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ABSTRACT 

We test the accuracy and density of mobile lidar-based 
scanners and compare them with the performance of a 
static scanner. This is achieved by systematically 
scanning a rectangular target at a growing distance, 
collating the statistics of the scans and comparing them. 
This study shows that the accuracy of the scans outputted 
by the static scanner is about 20 times better at 5 meters 
than those produced by the mobile devices and this gap 
further increases along with the distance. The density, 
measured in points per second, drops along with the 
distance for all the tested devices, with mobile scanners 
outperforming their static counterparts. 

INTRODUCTION 
The construction industry is among the least digitised 
compared to all other industries worldwide. It is estimated 
that improving digitisation in this area could significantly 
boost productivity, potentially creating $1.6 trillion of 
added-value, which is equal to half of the world’s 
infrastructure needs (McKinsey Global Institute, 2017). 
 One of the key components of digitisation is the ability 
to create accurate 3D scans of an environment using 
cameras or a lidar (Light Detection and Ranging) (Cadena 
et al., 2016). The ability to efficiently capture the 
geometry of built and under-construction assets is a 
fundamental step towards enabling the digitisation of the 
built environment. 
Static laser scanners (e.g. FARO Focus 3D) and 
photogrammetric software (e.g. Bentley Context Capture) 
are well known in the construction industry. The last 
decade has brought a proliferation of mobile scanning 
solutions that can collect data quicker, thus leading to 
lower operational costs. They are relatively newer and the 
knowledge of their true performance is very limited. 
Lidar-based hand-held scanners seem the dominating 
solutions for outdoor mobile mapping (Lee et al., 2019) 
thanks to their reliability and scanning range – 
significantly higher than the range of stereoscopic depth 
cameras such as Intel RealSense (Keselman et al., 2017) 
or structured-light cameras such as Google Tango 
(Marder-Eppstein, 2016). Yet the available scanning 
solutions are rarely tested against a common benchmark 
to allow for comparisons. 

In this paper, we measure the performance of 2 
commercially available lidar-based mobile scanners and 
compare it to that of a static scanner. We do that by 
systematically scanning a rectangular target of known 
dimensions (Figure 1) at distances ranging from 5 to 40 
meters with a 5-meter interval and collating the statistics 
of the obtained pointclouds. In particular, we focus on the 
accuracy/noise and the density as the former is crucial in 
the case of accurate engineering surveying (RICS, 2014) 
while the latter makes the scanned objects more 
informative to the user. We also compare the obtained 
results against the requirements of certain use cases in the 
Architecture, Engineering and Construction (AEC) 
industries, including engineering surveying – a use case 
chosen for this paper as one of the most frequent ones in 
the AEC industry (RICS, 2020). It should be noted, 
however, that the mobile scanners are not marketed to 
meet the RICS specification for engineering surveying, 
and we compare the performance of these devices against 
this use case solely to add a tangible reference point for 
professionals using such devices. We hope this paper will 
increase the awareness of how static and mobile scanning 
devices perform, and open up the door for further research 
and improvements in this area, especially in mobile 
mapping. 

The next chapter describes in detail how to determine 
the accuracy of a pointcloud of a target , followed by the 
detailed description of our data collection process. We 
then present the qualitative and quantitative results of the 
accuracy and density analyses which are concluded with 
a discussion and implications to the industry.  
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Figure 1: Scanning a target using static (on the left) and mo-
bile (in the middle) laser scanners. 



METHODS 

Determination of pointcloud noise 

The UK’s Royal Institution of Chartered Surveyors 
defines the accuracy as 2 standard deviations from the true 
value (equation 1) in the context of building and land 
surveying (RICS, 2014). A set D = {di} denotes the 
distances of points from the ground truth. Such a 
definition can be seen as a noise measure. Therefore, the 
notions of accuracy and noise will be interchangeably 
used in this paper. Equation 1 corresponds to the 
probability that 95% of the points lie within the accuracy 
if set D follows a Gaussian distribution. Formula 1 is also 
in line with (Bergelt et al., 2017) although the authors 
equate noise to 1 standard deviation.  

accuracy = 2  = 2 𝔼[𝐷 ] − (𝔼[𝐷])  (1) 

