behaviour of cyclones and anticyclones (Favier et al., 2014; Guervilly et al.,
2014; Sipp et al., 1999; Vorobieff and Ecke, 2002). However, symmetry-breaking largely
arises in the case of rapid rotation and relatively small Rossby numbers (Ro* < 1) whereas
flows with larger Ro* are typically dominated by convective plumes which do not display
a bias (Vorobieff and Ecke, 2002). In atmospheric convection for a height of H =1 —2
km, Ro* ~ 10 (Marshall and Schott, 1999), and despite some initial debate (Brooks, 1960;
Durward, 1931), the general consensus is that there is no significant rotational bias for dust
devils (Balme and Greeley, 2006; Raasch and Franke, 2011; Sinclair, 1965).

In the upper ocean when convection develops in the top 10 — 100 m (D’ Asaro, 2014) and
the heat flux is ¢(100 Wm~2) (Marshall and Schott, 1999), Ro* typically ranges between
0.5 and 10. In chapter 3, the simulations which revealed a strong bias towards cyclonic
convective vortices were characterised by Ro* = 2.6. Similar reports of an unexpected
rotational bias exist in other flows. For example, Frank et al. (2017); Sutherland et al. (2021)
observed a bias in the rotation of buoyant plumes in experiments with a large Rossy number.

In this chapter, we propose a mechanism to explain the rotational bias of convective
vortices and make a prediction for the bias in terms of the bulk parameters of the flow.
Throughout this study, we assume f > 0. Our analysis is based on large eddy simulations
(LES) of free convection in an idealised domain. LES has been used to investigate terrestrial
(Giersch and Raasch, 2021; Raasch and Franke, 2011), Martian (Michaels and Rafkin, 2004,
Nishizawa et al., 2016a; Spiga et al., 2016) and oceanic (Chor et al., 2018a; Dingwall et al.,

2023) convective vortices.

4.2 Setup and numerical methods

We use large eddy simulations to solve a low-pass filtered version of the nonhydrostatic
incompressible Boussinesq Navier-Stokes equations (4.1) and (4.2) in terms of the low-pass

filtered velocity u = (u,v,w), low-pass filtered pressure p, and buoyancy b,

0 1 N
_u_|_u.Vu_|_f><u:_—Vp—|—vV2u—V-T+bZ, 4.1)
ot Po

db

Buoyancy is treated as a single scalar variable under the assumption of a linear equation of

state and neglecting double diffusive effects. In equation (4.1), pg is the reference density,
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Z is the unit vector in the vertical direction, Vv is the molecular viscosity, 7 is the sub-grid
scale stress tensor, and f = (0,0, f) is the Coriolis force accounting only for the vertical
component of the angular velocity vector using the so-called ‘traditional approximation’.
In reality, the horizontal component of Earth’s rotation may have an effect, particularly at
low latitudes, but here we neglect the horizontal component to simplify the analysis and
focus only on the influence of the vertical component of rotation on convective vortices. In
equation (4.2), A is the sub-grid scale scalar flux and kj, is the molecular diffusivity. Both T
and A are calculated using the anisotropic minimum dissipation model (Abkar et al., 2016;
Vreugdenhil and Taylor, 2018) as in chapter 3.

The simulations are configured to represent an idealised ocean surface boundary layer
cooled from the top, and we report dimensional values that are typical of the ocean, but
the idealisation of our simulations makes the results more broadly relevant. The domain
is 125 m in the horizontal directions with periodic boundary conditions, and 120 m in the
vertical. Convection is driven using a constant buoyancy loss at the surface with values
ranging between By = —4.24 x 10719 m?2/s3 (about 1 Wm~2) and By = —4.24 x 10~7 m?/s>
(about 1000 Wm™2), and a zero flux bottom boundary condition for buoyancy. A no-stress
boundary condition is applied at the top and bottom of the domain where the vertical velocity
is zero. The Coriolis parameter is varied from f = 107°s~! to f = 10~* s~!. Buoyancy is
initialised with a mixed layer of depth 80 m (where db/dz = 0 s~2) overlying a region with
stable stratification (db/dz =9 x 1076 s72). Velocity is initialised as random white noise
with an amplitude of 10~* m/s. The molecular viscosity is v = 10~ m?/s and the molecular
diffusivity is k, = 107 m%/s (Pr=v /K, = 1), although both are small compared to the
sub-grid scale terms and hence do not have a direct impact on the simulations. The Rayleigh
number based on the molecular viscosity and diffusivity varies between Ra = ¢(10'®) and
Ra = 0(10'®). We neglect transient effects by starting our analysis after the simulated
flow has reached a fully developed turbulent state (approximately 4 hours). Time averages
are calculated over one inertial period, starting after 4 hours which is sufficient time for
convection to develop into a statistically steady state.

The numerical code uses a pseudospectral method to calculate derivatives in the horizontal
directions and second-order finite differences for the vertical direction. The timestepping algo-
rithm is a mixed implicit/explicit scheme using third-order Runge-Kutta and Crank-Nicolson
methods. Further details of the code can be found in Taylor (2008). In all simulations,
resolved fields are discretised on a 512 x 512 x 65 grid. This gives a horizontal grid spacing
of 0.25 m. The vertical grid spacing is variable between 0.95 m and 2.57 m with higher
resolution near the surface. The domain size is large enough to accommodate one at least

one convective cell. Although the large-scale convective dynamics may be constrained by
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the box size, the focus of this study is on the small-scale vortices, for which we need high
resolution. As discussed in appendix 4.A, the number, intensity, and bias of the convective
vortices do not change with increasing domain size or resolution.

We also include 16,000 non-inertial Lagrangian surface particles advected with the
surface horizontal velocity field and vertically fixed at the first grid point below the surface.
These follow the simplified Maxey-Riley equations (Maxey and Riley, 1983) with all terms
except for flow advection and Brownian motion neglected (see chapter 1 for more details).
The particle equations of motion are given by

X,(t+dt) =x,(t) +u(Xp,t)dt + Xge5(Xp,1) 4.3)
angs 1
Xsgs,i = a—xl (Xp7t)dt+ (Z(ngs(xp,t))+)2d§,~ ) 4.4)

where u is the resolved velocity interpolated at the particle position and X is the displace-
ment due to sub-grid scale motion, although this only has a small effect on particle motion.
In equation (4.4), the subscript i indicates the spatial dimension, Vyg is the sub-grid scale
viscosity interpolated at the particle position, d&; is Gaussian white noise with variance
dt, and (-); = max( - ,0). Details of particle initialisation are given later in the text when
particles are used.

4.3 Results

4.3.1 Large eddy simulations

In figure 4.1a, distinct convective cells are visible where large areas of weak upwelling
are surrounded by small areas of strong downwelling in a simulation with f = 107% s~!
and By = —4.24 x 1078 m?%/s? at t = 16.5 hours. A two fold structure can be seen with a
spoke-like pattern of small convective cells (horizontal scale approximately 25 m) in the
upper portion of the convective layer (figure 4.1a), and larger convective cells (horizontal
scale approximately 50m) which penetrate deeper into the upper mixed layer (figure 4.1b).
This structure is consistent with similar simulations of the ocean (Skyllingstad and Denbo,
1995) and atmosphere (Schmidt and Schumann, 1989).

The pressure field highlights convective vortices as areas with a local pressure minima.
The convective vortices can be grouped into two classes. Large convective vortices are
found in downwelling bands of large convective cells at the nodes between convective cells,
and smaller convective vortices are seen populating the large and small-scale downwelling

bands. Similar convective vortices were reported for idealised simulations of a convective
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and f = 10~* s~1. Circles highlight locations of the largest four convective vortices (a,b,c)
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Probability density function of vertical vorticity at z = 0 m for points identified as large
(solid) and small (dashed) convective vortices for By = —4.24 x 1078 m?/s3 and f = 10~
s~ (red) and f =109 s~! (blue).

atmospheric boundary layer by Raasch and Franke (2011). The small convective vortices
are short-lived and extend to a depth of about 5 m, while the large convective vortices are
much more persistent and extend up to 40 m which can be seen in figure 4.1d, which shows
a vertical cross section of pressure isosurfaces (see appendix 4.B for three-dimensional
visualisation).

Figure 4.2a shows the vertical vorticity field, {, averaged over the top 5 m (to reduce
numerical noise near the surface) for the same By, f and ¢ as in figure 4.1. The four convective
vortices with the lowest pressure and largest area (circled) are all cyclonic but the small
convective vortices show a roughly even mix of positive and negative vorticity.

We identify convective vortices following Dingwall et al. (2023) based on algorithms
used to detect dust devils in the atmosphere (Giersch and Raasch, 2021; Raasch and Franke,
2011). Specifically we find the vortex centre by identifying local minima in pressure and
local maxima in the magnitude of filtered vorticity (we apply a Gaussian filter to the vorticity
field to eliminate small-scale noise and denote the Gaussian filtered vorticity 5 ). Here, local
minima/maxima are defined as points where the pressure/vertical vorticity is smaller or larger
than all points within a stencil of 15 x 15 neighbouring grid points. This stencil size has
been determined empirically to avoid detecting multiple vortex centres within one convective
vortex. We use the pressure and vorticity fields evaluated at z = —1 m (the first grid cell
below the surface) to ensure that the small, shallow vortices are captured. We additionally

require the pressure minimum to be located within two horizontal grid points of the filtered
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vorticity maximum. The pressure minima must be less than 5 times the standard deviation of
pressure (pmin < —350),) for the large convective vortices and between 0.5 and 5 times the
standard deviation of pressure for the small convective vortices (—50), < ppin < —0.50)).
Similarly, we require the filtered vorticity extremum to be greater than 5 times the standard
deviation of filtered vorticity (| &naxl > 505) for the large convective vortices and between
2.5 and 5 times the standard deviation of filtered vorticity (2.5 op < |é~’maxl < 565) for small
convective vortices. Here, the standard deviation for both pressure and filtered vorticity is
calculated using horizontal cross sections taken at the analysis height and averaged over one
inertial period. This threshold aims to eliminate as much noncoherent turbulence as possible,
while still capturing sufficient information for analysis.

Figure 4.2b shows probability density functions (PDF) of { for two simulations with the
same surface buoyancy flux but different values of f for all large and small convective vortices
detected within one inertial period. To remove turbulent fluctuations, the vorticity at each
vortex centre is averaged over a 15 x 15 box (3.75 mx3.75 m) centred at the vortex centre.
Both simulations exhibit a distinct peak at { = £0.02 s~! for the large convective vortices
(solid) and a peak at { = +0.007 s~! for the small convective vortices (dashed). When
f =10"%s~! the large convective vortices have a distinct bias towards positive vorticity, but
the distribution is relatively symmetric (with a slight positive bias) for the small convective
vortices. When f = 1079 s~!, the large convective vortices do not show a clear bias. The
PDF for small convective vortices is very similar and nearly symmetric in both cases.

Our simulations reveal that the large convective vortices are composed of a large number
of small convective vortices. We seed a collection of Lagrangian surface particles ina 5 m x
5 m box inside each small convective vortex (both cyclonic and anticyclonic) detected by the
algorithm at t = 5 hours in a simulation with By = —4.24 x 1073 m?/s® and f = 107% 57!
(when there is not a large vortex present) and track them until a large vortex forms att = 5.5
hours. Initially, the particles are distributed along the downwelling bands (figure 4.3a,c). The
small vortices quickly merge and particles accumulate in a much smaller area within the
downwelling bands. As the vortices get closer to the node which joins nearby large-scale
cells, they interact nonlinearly and eventually merge into one large vortex (figure 4.3b,d).

4.3.2 Statistical theory for vorticity bias

Here, we propose a statistical theory to quantitatively predict the cyclonic bias of the large
convective vortices which is based on the observation above that large convective vortices are
formed through the merger of many relatively unbiased small convective vortices. Statistically,
the vorticity bias for large convective vortices can be predicted by averaging the absolute

vorticity of many unbiased small convective vortices whose relative vorticity is sampled from
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an unbiased uniform distribution. Below, we demonstrate this mechanism using simulations
of idealised convective cells seeded with small random vortices. We then describe how to
apply this prediction to forced convective flows using a scaling analysis and test it using the
LES described above.

To explore the mechanism leading to a bias in the sign of the vorticity of the large
convective vortices, we ran a suite of idealised LES, initialised with several overturning
circulation cells, superimposed with smaller vortices with random amplitude and an equal
probability of cyclonic and anticyclonic vorticity. This simplified initial value problem allows
us to control the structures and parameters in the flow much more closely and provides an
ideal setting to introduce our mechanism and predictive analysis. The numerical method is
the same as above, so here we only note changes and additions to those simulations. The
initial vertical velocity is

4 4 —(z> +H,
W = W( COS i cos Y X (e + OZ), 4.5
LX LY Hy

ina250m x 250 m x 120 m domain. This forms eight circulation cells, each of which mimic
a convective cell. To model the small convective vortices, we superimpose a streamfunction
composed of Gaussian vortices, each with radius r =2 m and depth d = 15 m:

w:;;&jexp<— (x_zxi)z - (y_zyj)z) (sz) (4.6)

r r

where x; and y; denote the centres of the vortices and & ; denotes the vorticity at the centre
of a given vortex, which is randomly sampled from a continuous uniform distribution on

the interval [—&, £]. We systematically vary & and the Coriolis parameter, f. Since the
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Fig. 4.5 Horizontal slices of vertical vorticity at z = —1 m with the position of four surface

particles (A,B,C and D) superimposed in a simulation with & = 0.025 m?*/s and f =2 x 107>
s~! at7 = 10 mins (a), = 20 mins (b), 7 = 30 mins (c) and 7 = 40 mins (d). The sequence
shows the interaction and merging of four small vortices of opposing signs into one larger
cyclonic vortex. In (c), particles C and D are at the same location and in (d), particles A,B,C
and D are all co-located.

convective cells are prescribed in the initial condition, we do not cool the surface and the
surface buoyancy flux is By = 0 m?/s°.

Figure 4.4a shows the initial condition of small vortices with uniformly distributed
amplitude when & = 0.025 m?/s and f = 2 x 107> s~!. After + = 0.8 hours, the small
vortices have been advected towards the nodes joining neighbouring circulation cells and the
small vortices merge to form a large vortex. By design of the circulation cells, each large
vortex has a distinct basin of attraction (marked with a dashed black line). We focus on the
time period from the start of the simulation until the large vortex forms, at approximately 1
hour. This ensures that the eight convective cells remain distinct and do not merge or interact

with one another.
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In order to quantify the change in vorticity as the small vortices merge into a large vortex,
we seed Lagrangian surface particles at the centre of each small vortex at the start of the
simulation, and we track the vorticity along particle paths. The behaviour of merging vortices
is illustrated in figure 4.5 which shows zoomed-in snapshots of the vertical vorticity field and
tracks the position of four surface particles throughout the merger. Initially the particles are
located at the centre of four small Gaussian vortices (see figure 4.4 for the initial condition)
of which three are cyclonic (with particles B,C and D) and one anticylonic (with particle A).
By # = 10 minutes, the vortices begin to interact with one another (figure 4.5a) which results
in the three small cyclonic vortices merging into one larger cyclonic vortex. The interaction
distorts the anticyclonic vortex and causes it to reduce in size and strength (figure 4.5b,c).
Eventually, the cyclonic vortex envelopes the weaker anticyclonic vortex, so that by # = 40
minutes, all particles are contained inside a single, cyclonic vortex. This vortex is advected
towards the node of the circulation cell, and may undergo subsequent merging events.

At the stress-free upper surface (z = 0 m), the vertical component of the absolute vorticity
(£ + f) satisfies:

PED _ (g n2 s v, @)
t aZ S~
Caift

where D /Dt is the material derivative, w is the vertical velocity and v is the molecular
diffusivity. The right-hand side comprises vortex stretching and diffusion. Hence, if diffusion
is negligible and there are no vortex merging events, then the sign of the absolute vorticity
is preserved along the particle paths. In the absence of vortex stretching, we might expect
the vorticity of the large vortices to be small since the large vortices are formed through
the merger of many small vortices with opposing sign. For example, in figure 4.5, the
three cyclones and one anticyclone will still merge, but the resulting cyclonic vortex will be
broader and weaker. Without vortex stretching, the vorticity would not increase in magnitude
following the merger. Similarly in a merger of three anticyclones and one cyclone (which is
equally likely given our initial conditions), we could expect a broad and weak anticyclone to
form. Because f does not play a role when there is no vortex stretching, the distribution of
cyclones and anticyclones would be symmetric.

