Main Manuscript for

Imaging tumor lactate is feasible for identifying intermediate-risk prostate cancer patients with post-surgical biochemical recurrence

Nikita Sushentsev†*, Gregory Hamm‡, Jack Richings², Mary A. McLean¹, Ines Horvat Menih¹, Vinay Ayyappan¹, Ian G. Mills³,⁴,⁵,⁶, Anne Y. Warren⁷, Vincent J. Gnanapragasam⁸,⁹, Simon T. Barry¹⁰††, Richard J. A. Goodwin²††, Ferdia A. Gallagher¹††, Tristan Barrett¹††

¹ Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, United Kingdom
² Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
³ Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
⁴ Nuffield Department of Surgical Sciences, University of Oxford, JohnRadcliffe Hospital, Oxford, UK
⁵ Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
⁶ Department of Clinical Science, University of Bergen, Bergen, Norway
⁷ Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, CB2 0QQ, Cambridge, United Kingdom
⁸ Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
⁹ Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke’s Hospital, Cambridge, UK
¹⁰ Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge, UK
* Dr Nikita Sushentsev

Email: ns784@mdcshl.cam.ac.uk
† These authors contributed equally to this project.
†† These authors jointly supervised this work.

Author Contributions: N.S., G.H., F.A.G., and T.B. designed research; N.S. G.H., J.R., M.A.M., I.H.M., and A.Y.W. performed research; N.S., G.H., J.R., M.A.M., V.A., and I.G.M. analyzed data; N.S., G.H., F.A.G., and T.B. wrote the manuscript; V.J.G., S.T.B., R.J.A.G., F.A.G. and T.B. critically revised the manuscript, provided materials for research, and supervised its conduct.

Competing Interest Statement: G.H., J.R., S.T.B., and R.J.A.G. are AstraZeneca employees. F.A.G. has research support from GE Healthcare, grants from GlaxoSmithKline, and has consulted for AstraZeneca on behalf of the University of Cambridge. The remaining authors declare no competing interests.

Classification: Biological Sciences; Medical Sciences.

Keywords: prostate cancer, cancer metabolism, magnetic resonance imaging.

This file includes: Main Text; Figure 1; Table 1.
Abstract

While radical prostatectomy remains the mainstay of prostate cancer (PCa) treatment, 20%-40% of patients develop post-surgical biochemical recurrence (BCR). A particularly challenging clinical cohort includes patients with intermediate-risk disease whose risk stratification would benefit from novel approaches that complement standard-of-care diagnostic tools. Here, we show that imaging tumor lactate using hyperpolarized 13C magnetic resonance imaging and spatial metabolomics identifies BCR-positive patients in two prospective intermediate-risk surgical cohorts. Supported by spatially resolved tissue analysis of established glycolytic biomarkers, this study provides the rationale for multicenter trials of tumor metabolic imaging as an auxiliary tool to support PCa treatment decision-making.

Main Text

Introduction

Radical prostatectomy (RP) is a definitive treatment option for patients with clinically localized prostate cancer (PCa), but unfortunately 20%-40% will develop post-surgical biochemical recurrence (BCR) (1). BCR prediction is particularly challenging in patients with intermediate-risk PCa who often face uncertainty when deciding on the best treatment (2). Current tools for pre-operative BCR risk assessment only include standard clinical parameters, while new models incorporating multiparametric MRI (mpMRI) and targeted biopsy data are yet to enter clinical guidelines (3). The performance of mpMRI in this patient group may be further improved through the development of novel imaging techniques such as hyperpolarized $[^{1-13}C]$pyruvate MRI (HP-13C-MRI), which probes tumor $[^{1-13}C]$lactate labelling as a feature of glycolytic metabolism (4), a phenotype independently associated with post-surgical BCR (5–7). While pre-operative $[^{1-13}C]$lactate labelling is capable of both intergrade (8) and intragrade (9) tumor differentiation, it has not yet been linked to surgical outcomes, which limits our understanding of the true potential of HP-13C-MRI to tease out aggressive lesions and influence clinical decision-making in the pre-treatment setting. This prospective study focused on resolving this by correlating tumor lactate imaging using HP-13C-MRI and spatial metabolomics with surgical outcomes in two prospective cohorts of patients with intermediate-risk PCa.

Results

The primary cohort included seven newly diagnosed PCa patients who underwent HP-13C-MRI prior to RP (9) and were monitored in our center for a minimum of three years (range, 36-58 months) (Fig. 1A, Top). Pre-operatively, all patients had intermediate risk of BCR development according to the European Association of Urology and D’Amico risk groups (Fig. 1A, Top). The same was true for the matched secondary cohort of 14 PCa patients who were followed up for a minimum of six years after RP (range, 76-90 months) with a total of 41 tumor cores sampled for the spatial metabolomics analysis (Fig. 1A-B, Bottom). Two patients in each cohort developed BCR at 16 and 22 months (HP-13C-MRI cohort), as well as 11 and 18 months (spatial metabolomics cohort) after surgery, respectively. In both cohorts, one BCR-positive patient had pT3a disease, and both BCR-positive patients had positive surgical margins; importantly, these two adverse histopathological characteristics were also noted in some BCR-negative patients (Fig. 1B). In both cohorts, mpMRI-derived tumor apparent diffusion coefficient (ADC) values and tumor volumes, as well as serum prostate-specific antigen (PSA) measurements were similar between BCR-negative and BCR-positive patients (Fig. 1B).