In this paper, we further split the noise into 2 components: 
the noise perpendicular to the fit plane (the depth/range 
noise) and the remaining part – the “vertical noise”. Since 
the latter can be associated with the accuracy of the area 
of our rectangular target, we replace it with simply 
measuring the area of a rectangle that covers the 
pointcloud of the target. Another reason for this 
simplification is that the open-source software Cloud 
Compare cannot compute the noise defined as in equation 
1 for a rectangular shape of known dimensions. We have 
decided to use Cloud Compare as it is very well known to 
the industry and its use makes the process described in 
this paper relatively smooth and easily reproducible. 
 The depth/range noise involves measuring distances 
from the true value of a planar target in our experiment. 
Accordingly, there must be a mean to fit a plane to the 
obtained pointcloud as shown in Figure 2. Such a fit plane 
will serve as the ground truth in our experiment and the 
distances {di} can be computed as in formula 2. 

𝑑 =
|𝐴(𝑥 − 𝑥 ) + 𝐵(𝑦 − 𝑦 ) + 𝐶(𝑧 − 𝑧 )|

√𝐴 + 𝐵 + 𝐶
 

(2) 

Fitting a plane to a pointcloud defined this way is then a 
multivariate optimisation problem for which we will be 
using a feature in Cloud Compare which finds such a 
Euclidean transformation H of the plane that minimises 
the Root Mean Square (RMS) error of the distances D 
according to formula 3. The plane consists of a normal 
vector (A, B, C)T and a point belonging to the plane (x0, 
y0, z0)T. 

H* = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑅𝑀𝑆(𝐷) (3) 

 

a) b) 
Figure 2: Fitting a plane to an isolated pointcloud of a planar 

target: the general view (a) and the side view (b). 

DATA COLLECTION 

Scanners 

In our experiment we use 1 static and 2 mobile laser 
scanners: (1) FARO Focus 3D; (2) GeoSLAM ZEB 
Horizon; (3) KAARTA Stencil 2 respectively. They are 
presented in Figure 3. 
 Both mobile scanners are equipped with a lidar sensor 
shooting 300,000 points per second of accuracy (1 sigma) 
±30 mm and can produce scans at a 100-meter range 
according to their specifications (GeoSLAM, n.d.; Smith, 
n.d.). Their weight does not exceed 2.8 kg and they both 
have 360° horizontal Field of View (FoV). Vertical FoV 
is 270 degrees for the GeoSLAM’s product and 30° for 
the KAARTA’s. This difference is caused by the fact that 
the former has a mechanical system rotating the lidar, 
hence increasing its FoV. Another apparent difference is 
that the KAARTA’s scanner does have an inherent 
grayscale camera in its basic version whereas the other 
scanner can be equipped with an RGB camera after an 
upgrade. The difference stems from the fact that the 
system of Stencil 2 uses the camera to improve the 
estimation of its trajectory (Shan and Englot, 2018) while 
ZEB Horizon uses imagery to colourise pointcloud. 
 On the other hand, FARO Focus 3D X 330 is equipped 
with a laser scanner of range 330 meters with an accuracy 
of 2 standard deviations at 25 meters equal to 1 mm in 
case of 10% reflective surface (FARO, 2016). Its vertical 
and horizontal FoVs are 300° and 360° respectively, with 
the step size of 0.009° in both directions. We set ‘point 
distance’ to be 6.136 mm/10m and ‘scan size’ to 
10240x4267 points which corresponds to predefined 
indoor scanning settings for distances above 10 meters. 
The predicted scanning duration is around 8 minutes for 
such a setup. The resolution and quality could be further 
improved at the cost of increased time. 



   
a) b) c) 

Figure 3: We use a static laser scanner FARO Focus 3D (a) 
and two mobile laser scanners – GeoSLAM ZEB Horizon (b) 

and KAARTA Stencil 2 (c). 