In our convective regime, the sign of dw/dz can be both positive and negative, but
it is positive in the downwelling regions where the large convective vortices are found.
When dw/dz > 0, vortex stretching increases the magnitude of { + f, leading to strong
large vortices whose sign (after merging) is preserved. This effect can be seen in figure
4.5. The resultant cyclonic vortex contracts and its strength steadily increases between 20
and 40 minutes (at # = 40 minutes, the maximum vorticity is 0.08 s~1). In the absence of

any further mergers, this vortex remains cyclonic (since the sign of absolute vorticity is
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Fig. 4.6 (a) Median (solid) and 25th/75th percentile (upper/lower dashed) particle vorticity
when & = 0.01 m?/s (black) and & = 0.025 m?/s (red) for f =2 x 107> s~!. (b) The predicted
proportion of cyclones versus f for different values of & (lines) and observed proportion of
cyclones in simulations (points).

preserved) and vortex stretching continues to amplify its magnitude. Eventually, diffusion
balances vortex stretching after the large vortex has formed. In a comparable merger between
three anticyclones and one cyclone, the resultant vortex would initially have weak, negative
vorticity. The magnitude of § + f would be smaller than the cyclonic case (since f is positive
and { is negative) and so vortex stretching would be less effective at amplifying the vortex.
If £ were negative but very small (for example if a larger number of small vortices merge),
then ¢ + f could be positive and amplification of { + f through vortex stretching could lead
to a large cyclone, despite the vortex being composed of more anticyclones than cyclones.

Figure 4.6a shows statistics of the vorticity sampled along Lagrangian particle paths as
a function of time for two cases with & = 0.01 m?/s and & = 0.025 m?/s. The upper (and
lower) quartile curves highlight the three stages by which small vortices merge into a large
convective vortex: amplification of small vortices by vortex stretching (initial increase),
nonlinear interactions between small vortices (slight decrease) followed by the amplification
of the large vortex by vortex stretching (large increase). For both & = 0.01 m?/s and
& = 0.025 m?/s the maximum positive vorticity of the 75th percentile is higher than the
minimum negative 25th percentile due to the the rotational bias of convective vortices (where
particles are preferentially located), and the bias is larger for & = 0.01 m?/s. The small
vortices begin to merge at about 0.6 hours after which there is a significant cyclonic bias
(median line in figure 4.6a). The cyclonic bias is weaker when the amplitude of the small
vortices, &, is larger.
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In our idealised simulations, the number of convective vortices that merge into a single
large vortex is fixed by the initial condition, but we vary f and the amplitude of the small
convective vortices (which we control using the parameter &). Since the sign of the absolute
vorticity is conserved following particle paths (neglecting diffusion), we expect the sign
of the absolute vorticity of the large vortex to be determined by the sign of the mean
absolute vorticity of all small convective vortices from which it is composed. In our idealised
simulations, we can calculate this by averaging the absolute vorticity over each basin of
attraction at the start of the simulation. Since the relative vorticity of the small convective
vortices is random and unbiased and since there are many small convective vortices in each
basin of attraction, the mean absolute vorticity has a relatively small magnitude. However,
vortex stretching amplifies the magnitude of the relative vorticity, and the simulations show
that the relative vorticity of the large convective vortices is several orders of magnitude larger
than the planetary vorticity, f. Hence the relative vorticity dominates the absolute vorticity
of the large convective vortices, and the sense of rotation of the large convective vortices will
be set by the sign of the mean absolute vorticity in each basin of attraction.

To test this hypothesis, we calculate the vorticity of large convective vortices in sim-
ulations for 18 different combinations of f and &. For each value of f and &, we run 30
simulations (which each have eight basins of attraction/large vortices) to ensure averaged re-
sults are statistically converged. In each case, we calculate the number of basins of attraction
with cyclonic mean absolute vorticity and compare this with the number of large convective
vortices with cyclonic rotation that develop in the simulation. Below, we outline the model
for predicting the proportion of cyclones versus f based only on the initial condition, similar
to that shown in figure 4.4a. Further details of the calculation are described in appendix 4.C.

For a given &, the distribution of initial mean absolute vorticity in a basin of attraction
is well approximated by a Gaussian (since the initial vorticity distribution is a collection of
Gaussian vortices). The amplitude of each vortex is uniformly distributed on the interval
[—&, &], so the mean of the distribution of initial mean vorticity in a basin of attraction is
u = 0, and hence the mean of the absolute vorticity distribution is 4 = —f. The standard
deviation of the Gaussian distribution is ¢ = 0.98 x 107 m~2 x &, where the constant has
been determined empirically from numerical simulations. We expect the sign of the vorticity
of the large convective vortex that forms to be determined by the sign of the mean absolute
vorticity in the basin of attraction. Therefore, the predicted bias is equivalent to the bias of
the Gaussian distribution. For a given f and &, the bias of the Gaussian is P(Z > —f/0),
where Z is the standard normal distribution and ¢ is as above. In terms of the probability

density function of the Gaussian, this is
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or substituting in i and o, this can be written in terms of f and £ as

: _ 1 = —(x+f)?
bias(f6) = 1 o6r x 107 x & /o eXp{ 2(0.98 x 103 x &)? }dx' 49)

Varying f for a given & yields the lines of a predicted bias, as depicted in figure 4.6b.

The predictive lines are based solely on the initial condition. To test whether the prediction
is accurate, we compare the predicted lines to the observed proportion of cyclones after
running the simulation (which gives the points in figure 4.6b). Specifically in each test
simulation (recall we run 30 simulations for 18 different combinations of f and &), we
determine whether a large cyclone or anticyclone has formed at the centre of each basin of
attraction once the small convective vortices have merged, shown in figure 4.4b. We find the
sign of the vertical vorticity field within radius 5 m of the centre of the basin of attraction,
averaged over a time interval t = 0.875 — 0.925 hours (after the large vortex has formed but
before dissipation of the large vortex ensues). If this is positive, then we judge that a cyclone
has formed. Performing this numerical calculation for each basin of attraction yields an
observed bias of cyclones.

The predicted proportion of cyclones (figure 4.6b, lines) agrees very well with the
proportion of cyclones observed (points) for different values of f and . The predicted
and simulated cyclonic bias is more prominent for larger values of f and smaller values of
E. When f is small or & is large, the width of the probability distribution for the absolute
vorticity averaged in each basin of attraction will be large compared to f, resulting in a
weaker cyclonic bias. Due to nonlinear interactions between vortices, vortex stretching, and
dissipation, not all individual regions preserve the sign of the mean absolute vorticity, but
the close agreement between our prediction and simulations in figure 4.6b suggests that
statistically, our prediction works very well.

The addition of many small convective vortices with a small bias in the absolute vorticity
leads to a much more significant bias for the large convective vortices. Under this mechanism,
the parameters which determine the bias are f, the vorticity of the small convective vortices
and the number of small convective vortices that make up each large convective vortex.
Changing f or the vorticity amplitude changes the initial the bias of the small convective
vortices. Equally, the more small convective vortices that merge into a large vortex, the

stronger we expect the bias to be.
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This theoretical framework and the idealised LES can be used to predict the bias of
convective vortices in the more realistic LES analysed in the previous section. The bias of
the large convective vortices is determined by the amplitude of the small vortices, &, the
number of small vortices contributing to each large vortex, and the Coriolis parameter, f. In
the more realistic simulations, the number of small vortices feeding each large vortex is no
longer fixed, and the vorticity of the small vortices is not controlled. We use scaling theory
to relate these quantities to the bulk properties of the flow and apply the statistical theory
described above.

The vorticity of the small convective vortices scales with By and the depth of the con-
vective layer, H, such that { ~ w*/H where w* = (|Bog|H)'/? is the convective velocity
(Deardorff, 1972) (see appendix 4.D). When |By| is large or H is small, the vorticity distribu-
tion has more extreme vorticity values so that { + f is less biased (equivalent to when & is
large). To set the maximum amplitude of the small convective vortices, &, we use the upper
limit set in our vortex detection algorithm, & = Sm? x o¢. Empirically, we then find that
& =260m? x |By|'PH?/3.

Based on the total number of small and large convective vortices detected from the LES,
we find that on average there are 40 small vortices for every large convective vortex. Since the
detection algorithm only identifies a small vortex when the vorticity is half of the maximum
threshold, this is equivalent to 80 vortices with an amplitude that is randomly sampled from
a uniform vorticity distribution. Here, we model the statistics of the large convective vortices
by averaging the vorticity of 80 small convective vortices, each randomly sampled from an
unbiased uniform distribution with amplitude &. Applying this approach, we find that the
vorticity distribution of the large convective vortices is well approximated by a Gaussian
with mean p = 0 and standard deviation o = 3.4 x 1073m~2 x &, where & is the maximum
vorticity of the small convective vortices. The sense of rotation of the large convective
vortices is then set by the sign of the mean absolute vorticity of the 80 small vortices.

Figure 4.7 shows the proportion of large cyclonic convective vortices, with a convective
layer depth of 80 m (typical of oceanic convection), for the theory (lines) and the LES (dots).
The convective vortices show the largest bias for large f and small By, a trend supported by
both the simulations and theory. The mean-squared error of the points and lines in figure 4.7
is MSE = 0.0054.

4.4 Conclusions and discussion

Here, we built on the work in chapter 3 which showed that convective vortices can exhibit

a significant rotational bias, even when Ro* is large. In particular, we used large eddy



90 A model for the cyclonic bias of convective vortices in a rotating system

H=80m |
hu =
Ro*=023 Ro*:O.S/’I@() Rot =1 | 0.9 %
4 |b=099 b=087 =~ b=082 —b=057 .

1074 o 2
Ro*=72 %

071 @
0.8 E"

Ro* =29

b=064 © g
0.7 g
S
2.
2
0.6 ~

Ro* = 2600

10761 »=0530

-9 -8 7 -6 0.5
10 10 10 10
By (mQ 873)

Fig. 4.7 Predicted probability contours (coloured lines) and Ro* = 1 line (black dashed) for
constant H. We include Ro* and the observed bias for simulations (points).

simulations seeded with Lagrangian particles to analyse the development of a cyclonic
bias in convective vortices. The convective vortices can be categorised into two types:
small convective vortices which are approximately equally distributed between cyclones
and anticyclones, and large convective vortices which exhibit a clear cyclonic bias. Our
Lagrangian analysis shows that the large convective vortices develop through the merger of
many small convective vortices. We developed a statistical theory to predict the bias in the
large convective vortices as a function of the bulk parameters of the flow.

We can apply the statistical theory to predict the bias in other settings. Figure 4.8 shows
the approximate parameter space for convection in the terrestrial and Martian atmospheres
and for shallow and deep ocean convection. In all cases we take f =7 x 107 s~!, although
this is the lower end of f values for deep ocean convection which generally occurs in higher-
latitude polar oceans. Below, we provide further justification of the approximate ranges that
By and H take in the different convective regimes, which we summarise in table 4.1.

Observations and measurements of deep ocean convection are extensive and well-reported.
A cohesive review of typical deep ocean convective conditions is given in Marshall and Schott
(1999), and here we summarise the key values relevant to this study. Sites of deep ocean
convection include the Labrador Sea, Greenland Sea, Mediterranean Sea and the Weddell
Sea where the mixed layer depth, H, ranges from about 1000 m—4000 m. Typical values of
the surface buoyancy flux range from |By| = 107® — 1078 m?/s> where the corresponding
heat loss can be between Q = 100 — 1500 Wm 2. For example, in the Mediterranean Sea,
H=2000m, f =10"*s"! and By = —4 x 1078 m?/s>, giving Ro* = 0.3. More generally,
we can expect Ro* ~ 0.01 — 1 in a deep convective regime.
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Fig. 4.8 Predicted probability contours (coloured lines) and Ro* = 1 line (black dashed) for

constant f. We highlight the approximate parameter spaces for convective vortex regimes.

Shallow mixed layer convection is typically characterised by a much smaller H and a
smaller By. For example, Chor et al. (2018a) used H = 80 m and a surface heat flux of
Q =150 Wm™2, while Mensa et al. (2015) used H = 50 m and Q = 1000 Wm ™2 to model
convection in the ocean surface boundary layer. In this case, we estimate Ro* ~ 0.5 — 10.

Heat fluxes in the terrestrial atmosphere are similar to those in oceanic convection because
heat loss to the atmosphere drives convection in the ocean, but they have very different
buoyancy fluxes. The ratio of the buoyancy fluxes in the ocean, Byceqn, and atmosphere,
B tmos 18 Written in Marshall and Schott (1999) as:

Batmos  PwCw
Bocean Pa ocaby

~10°, (4.10)

where p is the density, c is the specific heat, & is the thermal expansion over water and b
is the typical air temperature. Subscript w denotes water and a denotes terrestrial air. An
estimate of the ratio is determined using typical meteorological values which suggests that the
atmospheric buoyancy fluxes are about 10° times larger than oceanic buoyancy fluxes. This
is consistent with Caughey (1982) who estimate that By ~ 5 x 1073 m?/s? in atmospheric
boundary layer convection. The mixed layer depth in the terrestrial atmosphere is typically
H = 1000 — 2000 m. Such parameters yield Ro* ~ 10 — 250 in the terrestrial atmosphere.

Finally, Martian convection is similar to atmospheric convection but characterised by a
larger H and larger By. We can write

Bnars _ pacabagm
Batmos pmcmbmga

~ 50, .11
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Type of convection By (m?/s?) H (m) Ro*
Deep ocean convection 1077 =5x10~7 1000—5000 0.01—1
Mixed layer ocean convection | 1078 — 1077 50—-150 0.5-10
Terrestrial atmosphere 1073 —-5x1072 1000—2000 10—250
Martian atmosphere 5x1073 =10~ 5000— 10000 5—100

Table 4.1 Typical parameters in different convective regimes

where subscript m denotes Martian air and g is gravity. Again, the ratio is determined from
typical Martian (Thomas and Gierasch, 1985) and terrestrial (Marshall and Schott, 1999)
values. On Mars, the convective boundary layer can be up to 10000 m (Balme and Greeley,
20006), giving a similar range of Ro* as in the atmosphere, Ro* ~ 5 — 100.

Figure 4.8 shows that ocean mixed layer (ML) convection is expected to usually exhibit a
cyclonic bias, consistent with Dingwall et al. (2023), while deep oceanic convection is highly
biased. Our theory predicts that most atmospheric regimes will be unbiased, with a slight
rotational bias in Martian dust devils. This is consistent with observations and simulations of
terrestrial dust devils (Balme and Greeley, 2006; Raasch and Franke, 2011), but Martian dust
devil data are not yet extensive enough to test this prediction.

Finally, note that convective conditions often have additional sources of vorticity other
than buoyancy flux which may influence the derived scaling law. Examples include wind
forcing (Dingwall et al., 2023), or bottom friction in the atmosphere, both of which have
potential to increase vorticity fluctuations and inhibit the cyclonic bias. The rotational bias of

convective vortices under more realistic conditions should be explored in future work.

Appendix 4.A

The bias of convective vortices is independent of the simulation’s horizontal resolution, Ax,
vertical resolution, Az, and horizontal domain size, L. To verify this, we run simulations
varying L keeping Ax = 1 m and Az = 0.95 —2.57 m fixed (recall we use variable grid
spacing in the z direction). Subsequently, we vary Ax and Az keeping L = 125 m fixed. The
additional simulations each have By = —4.24 x 108 m?/s3, f =107*s~! and H = 80 m. To
compare the vorticity distributions, we plot the vertical vorticity PDF at z = —1 m for points
associated with convective vortices (using the vortex detection algorithm) and for all points
in the domain. Note that the vortex detection algorithm applied here uses a larger detection
radius than in the main text (5 m as opposed to 3.5 m in the main text) to ensure that vortices
are captured in low-resolution, large domain simulations. A more detailed description of
the method can be found in Dingwall et al. (2023). To remove turbulent fluctuations in the
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Fig. 4.9 Probability density function of vertical vorticity at z = 0 m for points identified
as convective vortices (a,c) and all points in the domain (b,d) as the domain size (a,b) and

resolution (c,d) are varied.
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distribution for all points, the vorticity at each point is averaged over a box measuring 5 m
X5 m.