Notably, in the HP-13C-MRI cohort, BCR-positive patients showed significantly elevated pre-operative tumor $[^{1-13}C]$lactate labelling (Fig. 1C-D). At the tissue level, tumors in BCR-positive patients also demonstrated a significant increase in the epithelial immunoexpression of
monocarboxylate transporter 1 (MCT1) ([Fig. 1C-D]), a key intracellular importer of [1-13C]pyruvate (8, 10). In addition, BCR-positive lesions showed the highest epithelial mRNA expression of lactate dehydrogenase A (LDHA) ([Fig. 1C-D]), an enzyme catalyzing the [1-13C]pyruvate-to-[1-13C]lactate conversion. Finally, BCR-positive lesions also showed the highest epithelium-to-stroma monocarboxylate transporter 4 (MCT4) ratio ([Fig. 1C-D]), an independent BCR predictor (7) and tissue correlate of [1-13C]lactate labelling (9). Importantly, in the spatial metabolomics cohort, tumor epithelial lactate measured using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was also significantly increased in samples obtained from BCR-positive patients ([Fig. 1E]).

Discussion

This prospective study suggests the feasibility of using both invasive (DESI-MSI) and non-invasive (HP-[13C]-MRI) novel clinical metabolic imaging tools in intermediate-risk PCa patients to identify men harboring metabolically active lesions at increased risk of surgical failure. In addition to reporting imaging findings, we attempted to mechanistically explain our observations through spatially resolved tissue analysis of established glycolytic biomarkers, corroborated by the direct epithelial lactate readout using spatial metabolomics. Future work will involve multi-institutional validation of our preliminary findings in larger cohorts to prospectively determine the clinical impact of metabolic imaging on PCa care.

Materials and Methods

Prior to surgery, all patients from the HP-[13C]-MRI cohort provided written informed consent for participation in the MISSION-Prostate prospective study that was approved by the institutional review board (National Research Ethics Service Committee East of England, Cambridge South, Research Ethics Committee number 16/EE/0205) and involved pre-surgical HP-[13C]-MRI acquisition, biological analysis of surgical samples, and post-surgical follow-up reported in this study. The DESI-MSI analysis was conducted under an IRB-approved prospective national study (DIAMOND, National Research Ethics Service Committee East of England, Cambridge South, Research Ethics Committee number 03/018), which involved prospective collection of fresh frozen radical prostatectomy samples from patients who provided written informed consent for their subsequent retrieval and analysis under the study protocol. Detailed imaging and tissue analysis protocols for the HP-[13C]-MRI cohort are provided in the original cohort description (9). Spatial metabolomics analysis in the secondary cohort was performed by means of desorption electrospray ionization mass spectrometry imaging, with detailed protocol provided in SI Appendix.

Acknowledgments

This study was supported by Prostate Cancer UK (PCUK; Grant PA14-012), Cancer Research UK (CRUK; Grant C197/A16465), Cancer Research UK Cambridge Centre, the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre (NIHR203312), AstraZeneca, the Engineering and Physical Sciences Research Council Imaging Centre in Cambridge and Manchester, and the Cambridge Experimental Cancer Medicine Centre. N.S. acknowledges support from the Gates Cambridge Trust and Emmanuel College, Cambridge. A.Y.W. is supported by the Urological Malignancies Programme of the Cancer Research UK Cambridge Centre (C9685/A25177) and NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). V.J.G. acknowledges infrastructure support from the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014).

References

1. T. Van den Broeck, et al., Prognostic Value of Biochemical Recurrence Following

Figure legends

Figure 1. Clinical lactate imaging for BCR prediction in intermediate-risk PCa patients. (A) Study flowchart presenting the HP-13C-MRI (Top) and spatial metabolomics (Bottom) patient cohorts; this panel was created using BioRender. **(B)** Clinicopathological characteristics of BCR-positive and BCR-negative patients from the HP-13C-MRI (Top, N = 7) and spatial metabolomics (Bottom, N = 14) patient cohorts. **(C)** Comparison of imaging and tissue-based metabolic characteristics of BCR-positive (N = 2) and BCR-negative (N = 5) lesions from the HP-13C-MRI cohort. **(D)** Representative images from the HP-13C-MRI cohort. Scale bars denote 5-50 μm. **(E)** DESI-MSI-derived tumor epithelial lactate comparison between BCR-positive (N = 2) and BCR-negative (N = 12) lesions from the spatial metabolomics cohort.