Scanning a target 

The same wooden rectangular target of size A1 sheet of 
paper (0.841m x 0.594m = 0.500m2) is scanned indoors at 
distances ranging from 5 to 40 meters with a 5-meter 
interval as shown in the first row in Figure 4. As indicated 
in (Huang and Grizzle, 2020), placing the target so that its  
top and bottom edges run parallel to the lidar’s rings lead 
to ambiguity in the vertical position of the target caused 
by the increasing spacing of the rings along with the 
distance. Therefore, the target is slightly rotated.   
 The scans of the target are systematically taken using 
the 3 scanners one after another for the same distance. The 
target is then moved by 5 meters forward and the 3 
subsequent scans are taken again. We repeat this process 
until the last target is captured at a distance of 40 meters. 
 We stand still in the same place indoors during 
scanning the target using mobile devices and move them 
using a hand to simulate the real data collection process. 
We move the mobile devices around the lemniscate (a 
shape resembling the infinity symbol) in the planes both 
parallel to the target as well as perpendicular to it for 
around 10 seconds for each scan. Also, the performance 
of scanning devices depends on the environment (Shan 
and Englot, 2018; Zhang and Singh, 2014). Therefore, 
scanning from the same spot indoors unifies the 
environmental conditions and scene attributes so that their 
impact is the same for all the tested devices. 
 It is also worth noting that the KAARTA scanner 
needs to be constantly in the move to cover the whole 
target reasonably densely. This is especially true when the 
distance to the target increases and fewer and fewer lidar’s 
beams cover the target. 

Processing 

After scanning, the collected data is transferred to a PC 
using an SD-card and a USB-stick for the static and 
mobile scanners accordingly. Each of the devices has its 
proprietary system in which the raw data is processed. We 
use the FARO SCENE 7.1 for the FARO scanner and the 
GeoSLAM Hub v5 for the ZEB Horizon. The Stencil 2 
has its program installed on Ubuntu Linux directly on the 
device and the user can operate it via a tablet. While the 
first two software products needed around 30-60 seconds 
to process each of the scans, the KAARTA’s software 
outputted a pointcloud right after scanning. 
 The processing is done with mostly default software 
configuration, turning off any additional sharpening and 
filtering where possible. The format for the outputted 

scans is .e57 in the case of FARO and .ply for the 
remaining two devices. 

Post-processing 

Finally, all the obtained scans are edited in Cloud 
Compare so that only the points belonging to the target 
are left. The isolated targets in the form of pointclouds can 
be seen in the last 3 rows in Figure 4. The number of 
points belonging to the target is divided by the time the 
scanning process takes. The output is then the number of 
points per second. We next fit a plane to each pointcloud 
of the target coming from each scanner and each distance 
separately and measure the smallest rectangle that covers 
the whole scan. Moreover, the depth noise is read off as 
an RMS parameter after fitting the plane. The reader 
might notice that RMS and standard deviation from 
formula 1 are the same, assuming that the mean is equal 
to 0 and both formulas divide the sum of squares by the 
number of addition components. Hence, no need for 
further computation of depth noise. 

RESULTS 
Qualitative results in the form of isolated pointclouds of 
the target at different distances from the 3 scanners are 
presented in Figure 4. The first row contains the photos of 
the targets at different distances. Isolated scans of the 
target coming from the FARO scanner are in the second 
row, followed by the scans from the KAARTA device in 
the third row and from the GeoSLAM scanner in the last 
row. There are also rectangles surrounding the 
pointclouds in the last two rows to better visualise the 
increasing vertical noise of the scans produced by the 
mobile devices. The scale across all the presented scans is 
preserved so the reader can have an even better notion of 
the problem. 
 The quantitative results corresponding to the 
qualitative results from Figure 4 can be seen in Figures 5, 
6 and 7.  Figure 5 presents the number of points belonging 
to the target divided by the time the scanning took. It was 
about 8 minutes in the case of the static scanner and 
around 10 seconds for both mobile devices. 
 Figure 6 and 7 correspond to the noise levels – the 
former presents the depth/range noise after fitting a plane 
to the scans of the target while the latter represents the 
area of the minimal rectangle covering the pointclouds 
which, in turn, refers to the rectangles surrounding the 
pointclouds of the target in the last 2 rows of Figure 4.
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Figure 4: A rectangular target scanned by 3 different scanners at distances 5-40 meters: 1st row – view of the target from a camera, 2nd row - target by the FARO static laser scanner, 3rd row 

– target by the KAARTA Stencil 2, 4th row – target by GeoSLAM ZEB Horizon. 
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Figure 7:Area of the smallest rectangle covering the scans of the target. 

Figure 6: depth accuracy 
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Figure 5: Number of points belonging to the target per second. 