Figure 4.9a,b shows the effect of varying the domain size (with Ax =1 m and Az =
0.95 —2.57 m). For points associated with convective vortices (a), the peak remains at
¢ ~ £0.015 s~! as the domain size decreases. The proportion of cyclones and anticyclones
stays approximately the same with the most noticeable difference when L = 62.5 m. This is
reflected in the distribution for all points, with again the most noticeable discrepancy between
distributions when L = 62.5 m. For this reason, we choose to use a domain L = 125 m. At
this size, there are only one or two large convective vortices at any given snapshot. However,
we aim to resolve the small-scale motions as much as possible without adversely affecting
the bias of convective vortices and we run simulations for a long enough period of time for
statistical quantities to converge.

Now with L = 125 m fixed, figure 4.9c,d shows the effect of increasing the horizontal
resolution, Ax, and the vertical resolution, Az. Again, the proportion of cyclones and
the distribution for all points remain similar even for the highest resolution simulations.
We choose to use the highest computationally feasible resolution, Ax = 0.25 m and Az =
0.95 —2.57 m to capture the small-scale convective vortices described in this study. When
Ax = 0.25 m, the vortex detection algorithm detects more convective vortices with a near-zero

vorticity. In the main text, we use a smaller detection radius in the algorithm to avoid this.

Appendix 4.B

Figure 4.10 depicts a more detailed visualisation of the small and large convective vortices
from a simulation with By = —4.24 x 1078 m?/s, H =80 mand f = 10~*s~! at time r = 10
hours. The small vortices are coherent structures which occur regularly throughout the
domain and we observe a roughly equal number of cyclones and anticyclones. The small
vortices extend to a depth of between 5 — 10 m while the large vortex in figure 4.10b (and
highlighted in the white box in figure 4.10a) extends to a depth of about 40 m, and in this

case is cyclonic.

Appendix 4.C

Here, we describe the specifics of the calculations used to predict the number of basins of
attraction with cyclonic mean absolute vorticity and the number of large convective vortices
with cyclonic rotation that develop in the idealised simulations, which are compared in figure
4.6.
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Fig. 4.10 Three-dimensional visualisation of small (a) and large (b) convective vortices in
a simulation with By = —4.24 x 10~® m?/s3 and f= 10~* s~ 1. (a) shows the contour of
perturbation pressure at 0p = —0), up to a depth z = —7 m coloured by vertical vorticity
with a horizontal pressure slice overlain. (b) shows the contour of perturbation pressure at
0p = —50, coloured by vertical vorticity for the large vortex highlighted in the white box in

(a).

Firstly, for any & and f, we calculate the mean vorticity within a single basin of attraction
at t = 0 hours (dashed square boxes in figure 4.4), @, where overline denotes mean and
subscript b denotes a quantity in an individual basin. Since the initial amplitude of the small
vortices is uniformly distributed, several have a very small amplitude and we expect these to
be quickly dissipated. We neglect such vortices by only considering points whose vorticity
magnitude exceeds 20% of the vorticity standard deviation. Computing &, for each basin
in each simulation, we find that the distribution of @ is well approximated by a Gaussian.
An example of this approximation can be seen in figure 4.11 which shows the PDF of the
initial mean basin vorticity, ,, for all simulations with & = 0.025 m2/s. The distribution
is very Gaussian (blacked dash line shows a Gaussian with © =0, ¢ = 2.4 x 1072 s7h.
The Gaussian is symmetric about E = 0 by construction of uniformly distributed small
vortices. Computing the standard deviation for all values of & and f, we find that the standard
deviation linearly increases with &, with 6 = 0.978 x 1073m~2 x &, where the constant is
determined empirically.

While the distribution of initial relative vorticity, {, is symmetric about 0, the distribution
of absolute vorticity, § + f is not. Accordingly, the distribution of Z—l— f is not symmetric
about 0. To calculate the extent of the bias, we use the Gaussian approximation of @ and
calculate the proportion of the distribution larger than — f (the upper tail to the right of — f).
This describes the probability of a basin of attraction initially having positive mean absolute
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Fig. 4.11 PDF of initial mean basin vorticity for & = 0.025 m?/s and Gaussian with y =
0,0=24x 107 s~! (black dashed line)

vorticity, which we expect to determine whether a cyclone or anticyclone eventually forms.
More specifically, we compute P(Z > — f /o) where Z is the standard normal distribution.
Secondly, in each test simulation, we determine whether a large cyclone or anticyclone
has formed at the centre of each basin of attraction later in the simulation once the small
convective vortices have merged. We find the sign of the vertical vorticity field within radius
5 m of the centre of the basin of attraction, averaged over a time interval t = 0.875 —0.925
hours (after the large vortex has formed but before dissipation of the large vortex ensues). If

this is positive, then we judge that a cyclone has formed.

Appendix 4.D

Empirically, the vorticity scales with By and the depth of the convective layer, H, such that
¢ ~w*/H where w* = (|By|H)'/3. This scaling also holds in the shallow convective cells
(& ~ w*/h) where h is the depth of the shallow convective cells. Typically, w* characterises
the velocity scale in the upwelling region for a convectively driven flow. The area of the
downwelling and upwelling regions is very asymmetric (figure 4.1), and hence we expect a
similar asymmetry between the upwelling and downwelling velocities. We can write this as
wy, = cwg where subscript u denotes upwelling, d denotes downwelling and ¢ is a constant
of asymmetry. Since the small convective cells are contained within the upwelling of large
convective cells, there must be a point at the base of the small cell where the large-scale
upwelling velocity balances the small-scale downwelling velocity, i.e. W, = w, /c (= wy).
Rewriting this in terms of the relevant convective velocities gives (|Bo|H)"/? = (|Bo|h)'/? /¢
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Fig. 4.12 Scaled probability density function of vertical vorticity in large-scale upwelling
regions for simulations with f = 10~* s~! with a Gaussian approximation to the scaled curve
(dashed line) at z = —1 m.

and rearrangement yields #1/H = ¢, i.e. the ratio of the depth of small and large convective
cells is constant. To estimate the vorticity fluctuations in the small convective cells (and large-
scale upwelling) which contain the small vortices, we use the relation {, ~ |Bo|'/2H~2/3.
Finally, note that the convective Rossby number can be rewritten in terms of { with a scaling
constant, C, as Ro* = C(¢/f)3/2.

Figure 4.12 shows the scaled vertical vorticity pdf in the large-scale upwelling regions, i.e.
H?3¢,|Bo|~"/3, for simulations with different values of By but the same value of f = 10~
s~ and H = 80 m, and the distributions collapse onto one another. The scaled distribution
is relatively Gaussian for small vorticity values, but has much wider tails. Studies of the
non-Gaussian distribution of vorticity have previously suggested that the development of
wide tails might be associated with vortex stretching of strong vortices (Pope, 2001; Wilczek
and Friedrich, 2009), which in our case most likely relates to stretching of the large convective
vortices.






Chapter 5

Direct numerical simulations of a
geostrophically adjusting front

5.1 Introduction

In this chapter, we change tack and consider the role of density fronts in the ocean surface
mixed layer. Here, we define a front to be a region of fluid with a very sharp density gradient
in one horizontal direction (the ‘cross front” direction), but a weak density gradient in the
perpendicular direction (the ‘along front’ direction) (Hoskins, 1982). This work is broadly
motivated by submesoscale fronts observed during the SUNRISE campaign in the Gulf of
Mexico. The dramatic density contrast between plumes of freshwater from the Mississippi-
Atchafalaya river and salty offshore water creates extremely sharp and energetic fronts. These
are associated with strong convergence (visible as surface slicks or accumulated sargassum
or bubbles, see figure 1.4), and strong vertical motion. The focus of this chapter is to use
numerical experiments to understand the physics and energy pathways of an idealised density
front, with a view to applying our findings to the transport of buoyant material in a front in
chapter 6.

Density fronts are ubiquitous features of the upper ocean (Boccaletti et al., 2007; Callies
et al., 2016; Fox-Kemper et al., 2008; Taylor and Ferrari, 2009; Thomas et al., 2008) and can
be established in a variety of situations across several different scales. On the global scale,
surface forcing such as wind stresses and buoyancy fluxes drive persistent frontal systems
such as the Gulf Stream and Kuroshio, and the Antarctic Circumpolar Current. These currents
are barotropically and baroclinically unstable which leads to the generation of mesoscale
eddies. The horizontal strain and shear associated with mesoscale and submesoscale eddies
leads to frontal sharpening, or frontogenesis (Brannigan et al., 2017). Small-scale fronts
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can also be generated through localised buoyancy sources such as river outflows. Fronts
are associated with large vertical velocities which act to increase the transport of tracers
(e.g. heat, carbon dioxide, nutrients, pollutants) into the ocean interior and high biological
productivity (Ferrari, 2011). In global and even regional models, sharp fronts are often
spatially and temporally unresolved (Boccaletti et al., 2007) and it is important that their
dynamics are well understood (Ferrari, 2011).

The density gradient at a front is associated with a hydrostatic pressure gradient. In the
absence of rotation, gravity drives dense waters to sink below light waters leading to tilting
of density surfaces towards the horizontal. When density gradients are not constant, regions
with a large density gradient tilt faster than regions with a small density gradient and we
observe frontogenesis of gravity currents, which has been studied using a combination of
mathematical and laboratory models (Simpson and Linden, 1989). When rotation is present,
the density gradient at a front can be partly balanced by the Coriolis acceleration, arising
due to rotation of Earth. A state of geostrophic and hydrostatic balance is associated with a
vertically-sheared ‘thermal wind’ flow directed along the front. Often, geostrophic balance is
disrupted by background flows (such as eddies) or external forcing (such as buoyancy fluxes
or wind stress). The process by which an unbalanced flow evolves back towards geostrophic
balance is known as geostrophic adjustment.

Geostrophic adjustment has laid the foundation for many analytical studies of density
fronts (Blumen and Wu, 1995; Ou, 1984; Rossby, 1937; Tandon and Garrett, 1994) which
have the overarching goal of solving a highly idealised model for the final equilibrium steady
state. Tandon and Garrett (1994) studied an idealised representation of the response of a
front to a mixing event (e.g the passage of a storm). They considered a fluid between two
rigid horizontal planes. Their initial condition consisted of a uniform horizontal buoyancy
gradient and no vertical buoyancy gradient, and a vertical shear that was partially or fully
mixed relative to a state of thermal wind balance. As the front adjusts to this unbalanced
initial state, an ageostrophic secondary circulation develops which carries light fluid over the
top of dense fluid and flattens the density surfaces (or isopycnals).

In 1984, Ou (1984) used a Lagrangian framework to provide a solution for an initially
motionless, isolated, two-dimensional front with a lateral density gradient. They found that
the ageostrophic secondary ciruclation can produce regions of convergence and steepen den-
sity gradients. For sufficiently large initial density gradients, singularities form in convergent
regions and the equilibrium state does not exist. It remains uncertain what prevents the
development of a singularity in the full three-dimensional, viscous system, and this is the

focus of this work.



5.2 Setup and numerical methods 101

A geostrophically adjusting front is associated with reservoirs of potential and kinetic
energy. Some gravitational potential energy present in the initially unbalanced front is
converted into kinetic energy of the geostrophic current during adjustment, but even in the
equilibrium state, there is considerable potential energy that is not released (Gill, 1976).
A range of instabilities extract their energy from these reservoirs (Barth, 1989; Haine and
Marshall, 1998; Samelson, 1993; Samelson and Chapman, 1995).

Until now, the problem of geostrophic adjustment has largely been studied using ana-
lytical models in one or two dimensions (Blumen and Wu, 1995; Ou, 1984; Tandon and
Garrett, 1994). Here, we use direct numerical simulations (DNS) to study the frontal dynam-
ics, instabilities, and three-dimensional turbulence associated with geostrophic adjustment.
Specifically, we consider an isolated, finite-width front comprising a frontal region with
horizontally-varying and time evolving buoyancy gradients, initialised with motionless fluid
with a localised horizontal density gradient, analogous to Ou (1984). This allows us to com-
pare and contrast the geostrophically balanced state with Ou (1984) for weak imbalances, and
explore the very sharp density gradients that arise during frontogenesis for larger imbalances.
To our knowledge, this is the first time that DNS has been applied to this problem.

We begin in section 5.2 by describing the problem set-up and the DNS. In section 5.3,
we provide a qualitative and quantitative analysis of the geostrophically adjusting flow for a
range of parameters, with an emphasis on the energy budget and instabilities that arise during
frontogenesis. Finally, a summary of the study and discussion of the key results is given in
section 5.4.

5.2 Setup and numerical methods

Here, we use direct numerical simulations (DNS) to model an idealised representation of
a geostrophically adjusting front confined to the ocean mixed layer, following the setup of
Ou (1984). Specifically, the initial state of the frontal region consists of incompressible flow
initially at rest with a horizontal across-front buoyancy gradient with finite lateral extent.
Without loss of generality, the initial frontal gradient is aligned with the x-direction and
buoyancy is homogeneous in the along-front (y) direction and the vertical. In dimensional

variables, the initial condition is
) X
b|t:0 = MO Lotanh f 5 ll|t:0 = 0, (51)
0

where L is the characteristic width of the front and Mg is the maximum initial horizontal
buoyancy gradient. The bottom and top boundaries are located at z = 0 and z = —H (where
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H is the depth of the fluid). We neglect boundary effects such as wind forcing, buoyancy
fluxes and entrainment from the bottom of the thermocline, which have previously been
studied in Taylor and Ferrari (2009, 2010).

We non-dimensionalise the system following Wienkers et al. (2021a,b) using the so-called
‘geostrophic units’, where the maximum thermal wind shear at the centre of the front and
the depth of the fluid are scaled to be unity. Specifically, the dimensionless (*) variables are
defined as:

2 2
1 M

u=u fz; b*=b S o X =X F=r—2 (5.2)
HM; HM} H 7

where (0,0, f) is the Coriolis force under the ‘traditional approximation” where we only
retain the vertical component of the angular velocity vector. We further assume that the
Coriolis parameter, f, is constant.

Our DNS solves the incompressible Navier-Stokes momentum equations under the
Boussinesq approximation. In terms of the dimensionless velocity field u* = (u*,v*,w*), the

equations are:

Du* 1 . Ek 2 ~
=-VII'— — - —V*ut b 5.3
Dr* l,Oz><u +Fo u +b7z, (5.3)
V*¥u' =0, 5.4)

where V* = HV and V*IT* is the dimensionless pressure head acceleration. In dimensionless

variables, the initial state of the frontal region is

* 50 x* *
b*|p—o = F—Otanh 5 ) w0 =0. (5.5)

This system is associated with four dimensionless parameters which fully describe the

initial frontal region,

F—Mg
0= ">
f2

where a subscript 0 indicates the initial value of a time evolving quantity. Here, v is the

L v
S==2, Ek=——: Pr=—, (5.6)
H K

viscosity and x is the diffusivity.

We apply periodic boundary conditions to u* in both horizontal directions. At the top
and bottom of our domain (z = 0 and z = —1), we apply free slip boundary conditions. We
decompose the total buoyancy, b*, into a constant background gradient, Ab*, and departures
from this gradient, b*T, e

%
T (5.7

X
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where Ab* = 28y /Ty and L} is the dimensionless cross-frontal domain size. Under this

decomposition, the linear equation of state solved by the DNS is:

Db*T N LAb* Ek
" _

= V*2p*t, 5.8
Dr* L:  ToPr (5-8)

We then apply periodic boundary conditions to »*T in the horizontal directions which ensures
that the buoyancy difference across the domain remains constant. This approach has been
used in several other studies of submesoscale flows (Taylor, 2016, 2018; Taylor and Ferrari,
2010; Taylor et al., 2020; Thomas et al., 2016). In all that follows, we drop the asterisks for
notational simplicity.