Figure 8: Depth accuracy of the scans of the target. 
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DISCUSSION 
There is a very apparent difference in density per second  
between the static and mobile scanners (Figure 5). The 
latter outperforms the former in the number of points 
produced on the target per second. This, however, dilutes 
along with the distance. The figure shows that initially a 
significant gap of around 1800 points per seconds at 5 
meters, decreases exponentially to around 50-60 points at 
20-25 meters, ending up at roughly 20 points per second at 
the distance of 40 meters. The relatively low density of the 
static scanner can be contributed to the fact that the head 
of the device rotates at 360° and maps everything around 
whereas we only take the number of points belonging to 
the target standing in front and divide that number by the 
time the full scan takes (which is about 8 minutes along 
with colouring the pointcloud). It is also worth noting that 
it takes a fixed amount of time for the static scanner to 
finish scanning for a given set of parameters while the 
number of points collected using the mobile scanners 
increases with time. 
 The depth/range noise of the scans measures the noise 
only along an axis perpendicular to the target. It remains 
steady for the static scanner at the level of around 1 mm 
while for mobile scanners it is 20-30 times higher at 5 
meters and it gradually increases to reach about 40-50 
times that value at 40 meters. It is also worth noting that 
this quantity alone (without the other part of the noise 
measured along the remaining two axes) meets the 
requirements of use cases such as (but not limited to) 
measured building surveys, topographic surveys and low 
accuracy setting out since it is lower than ±50mm at 5 – 35 
meters for all the tested devices. However, the value in 
question is higher than ±20 mm at all the distances for both 
of the mobile scanners which is too high for meeting the 
specifications of engineering surveying as described in 
(RICS, 2014). 
 The remaining part of the noise – the vertical noise – is 
proposed to be measured in the plane of the target as the 
rectangle surrounding the pointcloud of the target (Figure 
7). The rectangles around the scans by the static scanner 
are the closest to the correct dimensions of the target, 
followed by Stencil 2 and then ZEB Horizon. The areas of 
rectangles by KAARTA and GeoSLAM differ from those 
by FARO by 20% and 32% at 5 meters respectively and 
this deviation increases almost linearly across the whole 
range to 102% and 640% at 40 meters accordingly. 
 The gradual reduction of density and accuracy along 
with the distance to the target is a major impediment in the 
ability of detection tools to find edges and corners in scans. 
Our experiment shows that edges and corners become less 
and less recognisable as the distance increases. This might 
force the user working on such scans to guess their exact 
position, and consequently, decreases the correctness of 
engineering measurements on such scans. 
 There are also other points of interest – for example, 
whether or not the produced pointclouds contain colour 
information which could help the user to identify and 

recognise scanned objects easier (Cipolla, 2018). In our 
experiment, only the FARO scanner could output a 
pointcloud with RGB data, however, the respective 
upgrades for the mobile scanners are available. 
 Finally, the type of environment has an influence on 
mobile scanning. We tested all the devices under the same 
environmental conditions and scene attributes indoors to 
minimise this impact. Therefore, we isolated for whatever 
influence they might have on the results. However, real 
scenes in practice often contain moving objects such as 
vehicles and/or people. They are likely to increase the 
noise of the produced scans and partially distort them. Our 
experiment was carried out in a purely static environment. 

CONCLUSIONS 
In this paper, we present a simple though effective process 
of measuring the accuracy and density at a growing 
distance for static and mobile scanners. A rectangular 
target of known dimensions was systematically scanned 
by all the mapping devices at varying distances and its 
pointclouds were processed to collate their statistics. Our 
experiment showed that the density of the scanned targets 
measured in points per second decreases exponentially 
along with the growing distance to the target and that the 
mobile scanners outperform the static mapping devices in 
this regard. The trend is the opposite when it comes to 
accuracy. The static scanner produces scans that are at 
least 20 times less noisy than those by mobile devices. 
While the accuracy specifications for such use cases as 
measured building surveys, topographic surveys and low 
accuracy setting out are met by all the devices almost at 
the whole range up to 40 meters, the more demanding use 
cases such as engineering surveying could only be 
satisfied by the static scanner. We also conclude that the 
combined fact that the density and accuracy decrease 
along with the distance to the target, heightens the 
problems in finding edges and corners in scans forcing the 
user to guess their exact position. Also, the reader should 
look rather at trends in the outcomes presented in this 
paper and not exact values as the latter can change 
depending on the environment in which the scans are 
taken. Finally, this paper investigates measuring accuracy 
using a target of known dimensions at a growing distance 
which is one of many approaches to the accuracy measure. 
Our way, although relatively simple, seems to be quite 
challenging, particularly for mobile mapping devices.  
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