Physically, we interpret I'y = Mg /f? as a measure of the strength of the front, and
0o = Lo/H as a measure of the aspect ratio of the front. Both I" and 6 vary widely between
different locations and evolve over time as the front develops and adjusts (Crowe and Taylor,
2018). For example, in the Gulf Stream, I" ~ 50, while in the Gulf of Mexico where I" ~ 500
(Jinadasa et al., 2016), and open ocean fronts can have I" é 1 (Thompson et al., 2016). The
balanced Rossby number, which characterises the relative importance of the vertical vorticity,
£, compared to the planetary vorticity, f, can be defined in terms of I’y as:
¢ HMZ 1 1 Ty

_—0. - . -2 (5.9)

Roo= = L7 &

where (y is the vertical vorticity of the balanced front. We can interpret the inverse Rossby
number (8 /Lo = Lof?/(HM})) as the front width in units of the deformation length-scale,
L;= HM(% /f2. Since I" and & vary widely across different regions, fronts take a wide range
of Rog in the ocean.

The Rossby number also controls the magnitude of the initial density gradient (see
equation (5.5)). Ou (1984) found that analytical solutions for the equilibrium state break
down for Rog > Ro., where Ro. = 3.5 (which is equivalent to § = 2.6 using Ou’s non-
dimensionalisation). Beyond this point, the theory predicts that a discontinuity forms. Figure
5.1 shows the initial condition (black dashed line) and Ou’s solution of the geostrophically
adjusted state (red solid line) in the case Rog = 1, which is smaller than the critical value.

We design a set of numerical experiments to investigate the effects of varying the Rossby
number, Rog, on the geostrophically adjusting front. DNS is a highly computationally
expensive approach that requires us to accurately capture all scales of motion. This limits
the values of Iy, Ek, and Pr that we can feasibly consider. We hold three out of four
dimensionless parameters defined in equation (5.6) constant. Specifically, we fix Ek =
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Fig. 5.1 The initial condition and solution for Rog = 1 from Ou (1984). Dashed black lines
are the buoyancy contours in the initial state, and solid red lines are the buoyancy contours in
the adjusted state, and Ab is the buoyancy difference across the domain.

2.5x 1073, Pr=1and & = 1 across all of the simulations. Hence, we only vary I'y and in
particular, since &y = 1, it follows that I’y = Roy.

The largest I'y is associated with the most energetic turbulence, the largest deformation
length-scale and the largest unstable baroclinic mode and is thus the hardest case to resolve.
In this study, the largest value we consider is I'g = Rog = 16. This requires a computational
domain with L, = 20 to accommodate the fully adjusted front across the domain in the x
direction and L, = 25 to capture the largest unstable baroclinic mode in the y direction. The
spatial resolution is then chosen so that the most energetic turbulence is resolved down to the
Kolmogorov scale. To resolve boundary-enhanced turbulence during frontogenesis, we use a
non-uniform grid in the z direction with 65 grid points which increases the near boundary
resolution, giving a vertical resolution of between 0.009 and 0.02. In the horizontal directions,
we use 512 uniformly spaced grid points which gives a horizontal resolution of 0.04 in the
x direction and 0.05 in the y direction. The horizontal grid spacing is 1/50 of the initial
frontal width, which allows significant frontogenesis. In the cases where Ro > Ro., there is
a short period of time when the front collapses to the grid scale and our simulation is not
fully resolved. However, based on resolution sensitivity tests, we have found that this does
not influence the turbulence statistics (e.g. energy budget terms or mixing terms). For a full
discussion of resolution tests, refer to appendix 5.A.

We run seven simulations with I'y = Rog = 0.25,0.5,1,2,4,8,16. The domain size and
resolution is kept the same for each simulation. After initialising the momentum field with
random noise at a dimensionless amplitude 10!, we evolve each simulation for five inertial
periods T = 10xl.
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In the numerical code, derivatives in the horizontal directions are calculated using a
pseudospectral method, whilst vertical derivatives are calculated using second-order finite
differences. The equations are time-stepped using an implicit Crank—Nicolson method for
the viscous and diffusive terms and a third-order Runge—Kutta method for all other terms.

Further details of the numerics can be found in Taylor (2008).

5.3 Results

Here, we primarily focus on simulations with Rog > Ro. for which Ou (1984) predicts
formation of a singularity or front. We include some discussion and analysis of the remaining
simulations, but they exhibit qualitatively similar features to one another and do not show
signs of frontogenesis, which is the main focus of this study. We begin with a qualitative
description of the flow in section 5.3.1 and discuss the instabilities that arise. We then
compare and analyse the energetics and diagnose contributing terms in the energy budget
equation in section 5.3.2. Finally in section 5.3.3, we quantify the mixing efficiency during

frontal collapse and discuss the implications.

5.3.1 Qualitative description of the flow

Visualisations of the buoyancy are shown in figure 5.2 for the simulation with the largest
Rossby number (Rog = 16). At the start of the simulation, the initially unbalanced front
slumps outwards and the buoyancy gradients increase near the top and bottom boundaries.
The circulation becomes narrower and more intense as it is squeezed inwards, producing
regions of horizontal convergence. By ¢ f = 1.8, an abrupt density jump (the analogue of the
frontal singularity predicted by Ou (1984) in the inviscid equations) has formed in the con-
vergent region at the top and bottom boundary (figure 5.2a). In our simulations, the velocity
is initialised with a significant random perturbation with dimensionless magnitude 10~!, but
this is still not large enough to prevent the formation of a buoyancy jump. Frontogenesis
leads to intense velocity gradients and turbulence along the front, which is visible in figure
5.2battf = 2.8 (the time of peak turbulent kinetic energy, see figure 5.4).

The frontal collapse is associated with the development of three dimensional turbulence.
Attf = 1.8, a horizontal cross section of the buoyancy field at the surface shows some fine
scale structures visible along the front (figure 5.2d). By 7 f = 2.8, the structures have grown
and the front is very turbulent. After several inertial periods the flow settles down into a
non-turbulent state with inertial oscillations about the equilibrium state. A vertical slice

reveals a slumped, relatively laminar front (figure 5.2c at t f = 44). The equilibrium state is
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Fig. 5.2 Vertical slice at y = 0 (a,b,c) and horizontal slice at z = 0 (d,e,f) of the buoyancy
field, b, for a simulation with Rog = 16 at¢tf = 1.8, ¢rf = 2.8 and ¢t f = 44.
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unstable to baroclinic instability, and the distortions of the front from the growing baroclinic
mode can be seen in a horizontal cross section in figure 5.2f.

In contrast, the smaller Ro cases initially have relatively weak, broad buoyancy gradients.
At the start of the simulation, the front slumps outwards but to a smaller distance than the
high Rossby number cases (note that the deformation scale, L;, decreases as Rog decreases).
Thus, a smaller Rossby number implies that the front remains comparatively upright during
adjustment. Below the critical Rossby number, the front does not collapse, but oscillates
inertially about the steady equilibrium state. Waves are visible as bands of intensified vertical
flow, propagating outward from the edges of the front into the surrounding weakly stratified
fluid (not shown). After a period of adjustment, the fluid becomes baroclinically unstable
and baroclinic eddies develop. As the Rossby number decreases, the wavelength of the most
unstable baroclinic mode decreases.

In order to study the development of frontal instabilities and turbulence, we introduce a
turbulent-mean decomposition where the mean fields, denoted g(x, z,7), are averaged along

the y direction. The three-dimensional fluctuating component is then

g/(x7y7z7t):g<x7yvzut>_§<x7z7t)7 (510)

and the turbulent kinetic energy (TKE) is
1
TKE = 5(u’2+v’2+w’2). (5.11)

Figure 5.3 shows along-front averaged buoyancy contours at z = 0 in colour and the
along-front averaged TKE in grayscale at z = 0 for Roy = 2,4, 8, 16 (the smallest of which
is below Ro.). The speed and extent of collapse is greatest for Rog = 16, for which we also
observe the highest level of turbulence between ¢ f =2 and 7 f = 4. Interestingly, a patch of
elevated TKE remains on the dense (left) side of the front, even after the front retreats. The
second inertial oscillation is again associated with elevated TKE at 7 f = 10, but to a much
lesser extent than the first oscillation.

When Ro decreases but remains above the critical value, the buoyancy contours show a
less extreme frontal collapse and less TKE. The front does not slump as far, so oscillations
in the buoyancy contours are less abrupt and less extensive. One feature of interest is the
spike in TKE at x = 10, 7 f = 8 in the simulation with Roy = 8. Analysis of this time period
(not shown) reveals convective boils where more buoyant fluid rises over the less buoyant
fluid. Below the critical Rossby number (i.e. when Rog = 2 in figure 5.3a), there is no sign
of frontal collapse and no significant increase in TKE. The simulations with an even smaller

Rossby behave qualitatively similarly with a decreasing oscillation amplitude.
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Fig. 5.3 Along-front averaged TKE (black) plotted over cross-front position, x, and time, ¢,

overlain with the time-varying position of buoyancy contours at z = 0 for simulations with
Roy =2,4,8,16.
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Fig. 5.4 Volume averaged TKE over time for simulations with varying Rog. The growth rate
predicted by Fox-Kemper et al. (2008); Stone (1966) with Ri = 1 is shown with the dotted
line.

5.3.2 Adjustment energetics

Figure 5.4 shows the volume averaged TKE as a function of time for each simulation using
a logarithmic scale. At early times, there is a large spike in TKE for all simulations with
Rog > Ro. which is associated with turbulence generated during frontal collapse. The
TKE reaches a comparable maximum for Rog = 8 and Rog = 16. When Roy = 4, the early
maximum in the TKE is smaller, and quickly decreases to a value similar to the smaller Rog
cases. The larger values of Ro exhibit larger inertial oscillations in the TKE as the larger Ro
cases have larger amplitude inertial oscillations and are more nonlinear.

A second period of TKE growth begins at about ¢ f = 12 whose rate is fairly consistent
across the simulations. The exponential increase in TKE during this second growth phase
is characteristic of baroclinic instability. For a uniform front in thermal wind balance (the
Eady model), Stone (1966) found that the largest unstable baroclinic mode grows according
to TKE ~ exp(20t) where

5 |f
54 \/1+Ri (5-12)

where Ri = N2 f?/M* is the balanced Richardson number and N?> = |db/dz| is the buoyancy
frequency. The geostrophically adjusted front oscillates about a state with Ri ~ 1 (Fox-
Kemper et al., 2008; Tandon and Garrett, 1994). In particular, we find that Ri ~ 1 — 6 when
Rog = 4,8, 16 after turbulence from the initial collapse has died down. The dashed line
in figure 5.4 shows the growth rate when Ri = 1 and confirms that the order of magnitude
estimate works relatively well despite the different basic state employed in our work compared
to Fox-Kemper et al. (2008); Stone (1966). When Roy = 0.25, the growth rate is noticeably
slower, and it is not clear why this is the case. We speculate that the slower growth may be

due to non-hydrostatic or viscous effects.
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Since our simulations apply free-slip and adiabatic boundary conditions at the top and
bottom of the domain, there are no boundary forcing terms in the TKE budget. The volume

averaged, (-)y, TKE evolves according to

QW _ [ S8 i)y — = (S (5.13)
dr . ]8)6]' 4 u‘i \F() an 8xj 4
P &

There are three significant sources (or sinks, depending on sign) of TKE in this system:
the buoyancy flux, production and dissipation. Here, B is the buoyancy flux, which represents
the transfer of energy from PE to TKE, & is the volume-averaged TKE dissipation rate, and
P is the production, which converts energy from the mean flow into TKE. The production,
P, can be expanded into the vertical shear production component (P,), horizontal shear

production component (P;), and strain production component (F):

——du —— 0V ——dV ——dw
— — 1w/ — v/ — vy — w1/
P—< uwaz>v+< Vwaz>v+< Vu8x>v+< W”ax>v

-~

P, Py

+<—W@> —|—<—w’w’a—w> .
\ ox/y 0z v

-

Py

(5.14)

Figure 5.5 shows the temporal evolution of the volume averaged horizontal shear, strain,
and buoyancy production terms for cases with Rog > Ro.. When Roy = 8 and Rog = 16,
we observe a peak in the horizontal shear production, closely followed by a peak in the
vertical shear production of a comparable magnitude. The non-uniform cross-frontal structure
prompts a fast and energetic transition into three-dimensional turbulence. Interestingly, the
onset of horizontal shear production is slightly earlier and takes place over a longer period
of time when Rog = 16 compared to Rog = 8, but the latter case shows a larger maximum
value. Strain production is a significant contributor at early times and is similar in magnitude
to the horizontal shear production. However, its contribution begins to wane once the vertical
shear production reaches comparable values, and its maximum remains much smaller than
both shear production terms. There are also times with a positive buoyancy flux, indicative
of some convection, closely followed by negative buoyancy flux indicative of mixing of
stratified waters. When Rog = 4, there is only a small increase in horizontal shear production
which does not trigger any vertical shear production. As previously observed, this case is
associated with weak turbulence.
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Fig. 5.5 Volume averaged vertical shear production, horizontal shear production, buoyancy
production and shear production against logarithmic time for Rog = 4 (a), Rog = 8 (b) and

Rog =16 (c).
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Following the peak in horizontal and shear production, there is a period with little activity
when the front is adjusting about the equilibrium state. The buoyancy flux exhibits inertial
oscillations from around 7 f = 6 to ¢ f = 30, but these are difficult to see since their amplitude
is very small. Finally, a large increase in the buoyancy flux is consistent with baroclinic
instability.

5.3.3 Estimating the mixing efficiency

The two major small-scale energy sinks in the system are TKE dissipation and mixing. Dissi-
pated kinetic energy is entirely lost from the system, while mixing increases the potential
energy at the expense of kinetic energy. In a region with constant background buoyancy gra-
dient, N2, the perturbation potential energy (PPE) is b'>/(2N?) and its associated dissipation

rate is
Ek |Vb’ Vb |

15
F()PY‘]V2 (5 )

xX=
The TKE dissipation rate is
Ek du; du
£E=— .
Fo an an

(5.16)

An instantaneous, local mixing efficiency 1 can then be defined as

4
= , 5.17
= e (5.17)

which describes the proportion of energy lost by turbulence that leads to irreversible mixing.
Figure 5.6 shows that the region of the frontal collapse is associated with strong dissipation
of TKE and PPE (again, the vertical slice is shown at time of peak TKE as in figure 5.2).
At the edges of the front where € is largest, the mixing efficiency is 11 ~ 0.2 — 0.3, which is
comparable to the typical value 1 ~ 0.2 often reported based on observations in the ocean
(Gregg et al., 2018). In contrast, the interior of the front is associated with much larger
N values which approach 1. Here, € is much smaller because the interior of the front is
non-turbulent at this time, but } remains large because the convergent flow associated with
frontogenesis amplifies the pre-existing buoyancy gradients throughout the whole front.
Over time, ) remains relatively large but € significantly decreases after the first inertial
oscillation. Figure 5.7a (dashed lines) shows the volume integrated (over the whole domain)
TKE dissipation rate, €y, and volume integrated PPE dissipation rate, )y, over the first two
inertial periods for Rog = 16. Until t f = 5, the TKE and PPE dissipation rates are comparable
in magnitude with a slightly larger peak in TKE compared to PPE. We define the volume
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Fig. 5.6 Cross-front, vertical slices of along-front averaged turbulent kinetic energy (TKE)
dissipation, € (a), perturbation potential energy (PPE) dissipation, y (b), and the mixing
efficiency, 1 (c), att f = 2.8 (time of peak TKE) for a simulation with Rog = 16.
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Fig. 5.7 (a) Time evolution of the volume integrated TKE dissipation rate, €y, and PPE
dissipation rate, xy, in dashed lines, and the conditioned volume integrated TKE, &y kg,
and PPE dissipation, ¥y|rkg. in solid lines. (b) Mixing efficiency, 1y, in dashed lines and

conditioned mixing efficiency, Ny kg, in solid lines during the first two inertial periods for a
simulation with Rog = 16.
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integrated mixing efficiency as
Xv

xv + €

Figure 5.7b shows a minimum in the mixing efficiency of ny = 0.33, associated with the

Nv = (5.18)

time when the TKE and PPE are maximum. Following this minimum, 7y, steadily increases
to 1. The minimum value of ny is larger than the instantaneous values of 1) that occur at the
edge of the front because the interior (where y is large) contributes to the volume integral
and increases it.

To account for this, we define a second volume integral which aims to capture the
turbulent part of the front only. We condition on the TKE, calculating the integral of € and ¥
for all points whose TKE is above the 90th percentile, which we denote &yrxg and Xy |Tke-

Similarly, the conditioned volume integrated mixing efficiency can be defined as

XV|TKE (5.19)

v ITKE = Xv|TKE + &v|TKE
The time evolution of these quantities is shown in solid lines in figure 5.7. When the flow is
turbulent (e.g. between ¢ f =2 —4), ey ~ &y |Tkg because the overall dissipation is dominated
by the turbulent regions inside the front (see figure 5.6a). Most points outside the front have
very small values of € and contribute little to &y. In contrast, the PPE dissipation becomes
smaller with the conditioned volume average because the interior of the front, which is
characterised by values of y comparable to those at the edges, are excluded from Yy . This
leads to a reduction in 1y rgg Which now has a minimum of 0.26, consistent with the local
values of 7 inside the front (see figure 5.6c).

Soon after reaching a maximum during the first inertial period (r f < 27), €y rapidly
decreases. There is a second peak during the second inertial period, but this is much smaller
than the first. In contrast, ¥y does not decrease nearly as dramatically during the second
inertial period. The second inertial period is associated with less turbulence (and lower €)
but strong buoyancy gradients (so high y) as the front adjusts. Although &y and &y |rxg
are relatively similar, Yy and Xy rgg show a larger discrepancy, with much smaller values
for Yy |rge. Similar to at early times, this is because strong buoyancy gradients persist in
the interior of the front during adjustment. Unlike 7y, My|rkg exhibits a minimum during
the second inertial period with a value close to 0.78. This is significantly higher than the
minimum in the first inertial cycle, consistent with the reduction in TKE but relatively strong
buoyancy gradients.
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We can define the time and volume integrated mixing efficiency, n*, and the time and

TKE-conditioned volume integrated mixing efficiency, Nygp, as

t

—~1
« _ XV . XV|TKE
=—~,+~,» NTKE = 7
xv Té& Xv|TKE + &V|TKE

- (5.20)

where =7 denotes a time average over the first two inertial periods. When Roy = 16, we find
that n* = 0.44 and Mg = 0.30. At lower Rossby numbers, n* = 0.61 and Nyggp = 0.45
when Rop = 8, and n* = 0.83 and Nygp = 0.69 when Rog = 4. In all cases N* > Nkp
because the TKE-conditioned volume integral removes the influence of the central part of
the front (where 7 1s large, see figure 5.6). As the Rossby number decreases, the flow is less
turbulent, and € decreases, yielding larger values of n* and Nygp.

Figure 5.8 shows a joint probability density function (PDF) of along-front averaged &
and Y for three values of Rossby number. Here, the PDF of the along-front averaged &
and y is calculated for all points during the first two inertial periods. For Roy = 16, values
of n are relatively constrained, with the peak largely remaining between 0.15 and 0.25
for large values of € (figure 5.8). The highest density lies along n = 0.25 which matches
the minimum of &y pgg. There is also a region of high density for small values of € with
0.5 <n <0.75, which could be associated with mixing in the second inertial period, although
7N is smaller than the second minimum observed in figure 5.7. As Rog decreases, the front is
associated with less turbulence and so € decreases, but ¥ remains relatively large (the PDF
shifts rightwards and upwards). This leads to an increase in 11, whose peak lies between
0.25 and 0.5 when Rog = 8. Finally, the Rog = 4 case is associated with even lower TKE
dissipation rates and higher mixing efficiencies, but inhabits a less clear-cut region of the €
and y parameter space.

We can partially explain the nearly constant 17 values in the Roy = 16 case by evaluating
the Froude number, Fr = U /NL where U, L are, respectively, the characteristic velocity and
the integral scale of the fluid. Studies suggest that at low Fr, 1 should asymptote to a constant
with values between 0.3 — 0.5 (Gregg et al., 2018; Maffioli et al., 2016). In our simulations,
we find that Fr = ¢’(10~!) in the frontal region for all simulations with Rog = 8, 16. These
low values are attainable because even though € is relatively large in the regions of frontal
collapse, N? is also large since stratification is maintained by the advection of light water
over dense water. For Rop = 8 and Rog = 16, the values of 1 for large € are consistent with
low Fr stratified turbulence. For Roy = 4, we find Fr = €(1), and the mixing efficiency is
higher than expected. This may be due to either the higher Froude number, or small values of
the buoyancy Reynolds number which lie around Re;, ~ 10. This is consistent with Maffioli
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Fig. 5.8 Joint PDF of along-front averaged TKE dissipation, €, and PPE dissipation, y, for
all points during the first two inertial periods for Rog = 4 (a), Rog = 8 (b) and Rog = 16 (c).
Dashed white lines show contours of constant 1 values.

et al. (2016) which suggests that the mixing coefficient only reaches constant values when
Rep, > 10

5.4 Conclusions and discussion

In this chapter, we used DNS to investigate a geostrophically adjusting front using an idealised
initial condition similar to Ou (1984). The front is characterised by the dimensionless strength
of the initial horizontal buoyancy gradient, I’y = M(% /2, which we use to vary the balanced
Rossby number, Rog = §/f =T/8. Besides allowing a more detailed analysis of the
three-dimensional buoyancy and flow field, the DNS enabled us to investigate the important
physical processes at play when a front collapses.

In accordance with Ou’s critical value (8. = 2.6) we find that when Rog > Ro, a sharp
buoyancy jump forms near the surface and bottom boundary. Turbulence is generated by shear
instabilities at the sharpened front. TKE is generated first by horizontal shear production,
closely followed by vertical shear production, with strain production and buoyancy production
(convection) playing smaller roles. Thus the turbulence is three-dimensional and would not
be captured by the more commonly used two-dimensional models of geostrophic adjustment
(Ou, 1984; Tandon and Garrett, 1994).

We additionally showed that the mixing efficiency, 1, can reach surprisingly large values
when the TKE dissipation is small, but is constrained to a smaller, almost constant value when
TKE dissipation is large in the region of frontal collapse. As the strength of the front decreases,
so too does the TKE dissipation, yielding higher values of 17 (which are significantly higher
than the commonly used 0.2 value). For Rog < Ro,, the initially unbalanced front undergoes
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a period of geostrophic adjustment, but the front does not collapse and turbulence does not
develop.

After several inertial periods, the evolution of the front is similar in the cases with
different Rog. In particular, inertial oscillations are followed by baroclinic instability. During
this period, the TKE grows exponentially in a manner consistent to the growth rate predicted
in Fox-Kemper et al. (2008); Stone (1966).

It is important to keep in mind potential limitations of the current study. In particular, we
used a highly idealised model which lacked any buoyancy flux or wind forcing. In the ocean,
the surface heat flux and wind stress are often highly variable, and this variability could
impact the frontal structure. We also assumed that there were no bottom boundary effects by
employing a free-slip condition. In shallow seas, bottom stress and bottom roughness could
generate turbulence even when Rog < Ro.. Future work could examine the geostrophically
adjusting front and instabilities in the presence of these additional processes.

Appendix 5.A

We examine the influence of the horizontal grid resolution on flow dynamics for the most
unstable front (Rog = 16) where the density jump is greatest. The horizontal resolution, Ax,
is varied from 0.04 to 0.01 while all other parameters in the simulations, including vertical
resolution and across-front domain size, are kept the same. To achieve Ax = 0.01 without
the simulation becoming prohibitively expensive, we reduce the along-front (y) domain size
to dimensionless length L, = 1. However, this is too small to capture all of the baroclinic
modes which results in more erratic behaviour of statistics (since the along-front averages
are computed over a much smaller region). To account for this, we compare statistics for
simulations with a larger along-front length (L, = 7.5), and along-front length L, = 1 using
an intermediary resolution, Ax = 0.02. In changing the along-front domain size, we also
change the number of along-front grid points to ensure comparability.

The front collapses to the grid scale in all simulations except for the very highest resolu-
tion (Ax = 0.01). We compare the statistics in the energy budget for the highest resolution
to a lower resolution case with Ax = 0.02 in which the front is not fully resolved. Both
simulations have an along-front dimensionless length of L, = 1 and all other parameters the
same. Figure 5.9 shows the time-evolving, volume-averaged TKE and energy budget terms
during the first two inertial periods, which are qualitatively and quantitatively similar for
both resolutions. In particular, the maximum TKE lies just above 10~%, and the magnitude
of all production terms (including peak values) are comparable, despite the differences in

oscillations caused by the small along-front length.
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We next consider varying the resolution in simulations with a larger along-front domain
size. In particular, we compare Ax = 0.02 (same as the lower resolution case above) with
Ly, =17.5, with Ax = 0.04 with L, = 25 (which we use throughout this study). Again, we use
statistics in the energy budget as a point of comparison, which can be seen in figure 5.10. The
horizontal resolution has little dependence on the statistics, apart from a slight discrepancy in
the minimum value and decay of TKE, which is likely due to the smaller along-front length
for Ax = 0.02 (see the even more drastic decay in figure 5.9).

Combining these two resolution tests, we ascertain that a resolution of Ax = 0.04 is high
enough to capture the aspects of frontogenesis that we are interested in, whilst also allowing
for baroclinic instability to develop. The Ax = 0.04 case is comparable to Ax = 0.02 when
the along front length is large. When the along front length is reduced, the Ax = 0.02 case is
comparable to Ax = 0.01 (in which the front is fully resolved).

Finally, figure 5.11 shows the ratio of the length-scale of the maximum buoyancy jump at
the surface (calculated using min(Ab/b,)) and the cross-front grid spacing, Ax. Here, Ab is
the change in buoyancy and b, = db/dx is the cross-front buoyancy gradient. This statistic
evaluates the number of grid points in the sharpest part of the surface front. The minimum
number of grid points in the front increases by a factor of about 1.5 each time Ax doubles.
When Ax = 0.04, there are only three grid points across the front at its sharpest point, but this
is only for a very short period of time. Aside from the time of frontal collapse, the dynamics

are sufficiently resolved throughout the simulation.

Appendix 5.B

Here, we outline the theory of geostrophic balance that motivates the choice of non-
dimensionalisation using so-called ‘geostrophic units’ introduced in equation (5.2) which
leads to the form of the Rossby number given in equation (5.9).

As in most adjustment models (Ou, 1984; Rossby, 1937; Tandon and Garrett, 1994), we
assume that adjustment is achieved sufficiently rapidly that the process is considered inviscid
and adiabatic. In the steady adjusted state, transverse motion is not allowed and we negelect
the non-linear advective term in the horizontal momentum equations. This gives the typical

geostrophic balance momentum equations as:

_1dp
=750, (5.21)
_1op (5.22)

VG = ?a—x
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Fig. 5.9 Comparison of TKE (a,c) and energy production terms (b,d) for simulations with
horizontal resolution Ax = 0.02 (a,b) and Ax = 0.01 (c,d). Both simulations have along-front
length L, = 1.
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Fig. 5.11 Ratio characterising the number of grid points in the sharpest part of the surface
front over time for varying Ax. Here, Ab is the change in buoyancy and b, = db/dx is the
cross-front buoyancy gradient.

Additionally, we employ the hydrostatic approximation where vertical accelerations are

assumed to be negligible. This results in the vertical momentum equation simplifying to

9w _p,

3z (5.23)

Combining the geostrophic and hydrostatic approximations results in thermal wind balance,

au(; 1 819

__Lob 5.4
0z foy’ ( )
8VG . 10b
9z fox (5.25)

The initial state of our frontal region is given in equation (5.5), where the characteristic width
of the front is Ly and the maximum initial horizontal buoyancy gradient is Mg. Inside the
front, % = Mg and 3—;’ = (. Substituting this into the equations describing the thermal wind
balance and integrating results in the characteristic thermal wind velocity, where H is the

depth of the fluid,
M3 H
=—|z——= 5.26
VG 7 <Z > ) (5.26)
We choose to non-dimensionalise our system such that the thermal wind velocity is unity,

2
ie. [u] = A% Under this configuration, the Rossby number which is defined as Rog = {/ f,

can be rewritten as,
v/l M2H

fF Lof*

(5.27)
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Finally, combining this with the dimensionless parameters given in equation (5.6) yields
Rog =T/ .

It is worth noting that the model investigated by Ou (1984) uses a different non-
dimensionalisation to that described above, whereby the horizontal length scales with the
internal radius of deformation A = (AbH)'/2/ f and the velocity scales with fA. Ou (1984)
varies a free parameter 3 which measures the steepness of the initial density transition.

Re-dimensionalising their system and equating the two yields Rog = 2/2.



Chapter 6

Large eddy simulations of buoyant
particles in a geostrophically adjusting
front

6.1 Introduction

In chapter 5, we used direct numerical simulations (DNS) of an isolated front with a lateral
density gradient (under the same configuration as Ou (1984)) to investigate frontogenesis in
geostrophic adjustment, broadly motivated by the sharp density fronts observed in SUNRISE
fieldwork. In this chapter, we consider the effect that density fronts have on the transport and
accumulation of buoyant particles.

We continue in a similar vein to chapter 5, and use the geostrophic adjustment framework
to model a highly idealised density front with a lateral density gradient, analagous to Ou
(1984). The flow is initially unbalanced, which prompts a frontal circulation to develop
and drive flow back to a geostrophically balanced state. The frontal circulation is typically
characterised by upwelling in light waters and downwelling in dense waters. During periods
of frontal intensification, downwelling is much stronger than the upwelling near the surface
(and vice versa at the bottom boundary) owing to non-linearities (Hoskins, 1982).

Ou (1984) found that in the inviscid limit, for sufficiently large initial density gradients,
convergence associated with the frontal circulation can produce singularities, drawing surface
fluid particles into the interior. In this case, an equilibrium state does not exist. The
simulations conducted in chapter 5 revealed that for very sharp fronts, instabilities and

shear and strain production generated turbulence along the front. The turbulence and frontal
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circulation are associated with strong vertical velocities and provides an ideal setting for
studying buoyant particle subduction and accumulation.

Here, we take a similar approach but use large eddy simulations (LES) to model an initially
unbalanced front under geostrophic adjustment. LES resolve the large turbulent motions
that govern the horizontal and vertical transport of particles, and are less computationally
expensive than DNS. Whereas the DNS in chapter 5 solved non-dimensional equations, here
we use LES to solve dimensional equations with parameters that match typical conditions in
the ocean. Our decision to use dimensional parameters in this study allows us to consider
buoyant particles with physically relevant vertical slip velocities. We model buoyant particles
using a large number of three-dimensional Lagrangian particles, each with a constant slip
velocity (which is equivalent to a constant particle size and density) and focus on a front with
a large Rossby number, for which an analytical solution doesn’t exist. Although the model is
highly idealised, our goal here is to use controlled conditions and improve our understanding
of the physical mechanisms at play rather than replicating a completely realistic front.

The aim of this study is to explore how the frontal circulation and the turbulent flow affect
the transport and accumulation of buoyant particles. Since the work in chapter 5 analysed the
frontogenesis mechanism and energy budget in depth, we focus on the particle distribution.
Below, we introduce the specific set up of the LES and Lagrangian particles in section 6.2.
We then provide a qualitative and quantitative description of particle transport for a range of
buoyant particles in section 6.3. We conclude in section 6.4 with an overview of the results

and implications for future studies.

6.2 Setup and numerical methods

Here, we closely follow the setup of chapter 5 and Ou (1984) to model a geostrophically
adjusting front in the upper ocean. Specifically, we consider a finite width frontal region
initialised with no initial velocity and a horizontal buoyancy gradient with finite lateral extent.

Without loss of generality, we take the buoyancy gradient to be aligned with the x-direction,

Ab x
bli=o = Ttanh <L_0> , ul— =0, (6.1)
where Ab = 2M3Ly, M§ = 1.6 x 1077 s72 is the maximum initial horizontal buoyancy
gradient, and Lo = 100 m is the initial frontal width. This initial condition is highly idealised
but could represent conditions following a storm where buoyancy is well mixed in the vertical
and a lateral buoyancy gradient still exists (Ferrari and Rudnick, 2000; Price, 1981). There is
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no variation in the initial buoyancy field in the vertical, so the vertical buoyancy gradient is
zero, i.e. N3 = |db/dz| = 0.

We use LES to solve a low-pass filtered version of the non-hydrostatic incompressible
Boussinesq Navier-Stokes equations in terms of the filtered velocity u = (u,v,w), filtered
pressure p and fluid buoyancy b,

Ju

1 .
— +u-Vu+fxu=——Vp+vWu—-V-14+bz, (6.2)
ot Po

V.u=0. (6.3)

In the momentum equation (6.2), f = (0,0, f) is the Coriolis force, py is the reference density,
Z is the unit vector in the vertical direction, v is the molecular viscosity, and 7 is the sub-grid
scale stress tensor.

We assume a linear equation of state and treat the fluid buoyancy using a single scalar
variable. The total buoyancy field, b is decomposed into a constant background gradient, and
departures from this gradient, b,

b(x,y,z,t) = b' (x,y,2,1) + i—bx. (6.4)
‘X
where L, is length of the domain in the x direction. Under this decomposition, the linear
equation of state solved by the LES is:
a—bT—kabT—i—u&:KszbT—I—V-l. (6.5)
ot L,

In the buoyancy equation (6.5), A is the sub-grid scale scalar flux. Both T and A are
calculated using the constant Smagorinsky model (Deardorff, 1973, 1970; Lilly, 1967;
Smagorinsky, 1963). We apply periodic boundary conditions to 5" in the horizontal direc-
tions which ensures that the buoyancy difference across the domain remains constant, i.e.
b(Ly,y,z,t) —b(0,y,z,t) = Ab. We also apply periodic boundary conditions to the velocity
field in both horizontal directions. At the top and bottom of the domain, free slip boundary
conditions are applied to the velocity field, and no-flux boundary conditions are applied
to b. Planetary rotation is included with a Coriolis parameter of f = 10~* s~!. This gives
an inertial period of about 18 hours, and we run the simulations for 40 hours to cover two
inertial periods. The velocity is seeded with random white noise with an amplitude of 10~*
m/s. The molecular viscosity is Vv = 10~ m?/s, and molecular diffusivity is kK = 1076 m?/s,
although both are small compared to the sub-grid scale terms and do not directly influence
the model results.
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The vertical depth of the simulations is 100 m. Although this is deeper than many mixed
layers where frontogenesis occurs, it enables us to achieve a small aspect ratio of the front
which is crucial for maximising the Rossby number (see below). The computational domain
is Ly = 2000 m in the cross-front direction, which is large enough to account for frontal
slumping (the deformation scale is L; = HM? / f? = 1600 m). In the along-front direction,
the domain size is 750 m which allows turbulence to develop along the front. Our focus is
limited to particle behaviour at early times, and we do not capture the baroclinic instability
that develops later on.

This frontal system can be fully described by four dimensionless parameters (Wienkers
et al., 2021a,b), )

E%; HLZf; Pl’E%, (6.6)

where a subscript 0 indicates the initial value of an evolving quantity. In terms of these, the

Ly
I =—; FEk=
0 0o o

balanced Rossby number can be defined as

Rog= &M 11Ty 6

o f Lo f &
which characterises the relative importance of the vertical vorticity compared to the planetary
vorticity. The critical Rossby number above which a discontinuity forms is Ro. = 3.5 (see
chapter 5, Ou (1984)). The dimensional parameters chosen for the LES are such that I'g = 16,
0o = 1 and Pr = 1 which coincides with Roy = 16 (the largest Rog considered in chapter 5).

The resolved fields are discretised on a grid with 1024 points in the cross-front direction,
384 points in the along-front direction and 65 points in the vertical direction. This gives a
horizontal grid spacing of 2.0 m and a variable vertical grid spacing between 0.90 m and
2.04 m with higher resolution near z = 0 m. The aspect ratio of the computational grid is
about 2:1 at the surface and 1:1 near the bottom which falls in the desirable range for LES
(Vreugdenhil and Taylor, 2018).

Derivatives in the horizontal directions are calculated using a pseudospectral method,
whilst vertical derivatives are approximated using second-order finite differences. The
equations are time-stepped using an implicit Crank—Nicolson method for the viscous and
diffusive terms and a third-order Runge—Kutta method for all other terms. Further details of
the numerics can be found in Taylor (2008). The sub-grid scale terms are modelled with the
constant Smagorinsky model. We also tested the anisotropic minimum dissipation (AMD)
model (Abkar et al., 2016; Rozema et al., 2015; Vreugdenhil and Taylor, 2018) but found
that large amounts of numerical noise developed in the first inertial period when the front

collapsed to a small width. In both cases, the behaviour of particles was qualitatively similar,
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and to reduce noise, we choose to use the constant Smagorinsky model. For more details
please refer to appendix 6.A.

We model three-dimensional, non-inertial, Lagrangian buoyant particles which evolve
according to the Maxey-Riley equations (Maxey and Riley, 1983) with all terms except
for flow advection and Brownian motion neglected (Chamecki et al., 2019). The particle

equations of motion are

Xp(t+dt) =xp(t) +u(Xp,1)dt +Xeg5(Xp, 1) +WsZ | (6.8)
9 Vs 1
Xsgs,i = a—xl (Xpat) dt + (Z(ngs(xp7t)>+)2d§i ) (6.9)

where u is the resolved velocity interpolated at the particle position, wy is the constant slip
velocity and X is the displacement due to sub-grid scale motion. In equation (6.9), the
subscript i indicates the spatial dimension, Vg is the sub-grid scale viscosity interpolated at
the particle position, d&; is Gaussian white noise with variance dt, and (-) = max( - ,0). The
appearance of the sub-grid scale viscosity in equation (6.9) helps account for the influence of
unresolved turbulence on particle motion (Liang et al., 2018). We interpolate the velocity onto
the particle position using cubic B-splines (Hinsberg et al., 2012) in the horizontal direction
and linear interpolation in the vertical direction, and time-step the particle position using
the third-order Runge-Kutta method alongside the main LES code. Periodic conditions are
applied in the horizontal directions, and particles are prevented from rising above z = —0.5
m to stop them becoming trapped on the top/bottom (where w = 0 m/s). In reality, we expect
missing physical processes such as breaking surface waves to pull buoyant particles off the
surface.

Typically, the slip velocity for buoyant particles falls between wg = 0.005 — 0.025 m/s
for microplastics (Kukulka et al., 2012), wy ~ 0.008 — 0.3 m/s for oil droplets (Chor et al.,
2018a) and 0.0003 — 0.002 m/s for phytoplankton (Noh et al., 2006; Tiselius and Kigrboe,
1998). In this study, we consider particles with five different slip velocities which span
the observed range, wy = 1074,1073,5x 1073,1072,10~! m/s. For each slip velocity, we

simulate 3000 particles that are initially randomly distributed 0.5 m below the surface.

6.3 Results

We begin with a qualitative description of the flow and the vertical and horizontal distribution
of particles in the first two inertial periods of our simulation in section 6.3.1. We then analyse
particle transport and investigate how particles move between light and dense waters in

section 6.3.2. Throughout our analysis, we primarily focus on three particle slip velocities,
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Fig. 6.1 Cross-frontal evolution of the buoyancy field at y = 0 m, z = 0 m as a function of
cross-front distance (x) and time. Dashed yellow lines indicate times used for horizontal and
vertical slices below.

ws = 10~* m/s, wy = 1073 m/s and w, = 10~2 m/s which we refer to as slow rising, medium
rising and fast rising particles, respectively. The other two slip velocities (wy = 5 x 1073 m/s
and w; = 10~! m/s) display qualitatively similar behaviour to ws = 10~2 m/s.

6.3.1 Qualitative description of the flow and the distribution of buoyant
particles

Figure 6.1 shows the evolution of the surface buoyancy field over time. The front exhibits
near-inertial oscillations with a time-scale close to the inertial period (18 hours). The initial
front width is 100 m, but as the front slumps within the first few hours, the surface front
converges to scales of only a few metres. This steepens the buoyancy gradient resulting in
an abrupt buoyancy jump, analogous to the frontal singularity predicted by Ou (1984). In
chapter 5, we showed that frontogenesis induces turbulence at the edge of the front, and that
the vertical and horizontal shear production and strain production are the main contributors
in the energy budget. This is consistent with the turbulence which develops at around ¢t =7
hours in the LES. After half an inertial period, the turbulent front has travelled about 600 m
from its starting location (which agrees relatively well with the deformation scale) before the
flow reverses. Interestingly, some small regions with sharp density gradients are left behind
as the main front retreats, for example at x = 300 m.
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The second inertial period is characterised by similar dynamics but with buoyancy
gradients that are not as steep as in the first inertial period. Again, the front slumps and
sharpens, and at = 20 hours, convergence associated with the frontal circulation causes a
splitting of the main front into two distinct fronts. Both fronts are associated with instabilities
and enhanced turbulence. Interestingly, the front on the light (right) side retreats, sharpens
and readjusts, but the front on the dense (left) side weakens and does not return to its initial
position. This is significant for particles that accumulate along the dense front, and are then
left behind in relatively quiescent waters. Below, we show visualisations of the flow field and
particle distribution for three different times in the simulation which are marked in figure
6.1 for reference: t = 5 hours (when the front is sharpening), t = 13 hours (when the front
is retreating in the first inertial period) and ¢ = 28 hours (when the front is on the brink of
retreating in the second inertial period).

Horizontal cross-sections of the surface buoyancy field (figure 6.2) illustrate the onset
of small-scale instabilities and the development of turbulence. At ¢ = 5 hours, the front is
very sharp and we see small, ~ Im instabilities along the front. These are similar to the
instabilities observed in DNS and described in chapter 5. As the front retreats (+ = 13 hours),
the instabilities are stretched and break apart, which widens the frontal region. As seen
in figure 6.1, there is a sharp buoyancy jump left behind on the dense side when the front
retreats (at around x = 250 m). Finally, when the front sharpens a second time, horizontal
convergence causes two distinct fronts to emerge which are visible at ¢t = 28 hours. One is
located on the dense side at x = 250 m, and one is located between light and dense water at
x =500 m, with some turbulent structures on the light side of both fronts (between x = 600
m and x = 1000 m).

Subduction occurs during phases of frontal intensification. If the particle slip velocity
is smaller than the magnitude of the local downwards vertical velocity (i.e. wy+w < 0)
then the particle will move downwards into the interior. During intensification in the first
inertial period, the vertical velocity reaches a minimum of —0.015 m/s at z = —0.5 m (where
particles are initialised) which is strong enough to submerge the slow, medium and fast
rising particles. The extent of subduction and whether particles subsequently rise or stay
submerged depends on the slip velocity. This is illustrated in figure 6.3, which shows vertical
cross-sections of the vertical velocity and the vertical particle distribution for # = 5 hours,
t = 13 hours and t = 28 hours with the buoyancy contours » = —107> m/s?>, b = —5 x 107°
m/s?, b=0m/s>, b=5x 10"% m/s, and b = 10~ m/s*> marked in black.

At t = 5 hours, strong downwelling occurs on the dense side of the surface front with
weak upwelling near the surface on the light side of the front (and similarly at the bottom

we have strong upwelling and weak downwelling since our model is symmetric), which



130 LES of buoyant particles in a geostrophically adjusting front

X

—_

o
o

Pt

@]
Buoyancy m/s’

)
0 500 1000 1500
r (m)
x107°
b)
600 L
g
2 100 ) 2
<
200 -1/
0 : -2
0 500 1000 1500
z (m)
>§ 107°
c) \

600 -
. g
2 400 0 &
~ =]
= g

] @]

200 14

0 2
0 500 1000 1500
r (m)

Fig. 6.2 Horizontal slices of the buoyancy field at z = 0 m. We show three different times in
the simulation: ¢ = 5 hours (a), r = 13 hours (b) and r = 28 hours (c).
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times in the simulation: ¢t = 5 hours (a), t = 13 hours (b) and ¢ = 28 hours (c).
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characterises the frontal circulation. Strong downwelling persists up to depths of —50 m
where fluid is weakly stratified, but we see some overturnings developing along the buoyancy
contours as the front becomes turbulent. The slow (red) and medium (blue) rising particles
are both subducted on the dense side of the front along the bottom-most buoyancy contour
where the downwelling is strongest, with slow rising particles populating greater depths
(since wg +w will be comparatively smaller for slow rising particles). Some of the medium
rising particles are caught in the small region of upwelling and begin to rise back to the
surface, but most slow rising particles are sufficiently subducted to escape the overturning.
Although difficult to see, the fast rising particles (green) are subducted down by a few metres
at the head of the front. Consistent with the minimum vertical velocity, the particles with a
higher slip velocity (w; = 10~! m/s, not shown) all remain at the surface.

The frontal collapse prompts the development of three-dimensional turbulence along
isopycnals, visible as sharp ‘kinks’ in the buoyancy contours (figure 6.4b). This manifests
as regions of positive and negative vertical velocity. At = 13 hours, the vertical velocity
fluctuates between positive and negative values with a maximum of 0.015 m/s and a minimum
of —0.013 m/s, and a particularly large overturning event can be seen at x = 700 m on the
dense side. When particles enter a region with wy +w > 0, they begin to rise towards the
surface. Areas of downwelling can pull particles back towards the interior, but only if they
have not already risen out of the turbulence. The slow rising particles remain subducted in the
front, with a large cluster —70 m below the surface, where the flow is still relatively quiescent
(here the vertical velocity has a minimum of —0.0005 m/s). In contrast, the medium rising
particles are caught up in turbulent overturnings and as a result, have ascended above the
107> m/s? buoyancy contour on the warm side of the front, where they continue to rise
towards the surface.

In the second inertial period, the front is less turbulent and vertical velocities are weaker.
Att = 28 hours, the front is beginning to retreat and the vertical velocity fluctuates between a
maximum of 0.003 m/s and a minimum of —0.002 m/s inside the front. At this time, the slow
rising particles remain submerged within the front, although they have risen to the —5 x 107°
m/s? buoyancy contour. The strongest vertical motions are located at the surface amongst the
turbulent features on the light side of the surface front (figure 6.3b) with a minimum vertical
velocity of —0.004 m/s. This is enough to submerge the slow and medium rising particles
to depths of —40 m between the 1.4 x 107 m/s? and 1.5 x 10~> m/s?> buoyancy contours
(not shown). There is also evidence of subduction of medium rising particles at the edge
of the front at x = 250 m and the front at x = 500 m, where there are signs of downwelling,
although only to relatively shallow depths.



134 LES of buoyant particles in a geostrophically adjusting front

ws = 107* m/s ws = 1073 m/s ws =107 m/s

a)
600

£ 400
=200

t = 5 hours

500 1000 1500 500 1000 1500 500 1000 1500
z (m) z (m) z (m)

d)

600

E 400

200

y (m

t = 13 hours

500 1000 1500 500 1000 1500 500 1000 1500
z (m) z (m) z (m)

h) i) J)
600
& 400
> 9200

e Lo A 3"
1000 1500 500 1000 1500 500 1000 1500
z (m) 2 (m) z (m)

t = 28 hours

Fig. 6.5 Horizontal particle distribution for wy = 10~* m/s (a,d,h), wy = 1073 m/s (b,e.f) and
ws = 1072 m/s (c,f,j) with particles coloured by depth. We show three different times in the
simulation: # = 5 hours (a,b,c), t = 13 hours (d,e,f) and r = 28 hours (h,i,j).

The horizontal distribution of particles strongly depends on the particle slip velocity.
Figure 6.5, shows horizontal cross sections of the particle position coloured by particle
depth. At¢ =5 hours, convergence drives particles into the sharpening surface front, and
the particles move with the front as it slumps to the left. This leads to a narrow line of
enhanced particle concentration. Later, we show that the narrow line twists and turns with
the small-scale instabilities (figure 6.8) which plays a significant role in transporting particles
outside the front. The line of accumulation is more pronounced for the faster rising particles,
which are largely confined to the surface and the slow and medium rising particles subduct
below the surface (indicated using lighter shades of grey). In all cases, particles are uniformly
distributed at the surface outside the front.

As the front retreats (f = 13 hours), narrow rows of medium and fast rising particles are
pulled away from the front in streaks which are linked to the motions generated by frontal
instabilities. For example, the hook-like formation of particles at y = 200 m in figure 6.5e,f
can be directly matched to a feature of a similar shape in figure 6.2b. A significant number of
particles remain in a narrow vertical line, whose location coincides with the large density
jump on the left-hand side (figure 6.2b). Again, this behaviour is most prevalent for the
fast rising particles which stay at the surface. Surprisingly, very few particles at the surface
retreat with the front, and most remain on the dense side of the front, leaving a large void
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of particles between x = 500 m and x = 1200 m. Below, we outline a physical mechanism
which allows particles to stay concentrated even as the surface flow reverses, and in section
6.3.2, we qualitatively and quantitatively describe the movement of particles between fluids
of different density during frontal adjustment.

Buoyant particles initially accumulate along the interface of the light and dense fluids
where the density gradient is sharpest (and convergence is strongest). As the front adjusts,
light fluid moves leftwards above dense fluid. Horizontal shear production (see chapter 5)
contributes to the formation of small-scale instabilities which distort the front and allows
for mixing of pockets of dense, slow-moving water into light, fast-moving water, sometimes
carrying particles with them (figure 6.8a). Soon after, vertical shear production prompts a
transition into three-dimensional turbulence.

In its fully slumped state, the front is very thin at the surface with a small amount of light
water above dense water. Diffusion of the fluid mixes dense and light fluid, but has a greater
effect at the surface (where the front is thin) compared to at depth (where there is a larger
body of light water). This lowers the fluid density at the location of particles near the surface
at the head of the front.

When the front is on the point of retreat, surface flow is directed along the front but the
fluid below is comparatively stationary. Diffusion of the fluid acting on the thin front near the
surface causes a decrease in momentum, so this part of the front (where particles are located)
does not retreat and particles are left behind in dense waters. As the front inertially oscillates,
this process continues resulting in a net movement of particles from the front into dense fluid.

In this chapter, we use LES so mixing is parameterised and depends on the sub-grid
scale diffusivity. However, simulations comparing the Smagorinsky and AMD models (see
appendix 6.A) reveal qualitatively similar particle behaviour where fast rising particles are
left behind when the front retreats, and the frontal adjustment is qualitatively similar to the
DNS in chapter 5. This suggests that the mechanism is not a numerical artefact of the LES.

Compared to the medium and fast rising particles, the slow rising particles exhibit much
less accumulation near the surface. Instead, at # = 13 hours, only the subducted particles
exhibit significant accumulation, and the particles are relatively uniformly distributed by
t = 28 hours.

When the front sharpens and slumps in the second inertial period, the line of medium
and fast rising particles is pushed further away from the front (to the left). The meandering
structures that were visible in the fast rising particles at # = 13 hours are largely gone at
t = 28 hours and the particles get re-aligned parallel to the front. At = 28 hours, the medium

rising particles that were subducted during the first inertial oscillation and have returned to



136 LES of buoyant particles in a geostrophically adjusting front

b) 40

o
SN
N
S

w
o
w
(==}

2

—

Time (hours)
o
S
Time (hours)
)
S
=
Buoyancy m/s

—
o
=
(e}

S 0 S 0 D\
0 1000 2000 0 1000 2000 0 1000 2000
z (m) z (m) z (m)

Fig. 6.6 Trajectories of cross-front particle location over time (black) for 300 randomly
selected particles in each of wy = 107* m/s (a), wy = 1073 m/s (b) and ws = 1072 m/s (c).
We underlay the surface buoyancy field at y = 0 m in colour.

the surface exhibit some aggregation near x = 500 m in a region that is devoid of fast rising

particles, which instead remain separated into light and dense waters.

6.3.2 Movement of particles between fluid of different densities

The distinct patterns of particle accumulation are determined by a combination of the inertial
oscillations, turbulence and the particle buoyancy. We visualise the different particle pathways
in figure 6.6, which shows the across-front location of 300 randomly selected particles for
each slip velocity as a function of x and ¢ with the surface buoyancy field (at y = 0 m)
shown in colour for reference. The particles broadly follow the inertial oscillations of the
front. Particles inside the front are subject to oscillations of a larger amplitude, and the
amplitude of the oscillations decreases further away from the front. There are also times
when the oscillations of particles on the light and dense sides of the front are out of phase
with one another, which indicates convergent flow (e.g. t = 28 hours). This phase difference
is ultimately responsible for the generation of the new front observed in figure 6.2c.

The trajectories of slow and medium rising particles branch off from the front at about
t = 4 hours when these particles are subducted beneath the front. The slow rising particles
inertially oscillate at depth in a less coherent manner, while the medium rising particles
display some transient behaviour at depth, but settle back into the inertial oscillation of the
surface buoyancy field by the second cycle. Recall from figure 6.4 that most medium rising
particles are close to the surface at = 13 hours, while most slow rising particles remain
subducted. Importantly, some of the medium particles which started in dense waters have
now moved into light waters by rising through the stratified waters inside the front.

In contrast, intense accumulation of medium and fast rising particles occurs along the

dense side of the front during frontogenesis in the first and second inertial periods. Some
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of the accumulated particles continue to oscillate with the front, but others are left behind
in dense waters when the front retreats. Some of the particles that escape the front remain
at a nearly fixed cross-front position, leading to a concentrated line of particles which is
most prominent for the fast rising particles. When the front retreats a second time, more
particles are left behind on the dense side and accumulate. At later times, some accumulation
of medium rising particles also occurs within the second front that emerges at x = 500 m.

Although an equal number of particles start in light and dense waters, significantly
more fast rising particles are located in dense waters by the end of the simulation. This
suggests that, on average, the particles have moved into denser water. Recall that we use zero
buoyancy flux boundary conditions, so the buoyancy of a fluid parcel can only be changed by
mixing two masses of fluid with different buoyancy. Neutrally buoyant particles are advected
along fluid parcels, and hence along constant buoyancy contours unless mixing occurs. The
particles we consider are positively buoyant, which additionally allows them to move off
constant buoyancy contours as they rise towards the surface. The front is generally stably
stratified, so rising particles generally move from denser to lighter waters, and movement
from light to dense waters is therefore likely due to mixing.

Figure 6.7 shows the probability density function (PDF) of the fluid buoyancy sampled
along the paths of slow, medium and fast rising particles during the first two inertial periods.
In the discussion that follows, note the distinction between the buoyancy of particles (which
determines the slip velocity, wy), and the fluid buoyancy sampled along particle paths. In
all cases, particles initialised in very dense or very light water (at the edges of the domain)
remain on the same buoyancy contour throughout the simulation, aside from some mixing
between t = 4 — 10 hours when the front first collapses. This is because flow remains
relatively quiescent outside the front so there is no subduction and no mixing.
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Submerged particles rise towards the surface, moving from denser to lighter waters, and
the magnitude of the slip velocity affects how quickly particles do this. In the case of slow
rising particles, we see a peak in the PDF near b = —1 x 10~ m/s?> which gradually shifts
towards b = 0 m/s> (figure 6.7a). In contrast, the medium rising particles rise at a faster
speed and reach the light side of the front by the end of the first inertial period where they
become trapped. Here, there is less mixing and subduction, so particles tend to remain on a
single buoyancy contour.

Interestingly, a large number of the fast rising particles which start in dense waters are
transported into light waters near the start of the simulation. At first glance, one may think
that this increase is also due to rising of particles, but particles with a higher slip velocity
(wy = 1071 m/s, not shown) display qualitatively and quantitatively similar behaviour even
though they remain at the surface throughout the simulation. This suggests that the increase
through buoyancy space is due to turbulent mixing rather than rising of particles. When
the front is turbulent, overturnings develop along isopycnals and the flow can be unstably
stratified (see figure 6.4b). Near the surface where particles are located, these overturnings
can advect boils of dense water onto the light side of the front and mix with the surrounding
flow, decreasing the buoyancy of the fluid. This creates a pathway for particles to move from
light waters to dense waters. Particles can also be suducted into overturning regions, which
allows them to sample both positive and negative buoyancy fluid as they rise back towards
the surface. Below, we outline the mechanism through which instabilities, turbulent mixing
and overturnings cause the fast rising particles to into light water and then back into dense
waters as in figure 6.7c.

The mixing of fast rising particles from dense to light waters appears to be caused by
motion generated through frontal instabilities (figure 6.2a). Figure 6.8 shows sections of
the buoyancy field zoomed into the surface front, along with the position of the fast rising
particles. At ¢ = 3 hours, small shear instabilities develop along the front with tell-tale
‘billows’ associated with Kelvin-Helmholtz instability visible along the front. The particles
which converge along the front accumulate in the centre of each billow. At ¢ = 5 hours, as
the front continues to propagate to the left, the billows with b = 0 m/s> detach from the front
and drift to the light side of the front, carrying the particles with them. As the fluid inside
the billows mixes with the surrounding fluid, the fluid buoyancy increases. This process is
associated with the increase in buoyancy visible in figure 6.7c. Att =7 hours ‘boils’ of dense
fluid appear on the light side of the front due to advection by three-dimensional turbulence.
At this time, most of the particles at the front are associated with fluid with b > 0 (figure 6.7¢
at t = 7 hours).
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Fig. 6.8 Horizontal slices of the surface buoyancy field zoomed in on the shear instabilities.
Particles with wy = 1072 m/s are shown in yellow.
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Att =9 hours, the front begins to retreat. As it does so, more dense fluid is upwelled
from the interior onto the light side at the surface. Pockets of dense fluid are stretched as
the front retreats and merge with fluid on the dense side, which broadens the front. The
mixing of dense water into the front causes the particles to shift back into denser waters. As
the front widens, some of these particles are carried outside the front (leading to the high
concentration in very dense waters in figure 6.7c), and some accumulate in less dense waters
(leading to the multiple streaks in the PDF in figure 6.7c¢).

As noted earlier (and in chapter 5) turbulence is not as energetic along the front during
the second inertial period. As a result, the movement of particles through buoyancy space is
not as dramatic as during the first inertial period. Instead, two separate fronts emerge during
the second inertial period (see figure 6.2c) which creates an additional barrier between light
and dense waters, trapping particles on one side or the other. However, particles still move
into more dense waters when the front retreats a second time which gives rise to the second
decrease through buoyancy space in figure 6.7b,c, with more particles mixed outside the front.
This has the effect of strongly accumulating particles on the dense side, and segregating

particles between strong positively and negatively buoyant fluid.

6.4 Conclusions and discussion

Here, we used large eddy simulations (LES) to study buoyant particles in a geostrophically
adjusting front whose initial balanced Rossby number is much larger than the critical value.
In this regime, frontal collapse generates small-scale instabilities and turbulence which are
associated with intense downwelling. As the front adjusts, convergent flow drives new, sharp
fronts to develop which also contribute to turbulence and downwelling.

The response of buoyant particles to the adjustment process depends on their slip velocity.
Weakly buoyant particles (with wy < 10~> m/s) are subducted by the frontal circulation
along isopycnals into the interior when the front first collapses. The most weakly buoyant
particles (wy = 10~* m/s) are carried deeper and further, and rise very slowly towards the
surface. Particles with a higher slip velocity (wy = 10~ m/s) are subducted, but rise back to
the surface within the first inertial period, and become trapped on the light side of the front.
Turbulence that develops later in the simulation is capable of re-submerging weakly buoyant
particles, although to shallower depths than during initial collapse.

In contrast, strongly buoyant particles (with wg > 1073 m/s) remain close to the surface
throughout the simulation where they are subject to inertial oscillations. In this case, mixing
associated with shear instabilities and frontogenesis transfers particles between light and

dense waters, eventually leading to accumulation of particles on the dense side of the front.
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Mixing is strong enough that some particles completely escape the front and are left behind
on the dense side of the front when the front retreats. This creates a large void of particles in
the central portion of the front and segregates them between light and dense waters. As the
front adjusts back, more particles are deposited, leading to large concentrations of particles
on the dense side of the front.

In chapter 5, we investigated geostrophic adjustment for several Rossby numbers ranging
from Rog = 0.5 — 16. A possible extension of this work could be to compare the behaviour
of buoyant particles in some of the less turbulent cases. For a smaller Rossby number, we
expect weaker downwelling and less turbulence, and more particles would likely remain at
the surface. Below the critical Rossby number, the DNS exhibited relatively laminar flow
with waves propagating from the front into the surrounding weakly stratified fluid. This could
allow new mechanisms which could accumulate or disperse buoyant particles in different
ways.

These results have important implications for modelling particles in the ocean. We
observe accumulation on very small scales, on the order of tens of metres, which is much
too small to be resolved even in high resolution regional ocean models (Kudryavtsev et al.,
2012). Typically these models assume particles are transported and dispersed homogeneously
at the submesoscale and below (Sebille et al., 2020), and don’t account for the very non-
homogeneous behaviour observed in this study or others of accumulation in submesoscale
flows (D’ Asaro et al., 2018; Taylor, 2018). Although it is difficult to assess the impact that
accumulation on these scales may have on the large-scale transport of buoyant materials, it
may be necessary to include some of these effects in parameterisation schemes in regional
and global models.

We find that particles with different buoyancies respond very differently to the same
flow field and exhibit distinct behaviour. In particular, weakly buoyant particles accumulate
on the light side of the front but strongly buoyant particles do not. Buoyant material such
as oil droplets, microplastics or zooplankta are made up of a wide range of particle sizes
and buoyancies. This could lead to segregation between different types of material, or
segregation between particles of the same material when composed of different slip velocities.
This creates challenges in how to best model buoyant materials. Adding to this challenge
is the influence of time-dependent particle density. For example, biofouling can cause a
microplastic particle to become less buoyant, or cause it to sink (Fazey and Ryan, 2016;
Semcesen and Wells, 2021). Likewise, particles can break up by chemical degradation,
weathering or abrasion which changes their size and density. This could change or create
additional particle pathways, complicating dynamics even more. Such questions remain

relatively unexplored and should be addressed in future work.
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Fig. 6.9 Trajectories of cross-front particle location over time (black) for 300 randomly
selected particles in each of wy = 10~* m/s (a), ws = 1073 m/s (b) and wy = 1072 m/s (c).
We underlay the surface buoyancy field at y = 0 m in colour. The top row (a,b,c) shows a
simulation with the constant Smagorinsky model. The bottom row (d,e,f) shows a simulation
with the AMD model.

Appendix 6.A

We examine the influence of the sub-grid scale model on the particle dynamics. In developing
our simulations, we tested the constant Smagorinsky model (Lilly, 1967; Smagorinsky, 1963)
and the anisotropic minimum dissipation (AMD) model (Abkar et al., 2016; Rozema et al.,
2015; Vreugdenhil and Taylor, 2018). The AMD model experienced numerical difficulties
when the horizontal grid was not square, so here we run two additional simulations with a
lower resolution and a square horizontal grid to allow for comparison of the two different
SGS models. Specifically, the horizontal domain size is 2000 m in each direction and the
horizontal resolution is 3.9 m, which is double that of the simulation used in the study. The
vertical resolution and all other parameters are kept the same. The grid aspect ratio of the
test simulations is 4 : 1, which is larger than recommended (Vreugdenhil and Taylor, 2018)

and motivates the use of the higher resolution, non-square simulations in the main study.
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Figure 6.9 shows the SGS model dependence of the transport of particles and the surface
buoyancy field. The inertial oscillation of the buoyancy field is similar in amplitude and
period both inside and outside the front. However, there is more numerical noise when the
front collapses in the AMD model compared to the Smagorinsky model (at around ¢ = 10
hours, x = 1000 m) which persists until the third inertial period.

The numerical noise has a small impact on particle distribution, and the overall behaviour
of particles is very similar for the constant Smagorinsky and AMD models. The medium
and fast rising particles accumulate in a narrow line in on the dense side and are segregated
between dense and light waters. This is the same as the higher resolution Smagorinsky
simulation used in the main text (figure 6.6b,c). The slow and medium rising particles are
both subducted at # = 4 hours and oscillate at depth, which is again the same as the higher
resolution Smagorinksy simulation. The numerical noise in the AMD model means that
particles display more variation in particle position and do not oscillate as uniformly. In both
models, the slow particles slowly rise towards the surface, but the medium particles rise more
quickly and rejoin the inertial oscillations on the light side of the front.

Since the particle dynamics are very similar for the AMD and constant Smagorinsky
models, we choose to use the constant Smagorinsky model because there is less numerical
noise in the velocity and buoyancy fields. We increase the resolution in the main study
to capture smaller-scale turbulence, but this does not significantly affect the transport of

particles.






Chapter 7

Conclusions

7.1 Conclusions

In this thesis, we have addressed fundamental fluid dynamical processes in the upper ocean
mixed layer and investigated their implications on the transport and accumulation of buoyant
particles. This is widely applicable to predicting the transport and distribution of pollutants
in the ocean. Motivated to explore a range of scales and behaviours, we focused on two
distinct flow configurations: convective turbulence and a geostrophically adjusting front. In
each of these, we ran a suite of numerical simulations which uncovered both interesting flow
phenomena and particle dynamics. Below, we summarise the key findings from these studies.

To enable the consideration of Lagrangian particles (in addition to Eulerian tracer fields),
we developed and implemented a three-dimensional Lagrangian particle tracking model into
the existing numerical solver, DIABLO. This allowed us to include Lagrangian particles in
any flow field which can be investigated using DIABLO. The particle tracking code includes
a parameterisation of sub-grid scale motions for use in large eddy simulations, and was
parallelised using MPI. Considerable effort has been taken to ensure that the code is easy to
use and modify for different scenarios, for example changing the number of particles, particle
buoyancy and initial conditions. We anticipate that the particle tracking code will be useful
in a variety of research projects in the future.

In chapter 3, we began our investigation of oceanic convective vortices in a convectively
driven flow (Chor et al., 2018a). Using large eddy simulations, we varied the surface wind
stress and surface buoyancy fluxes to encompass a wide range of the parameter space. In
a purely convective regime, we observed the formation of persistent convective vortices in
the nodes between convective cells. When wind forcing was included, there was a transition
from convective cells to longitudinal wind rolls with three distinct flow patterns observed

under weak, moderate and strong wind forcing. For sufficiently weak winds, convective
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vortices were able to survive but under strong wind forcing, convective vortices no longer
existed.

We modelled non-inertial buoyant particles using a combination of buoyant tracers
and Lagrangian surface particles, which allowed us to a explore a wide range of particle
buoyancies. The convective vortices trapped buoyant particles, leading to large concentrations.
Under weak wind forcing, the convective vortices were less effective at trapping buoyant
material, and under strong wind forcing (when there were no convective vortices), some
clustering occurred in regions of high fluid speed associated with longitudinal wind rolls.
We quantified the degree of clustering using the Gini coefficient and found that clustering
was strongly influenced by the relative size of the friction and convective velocities and the
particle buoyancy.

Although convective vortices are small and characterised by a large Rossby number, we
found that they exhibit a previously unknown bias towards cyclonic vorticity. Based on
an analysis of Lagrangian trajectories at the surface, we found that the average time that a
particle spends inside a convective vortex is long enough for planetary vorticity to become
important and vortex stretching causes an exponential increase in vorticity.

Motivated by this discovery, we developed a theory to explain the vorticity bias of
convective vortices in chapter 4. There has been a long-standing debate on whether terrestrial
dust devils exhibit a rotational bias, but the general consensus is that they are largely unbiased.
However, our simulations of convective vortices in the ocean presented in chapter 3 uncovered
a clear cyclonic bias which re-opened the question of what controls the rotational bias of
convective vortices.

To investigate this, we used large eddy simulations of free convection configured for the
ocean, but the idealisation of our simulations makes the results more broadly relevant to
a wide range of flows. In contrast to chapter 3, we focused on a purely convective regime
(removing the influence of wind stress), and independently varied the Coriolis acceleration
and surface buoyancy flux, including cases with convective vortices with and without a
rotational bias.

The higher resolution in this set of simulations revealed the existence of small convective
vortices, in addition to the large convective vortices in chapter 3. While large convective
vortices were biased for sufficiently large values of the Coriolis parameter, small convective
vortices did not exhibit a clear bias. By tracking the position of Lagrangian surface particles,
we found that the large convective vortices develop through the merger of small convective
vortices. We proposed a statistical theory to quantitatively predict the cyclonic bias of large
convective vortices composed of many small unbiased convective vortices. We tested our

theory using simulations of idealised circulation cells initialised with an array of small
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vortices with random amplitude and equal probability of cyclonic and anticyclonic rotation.
Large vortices, which form through the merger of the small vortices, exhibit a cyclonic
rotation bias, and our theory agreed very well with these simulations. Our theory was also
able to explain the cyclonic bias found in the full LES of convective turbulence, although
there were larger discrepancies between the theory and LES due to the chaotic nature of
the flow and the uncertainty in some key parameters (e.g. the number of small vortices that
make up each large convective vortex). We then used our theory to explain the bias in typical
convective conditions in the ocean (where we found the bias is strong) and the terrestrial and
Martian atmospheres (where we found the bias is weak). This prediction is consistent with
the lack of bias in observations of terrestrial dust devils and provides some justification.

In chapters 5 and 6, we turned our attention to submesoscale dynamics, broadly motivated
by the SUNRISE field campaign where observations revealed strong accumulation of buoyant
material (seaweed and bubbles) in distinct patches and streaks. We modelled a highly
idealised density front by means of an initially motionless fluid with a lateral density gradient
subject to geostrophic adjustment. This is a fundamental geophysical fluid dynamics problem
that has been studied in a variety of settings, although until now largely using analytical
models or low resolution numerical simulations. In this thesis, we focused on what happens
to the density discontinuity predicted in Ou (1984) for very large Rossby numbers in the
three-dimensional viscous setup.

First, we analysed the underlying physics of the flow in chapter 5. We examined how the
evolution of the front depends on the balanced Rossby number, Rog using direct numerical
simulations. In cases when Rog was large enough (exceeding the critical Rossby number,
Ro. ~ 3.5), an abrupt density jump formed at the top and bottom boundaries. This is
consistent with the analytical solution (Ou, 1984) for the breakdown of the equilibrium state.
The density jump was associated with enhanced turbulence and small-scale mixing. We
showed that the dominant terms in the energy budget are the vertical and horizontal shear
production, which trigger the formation of small-scale shear instabilities, with a secondary
contribution from the strain production. In regions of strong turbulence, the mixing efficiency,
N, was comparable to the ‘canonical’ value n ~ 0.2. However, in simulations associated
with less turbulence (i.e. a smaller Rog) or in the interior of the front, the mixing efficiency
increased to values much higher than the observed n ~ 0.2. At later times, baroclinic
instability developed with the buoyancy flux acting to convert available potential energy into
kinetic energy of the growing perturbations.

The turbulence and ageostrophic circulation generated during frontogenesis in chapter 5
was associated with intense subduction. In chapter 6, we investigated the distribution and

subduction of buoyant particles in a geostrophically adjusting front. In particular, we ran LES
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of the most unstable front examined in chapter 5 (where Rog = 16). To investigate buoyant
material, we included three-dimensional Lagrangian particles with a wide range of particle
buoyancies. The LES and DNS showed very similar frontal dynamics, producing a front
rich in instabilities and turbulent features. In the LES, regions of convergence developed
within the front due to phase-differences in the inertial oscillation and this did not occur in
the DNS. This triggered the generation of multiple fronts which contributed to turbulence
and downwelling.

Although all particles were advected by the same velocity field, we found that particle
buoyancy had a strong influence on the transport pathways taken by the particles. At early
times, strong downwelling associated with the secondary circulation subducted weakly
buoyant particles along the sloping isopycnals on the dense side of the front. The submerged
particles rose back towards the surface onto the light side of the front. Here, the weakly
buoyant particles could be re-submerged by turbulence generated by a secondary front, but
did not cross back to the dense side of the front.

The downwelling was not strong enough to submerge strongly buoyant particles, which
remained at the surface throughout the simulation. As shown in chapter 5, turbulence is
associated with enhanced mixing which moved particles between light and dense waters.
We found that mixing preferentially transports strongly buoyant particles onto the light side
of the front. As the front becomes more turbulent and begins to the retreat, particles are
transported back into dense waters. Surprisingly, the mixing was strong enough to carry
some particles on the dense side completely out of the front, and they were left behind when
the front retreated. Other particles exhibited inertial oscillations on the dense side of the
front, but the second adjustment transported more particles out of the front, leading to large
concentrations. This mechanism segregated the particles between light and dense waters,
leaving a large void in the centre of the front.

Overall, this thesis has tackled a number of unanswered questions regarding fluid dy-
namical processes and their effect on the transport of buoyant material at the submesoscale
and below. Our studies highlight the importance of small-scale turbulence on transport
and accumulation which often lead to highly nonuniform and unpredictable behaviour, and
that the particle buoyancy is a crucial parameter in determining where particles accumulate.
The hope is that these results will contribute to improving predictions of buoyant material
transport in more realistic settings, such as the distribution of microplastics in our oceans,

and guide the development of modelling buoyant material in regional and global models.
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7.2 Future directions

In addition to being applied to new flow configurations, the Lagrangian particle model
developed in this thesis can be extended to tackle a variety of outstanding problems pertaining
to the distribution of buoyant, neutral or sinking particles. One such extension could be to
account for non-uniform particle density. This thesis has revealed that the extent of clustering
strongly depends on particle buoyancy. Over time, particles such as microplastics are subject
to processes including fragmentation, degradation and biofouling which have the potential
to change the buoyancy of the particles. Taking the example of biofouling, microbes and
organic materials which accumulate on the surface of the plastic can make it more dense.
If the density of the fouled particle exceeds the density of seawater, the particle begins to
sink. This transition between the positively buoyant and negatively buoyant particles remains
relatively unexplored, and could be an important mechanism in explaining the ‘missing
plastic’ in the ocean. Our current particle model uses a constant particle buoyancy, but this
could be easily modified. Using statistics such as temperature and light sampled along the
particle path, we could implement a simple model for the density of a particle over time. For
example, Kooi et al. (2016) developed a theoretical model to simulate the effect of biofouling
on a microplastic which depends on light, water density, temperature, salinity and viscosity.
Incorporating a (perhaps simplified) model such as this in our three-dimensional particle
model could further improve its applicability to microplastics (and other buoyant materials)
in the ocean.

In our investigation of convective vortices, we mainly focused on the horizontal distribu-
tion of buoyant particles. However, questions remain about whether convective vortices are
capable of subducting material below the surface. In chapter 3, the averaged convective vor-
tex revealed strong downwelling on the periphery of the vortex encircling an area of weaker
vertical velocity in the centre, which is also seen in profiles of dust devils in the atmosphere.
Analysis of the higher resolution convective vortices in chapter 4 reveals qualitatively similar
profiles of vertical velocity in the instantaneous vortices. Preliminary work investigating
the vertical distribution of three-dimensional, positively buoyant Lagrangian particles shows
some interesting behaviour. Particles accumulate in the centre of convective vortices, but
the weak downwelling here is not strong enough to submerge the particles to significant
depths and they become trapped at the surface. However, when vortices interact and merge,
particles cross into strong downwelling regions surrounding the vortices, and the particles are
more readily subducted. Initial visualisations reveal a sudden downwards ‘burst’ of particles
ejected into the mixed layer. Since vortex merging is frequent, so too are these ejection

events. More work is needed to explore specifics of the mechanism and its implications. For
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example, could this behaviour contribute to buoyant particles escaping the mixed layer, and
how do additional effects such as wind forcing or diurnal heating impact results?

In a similar vein, further verification of the cyclonic bias of convective vortices and the
impact of the bias could be explored further. Our prediction in the context of the atmosphere
in chapter 4 is based on the free-slip boundary condition applicable to the ocean. In the
case of the atmosphere, a no-slip boundary condition might produce significant dissipation,
which could increase vorticity fluctuations and inhibit the cyclonic bias. Studies have also
shown that convective vortices form more readily when a free-slip boundary condition is
applied compared to a no-slip boundary condition (Giersch and Raasch, 2021). It would
be straightforward to test this using simulations comparable to those in chapters 3 and 4,
but configured with a no-slip boundary condition which would be more directly relevant for
the atmospheric boundary layer. This could shed light on the extent of properties shared
by atmospheric and oceanic convective vortices. Although challenging, more rigorous
observations of dust devils on Earth and Mars are needed to verify our predictions.

Convective vortices remain unobserved in the ocean, and directly measuring them and
their influence on buoyant material should be a priority. A challenge in observing convective
vortices is their small scale and ephemeral nature. One way of searching for them could be
to instead look for areas with high concentrations of buoyant material at the surface (perhaps
using inexpensive surface drifters as in the CARTHE experiment). However, dynamics occur
on relatively small scales and surface cooling usually occurs at night, which makes purely
visual efforts challenging. In reality, we are probably still some time away from verifying the
cyclonic bias of convective vortices in the ocean. Finally, this work has opened questions on
whether we need to reconsider the effect of planetary vorticity for other small-scale flows,
which is usually neglected.

Chapters 5 and 6 analyse a highly-idealised front under geostrophic adjustment, inspired
by fronts observed in the SUNRISE campaign. In particular, observations of sargassum and
bubbles revealed a distinct offset between the two materials (see figure 1.4d). Although work
in chapter 6 revealed one mechanism for segregating buoyant particles, it is unclear whether
the same mechanism is responsible for the separation of sargassum and bubbles observed in
SUNRISE (which occurs on much smaller scales at the frontal interface). Sargassum and
bubbles have different sizes and density, and therefore different particle buoyancies. The
accumulated sargassum was centred around 50 cm below the surface while the bubbles were
located at the surface. This suggests that the vertical velocity near the surface submerged
the sargassum along a sloping front, similar to that modelled in chapters 5 and 6. However,
the horizontal resolution of our LES was 2.0 m and the vertical resolution was 0.90 m

near the surface, which may not be large enough to capture the offset. To test this, higher
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resolution simulations could be run by further restricting the along-front domain length, or
using two-dimensional simulations.

In addition, to make our simulations computationally feasible, we had to stray outside
the parameter space relevant for fronts in the Gulf of Mexico. In the Gulf of Mexico, Rossby
numbers can reach as high as 300, depths are confined to only 10 — 20 m and the fronts were
very flat with a much larger horizontal length-scale compared to the vertical length-scale.
The large aspect ratio needed to capture a front on these scales poses major difficulties for
both LES and DNS. However, other progress could be made by adding degrees of realism to
the simulations. For example, a no-slip boundary condition could be applied at the bottom
(to represent the seafloor) and a buoyancy flux or wind forcing at the top boundary. This is
likely to generate more turbulence at both the surface and seafloor which could affect the
particle distribution, potentially allowing more subduction of strongly buoyant particles.

The idealisation of our front also limits the applicability of our results to SUNRISE
observations. At the ocean submesoscale, fronts are not isolated features but are part of a rich
field of eddies. These eddies can deform fronts which adds complications to our idealisation
of a straight front. However, fieldwork in the SUNRISE campaign in 2021 took place in
regions with relatively straight, tightly packed isobaths, which supported the development of
two-dimensional, straight fronts. This confirms that our assumption of an initially straight
front is reasonable in some circumstances. In contrast, the field experiment in the summer
of 2022 investigated the interaction of submesoscale eddies and fronts in regions with more
gradually sloping ocean floors, which allowed energetic three-dimensional eddies to develop.
An avenue of further research could be to simulate a less straight, turbulent front within a
baroclinic eddy. Challenges arise in how to both capture the large-scale eddy (which requires
a large domain size), and resolve the turbulent scales of the front (which requires a high
resolution). Analysing particles in such a regime could also be difficult due to the wide range
of processes. Without large numbers of particles, accumulation of particles might also be
hard to quantify if the particles are spread out over a large region. A good starting point for
this could be to run simulations of idealised baroclinic instability under controlled conditions
and then combine findings with our high resolution studies of frontogenesis.

It is well-known that a bias towards cyclonic vorticity also exists at the submesoscale
where Rossby numbers are &/(1) (Thomas et al., 2008), but the origin of the bias is still
relatively unexplored. Lagrangian particles proved a useful tool in understanding the bias
of convective vortices in chapters 3 and 4, and a similar approach could be used in the
submesoscale problem. Geostrophic adjustment is an example of a simple flow where a
cyclonic front develops, but chapters 5 and 6 did not investigate the evolution of vorticity.

A further study could involve initialising the front with some additional turbulence (e.g.
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convective forcing) and tracking vorticity along particle paths to see how quickly the bias
towards cyclonic vorticity develops.

From a broader perspective, our results have implications for parameterisations of buoyant
particles in regional and global ocean models where particle motion is not resolved. Currently,
most subgrid scale models treat horizontal transport as a diffusive process (Sebille et al.,
2020) or a random walk (Haza et al., 2012; Maximenko et al., 2018), where particles spread
out as time progresses. Models also neglect the effect of the particle buoyancy, treating all
buoyant particles the same. This thesis has rebutted both of these claims, highlighting the
anti-diffusive nature of small-scale flows and the strong dependence on particle buoyancy.
Such effects need to be integrated into these parameterisations to assess whether behaviour at
the submesoscale and below has a significant impact on the large-scale transport of buoyant

particles, or on important climate change research such as the global plastic budget.
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